A Partition-based Method for String Similarity Joins with Edit-Distance Constraints

GUOLIANG LI, DONG DENG, and JIANHUA FENG
Tsinghua University

As an essential operation in data cleaning, the similarity join has attracted considerable attention from the database community. In this paper, we study string similarity joins with edit-distance constraints, which find similar string pairs from two large sets of strings whose edit distance is within a given threshold. Existing algorithms are efficient either for short strings or for long strings, and there is no algorithm that can efficiently and adaptively support both short strings and long strings. To address this problem, we propose a new filter, called the segment filter. We partition a string into a set of segments and use the segments as a filter to find similar string pairs. We first create inverted indices for the segments. Then for each string, we select some of its substrings, identify the selected substrings from the inverted indices, and take strings on the inverted lists of the found substrings as candidates of this string. Finally, we verify the candidates to generate the final answer. We devise efficient techniques to select substrings and prove that our method can minimize the number of selected substrings. We develop novel pruning techniques to efficiently verify the candidates. We also extend our techniques to support normalized edit distance. Experimental results show that our algorithms are efficient for both short strings and long strings, and outperform state-of-the-art methods on real-world datasets.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query Processing

General Terms: Algorithms, Performance, Theory, Design

Additional Key Words and Phrases: String Similarity Join, Edit Distance, Segment Filter

1. INTRODUCTION

A string similarity join between two sets of strings finds all similar string pairs from the two sets. For example, consider two sets of strings \{vldb, sigmod, \ldots\} and \{pvldb, icde, \ldots\}. We want to find all similar pairs, e.g., \langle vldb, pvldb \rangle. Many similarity functions have been proposed to quantify the similarity between two strings, such as Jaccard similarity, Cosine similarity, and edit distance. In this paper, we study string similarity joins with edit-distance constraints, which, given two large sets of strings, find all similar string pairs from the two sets, such that the edit distance between each string pair is within a given threshold. The string similarity join is an essential operation in many applications, such as data integration and cleaning, near duplicate object detection and elimination, and collaborative filtering [Xiao et al. 2008a].

Existing methods can be broadly classified into two categories. The first one uses a filter-and-refine framework, such as Part-Enum [Arasu et al. 2006], All-Pairs-Ed [Byardo et al. 2007], ED-JOIN [Xiao et al. 2008a]. In the filter step, they generate signatures for each string and use the signatures to generate candidate pairs. In the refine
step, they verify the candidate pairs to generate the final result. However, these approaches are inefficient for the datasets with short strings (e.g., person names and locations) [Wang et al. 2010]. The main reason is that they cannot select high-quality signatures for short strings and will generate large numbers of candidates which need to be further verified. The second one, TRIE-JOIN [Wang et al. 2010], adopts a trie-based framework, which uses a trie structure to share prefixes and utilizes prefix pruning to improve the performance. However TRIE-JOIN is inefficient for long strings (e.g., paper titles and abstracts). There are two main reasons. First it is expensive to traverse the trie with long strings. Second long strings have a small number of shared prefixes and TRIE-JOIN has limited pruning power.

If a system wants to support both short strings and long strings, we have to implement and maintain two separate codes, and tune many parameters to select the best method. To alleviate this problem, it calls for an adaptive method which can efficiently support both short strings and long strings. In this paper we propose a new filter, called the segment filter, and devise efficient filtering algorithms. We devise a partition scheme to partition a string into a set of segments and prove that if a string s is similar to string r, s must have a substring which matches a segment of r. Based on this observation, we use the segments as a filter and propose a segment-filter based framework. We first partition strings into segments and create inverted indices for the segments. Then for each string s, we select some of its substrings and search for the selected substrings in the inverted indices. If a selected substring appears in the inverted index, each string r on the inverted list of this substring (i.e., r contains the substring) may be similar to s, and we take r and s as a candidate pair. Finally we verify the candidate pairs to generate the final answer. We develop effective techniques to select high-quality substrings and prove that our method can minimize the number of selected substrings. We also devise novel pruning techniques to efficiently verify the candidate pairs. To summarize, we make the following contributions.

- We propose a segment-filter-based framework. We first partition strings into a set of segments. Then given a string, we select some of its substrings and take those strings whose segments match one of the selected substrings as the candidates of this string. We call this pruning technique the segment filter. Finally we verify the candidates to generate the final answer.

- To improve the segment-filter step, we discuss how to effectively select substrings and prove that our method can minimize the number of selected substrings.

- To improve the verification step, we propose a length-aware method, an extension-based method, and an iterative-based method to efficiently verify a candidate.

- We extend our techniques to support normalized edit distance and R-S join.

- We have conducted an extensive set of experiments. Experimental results show that our algorithms are very efficient for both short strings and long strings, and outperform state-of-the-art methods on real-world datasets.

The rest of this paper is organized as follows. We formalize our problem in Section 2. Section 3 introduces our segment-filter-based framework. We propose to effectively select substrings in Section 4 and develop novel techniques to efficiently verify candidates in Section 5. We discuss how to support normalized edit distance and R-S join in Section 6. Experimental results are provided in Section 7. We review related work in Section 8 and make a conclusion in Section 9.
2. PROBLEM FORMULATION

Given two collections of strings, a similarity join finds all similar string pairs from the two collections. In this paper, we use edit distance to quantify the similarity between two strings. Formally, the edit distance between two strings \(r \) and \(s \), denoted by \(ED(r, s) \), is the minimum number of single-character edit operations (i.e., insertion, deletion, and substitution) needed to transform \(r \) to \(s \). For example, \(ED(\text{"kausich chakduri"}, \text{"kaushuk chadhui"}) = 6 \).

Here two strings are similar if their edit distance is not larger than a specified edit-distance threshold \(\tau \). We formalize the problem of string similarity joins with edit-distance constraints as follows.

Definition 2.1 (String Similarity Joins). Given two sets of strings \(R \) and \(S \) and an edit-distance threshold \(\tau \), a similarity join finds all similar string pairs \(\langle r, s \rangle \in R \times S \) such that \(ED(r, s) \leq \tau \).

In the paper we first focus on self join (\(R = S \)). We will discuss how to support \(R-S \) join (\(R \neq S \)) in Section 6. For example, consider the strings in Table I (a). Suppose the edit-distance threshold \(\tau = 3 \). \(\langle \text{"kaushik chakrab"}, \text{"caushik chakrabar"} \rangle \) is a similar pair as their edit distance is not larger than \(\tau \).

<table>
<thead>
<tr>
<th>(a) Strings</th>
<th>(b) Sorted by Length (Ascending)</th>
<th>(c) Sorted by Length (Descending)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strings</td>
<td>ID</td>
<td>Strings</td>
</tr>
<tr>
<td>avataresha</td>
<td>s1</td>
<td>vankatesh</td>
</tr>
<tr>
<td>caushik chakrab</td>
<td>s2</td>
<td>avataresha</td>
</tr>
<tr>
<td>kaushik chakrab</td>
<td>s3</td>
<td>kausic chakduri</td>
</tr>
<tr>
<td>kaushuk chadhui</td>
<td>s4</td>
<td>kaushuk chadhui</td>
</tr>
<tr>
<td>kausic chakduri</td>
<td>s5</td>
<td>kausic chakduri</td>
</tr>
<tr>
<td>vankatesh</td>
<td>s6</td>
<td>caushik chakrabar</td>
</tr>
</tbody>
</table>

3. THE SEGMENT FILTER BASED FRAMEWORK

We first introduce a partition scheme to partition a string into several disjoint segments (Section 3.1), and then propose a segment filter based framework (Section 3.2).

3.1. Partition Scheme

Given a string \(s \), we partition it into \(\tau + 1 \) disjoint segments, and the length of each segment is not smaller than one\(^*\). For example, consider string \(s_1=\text{"vankatesh"} \). Suppose \(\tau = 3 \). We can partition \(s_1 \) into \(\tau + 1 = 4 \) segments, e.g., \{\text{"va"}, \text{"nk"}, \text{"at"}, \text{"esh"}\}.

Consider two strings \(r \) and \(s \). If \(s \) has no substring that matches a segment of \(r \), then \(s \) cannot be similar to \(r \) based on the pigeonhole principle as stated in Lemma 3.1.

Lemma 3.1. Given a string \(r \) with \(\tau + 1 \) segments and a string \(s \), if \(s \) is similar to \(r \) within threshold \(\tau \), \(s \) must contain a substring which matches a segment of \(r \).

Proof. We prove it by contradiction. Suppose string \(s \) contains no substring which matches a segment of string \(r \). In other words, any segment of \(r \) will not match any substring of \(s \). Thus for any transformation \(T \) from \(r \) to \(s \), in each segment of \(r \) there at least exists one edit operation. That is in any transformation \(T \) there are at least \(\tau + 1 \) edit operations. This contradicts that \(s \) is similar to \(r \). Thus \(s \) must contain a substring which matches a segment of \(r \).

\(^*\)The length of string \(s(|s|) \) should be larger than \(\tau \), i.e., \(|s| \geq \tau + 1 \).
In other words, if \(s \) is similar to \(r \), then \(s \) must contain a substring matching a segment of \(r \). For example, consider the strings in Table I. Suppose \(\tau = 3 \). \(s_1 = \text{"vankatesh"} \) has four segments \{“va”, “nk”, “at”, “esh”\}. As strings \(s_3, s_4, s_5, s_6 \) have no substring which matches segments of \(s_1 \), they are not similar to \(s_1 \).

Given a string, there could be many strategies to partition the string into \(\tau + 1 \) segments. A good partition strategy can reduce the number of candidate pairs and improve the performance. Intuitively, the shorter a segment of \(r \) is, the higher probability the segment appears in other strings, and the more strings will be taken as \(r \)'s candidates, thus the pruning power is lower. Based on this observation, we do not want to keep short segments in the partition. In other words, each segment should have nearly the same length. Accordingly we propose an even-partition scheme as follows.

Consider a string \(s \) with length \(|s| \). In even partition scheme, each segment has a length of \(\lceil \frac{|s|}{\tau + 1} \rceil \) or \(\lfloor \frac{|s|}{\tau + 1} \rfloor \), thus the maximal length difference between two segments is 1. Let \(k = |s| - \lfloor \frac{|s|}{\tau + 1} \rfloor \cdot (\tau + 1) \). In even partition, the last \(k \) segments have length \(\lceil \frac{|s|}{\tau + 1} \rceil \), and the first \(\tau + 1 - k \) ones have length \(\lfloor \frac{|s|}{\tau + 1} \rfloor \). For example, consider \(s_1 = \text{"vankatesh"} \) and \(\tau = 3 \). Then length of \(s_1 \) (|s_1|) is 9. \(k = 1 \). \(s_1 \) has four segments \{“va”, “nk”, “at”, “esh”\}.

Although we can devise other partition schemes, it is time consuming to select a good partition strategy. Note that the time for selecting a partition strategy should be included in the similarity-join time. In this paper we focus on the even-partition scheme and leave how to select a good partition scheme as a future work.

3.2. The Segment-Filter-based Framework

We have an observation that if a strings \(s \) does not have a substring that matches a segment of \(r \), we can prune the pair \(\langle s, r \rangle \). We use this feature to prune large numbers of dissimilar pairs. To this end, we propose a segment-filter-based framework, called SEGFilter. Figure 1 illustrates our framework.
For ease of presentation, we first introduce some notations. Let S_l denote the set of strings with length l and S^i_l denote the set of the i-th segments of strings in S_l. We build an inverted index for each S^i_l, denoted by L^i_l. Given an i-th segment w, let $L^i_l(w)$ denote the inverted list of segment w, i.e., the set of strings whose i-th segments are w. We use the inverted indices to do similarity joins as follows.

We first sort strings based on their lengths in ascending order. For the strings with the same length, we sort them in alphabetical order. Then we visit strings in order. Consider the current string s with length $|s|$. We find s’s similar strings among the visited strings using the inverted indices. To efficiently find such strings, we create indices only for visited strings to avoid enumerating a string pair twice. Based on length filtering [Gravano et al. 2001], we check whether the strings in $L^i_l(\langle s | - \tau \leq l \leq |s|, 1 \leq i \leq \tau + 1 \rangle)$ are similar to s. Without loss of generality, consider inverted index L^1_l. We find s’s similar strings in L^1_l as follows.

- **Substring Selection:** If s is similar to a string in L^1_l, then s should contain a substring which matches a segment in L^1_l. A straightforward method enumerates all of s’s substrings, and for each substring checks whether it appears in L^1_l. Actually we do not need to consider all substrings of s. Instead we only select some substrings (denoted by $\mathcal{W}(s, L^1_l)$) and use the selected substrings to find similar pairs. We discuss how to generate $\mathcal{W}(s, L^1_l)$ in Section 4. For each selected substring $w \in \mathcal{W}(s, L^1_l)$, we check whether it appears in L^1_l. If so, for each $r \in L^1_l(w)$, $\langle r, s \rangle$ is a candidate pair.

- **Verification:** To verify whether a candidate pair $\langle r, s \rangle$ is an answer, a straightforward method computes their real edit distance. However this method is rather expensive. To address this issue, we develop effective techniques to do efficient verification in Section 5.

After finding similar strings for s, we partition s into $\tau + 1$ segments and insert the segments into inverted index $L^i_{|s|}(1 \leq i \leq \tau + 1)$. Then we visit strings after s and iteratively we can find all similar pairs. Note that we can remove the inverted index $L^i_{|s|}$ for $k < |s| - \tau$. Thus we maintain at most $(\tau + 1)^2$ inverted indices L^i_l for $|s| - \tau \leq l \leq |s|$ and $1 \leq i \leq \tau + 1$. In this paper we focus on the case that the index can be fit in the memory. We leave dealing with a very large dataset as a future work.

For example, consider the strings in Table 1. Suppose $\tau = 3$. We find similar pairs as follows (see Figure 2). For the first string $s_1 = \text{vankatesh}$, we partition it into $\tau + 1$ segments and insert the segments into the inverted indices for strings with length 9, i.e., L^1_9, L^2_9, L^3_9, and L^4_9. Next for $s_2 = \text{avataresha}$, we enumerate its substrings and check whether each substring appears in $L^i_{|s_2| - \tau}, \ldots, L^i_{|s_2|}(1 \leq i \leq \tau + 1)$. Here we find “va” in L^3_9, “at” in L^3_9, and “esh” in L^3_9. For segment “va”, as $L^3_9(va) = \{s_1\}$. The pair $\langle s_2, s_1 \rangle$ is a candidate pair. We verify the pair and it is not an answer as the edit distance is larger than τ. Next we partition s_2 into four segments and insert them into $L^i_{|s_2|}, L^i_{|s_2|}, L^i_{|s_2|}, L^i_{|s_2|}$. Similarly we repeat the above steps and find all similar pairs.

We give the pseudo-code of our algorithm in Figure 3. We sort strings first by length and then in alphabetical order (line 2). Then, we visit each string in the sorted order (line 3). For each inverted index $L^i_{|s| - \tau \leq l \leq |s|, 1 \leq i \leq \tau + 1}$, we select the substrings of s (line 4-line 9) and check whether each selected substring w is in L^i_l (line 5-line 7). If yes, for any string r in the inverted list of w in L^i_l, i.e., $L^i_l(w)$, the string pair $\langle r, s \rangle$ is a candidate pair. We verify the pair (line 10). Finally, we partition s into $\tau + 1$ segments, and inserts the segments into the inverted index $L^i_{|s|}(1 \leq i \leq \tau + 1)$ (line 11).

Here function SUBSTRING_SELECTION selects all substrings and function VERIFICATION computes the real edit distance of two strings to verify the candidates using...
Algorithm 1: SegFilter \((S, \tau)\)

Input: \(S\): A collection of strings
\(\tau\): A given edit-distance threshold

Output: \(A = \{(s, r \in S) \mid ED(s, r) \leq \tau\}\)

1. \begin{algorithmic}
 2. \quad \text{Sort } S \text{ first by string length and second in alphabetical order;}
 3. \quad \text{for } s \in S \text{ do}
 4. \quad \quad \text{for } L^j_i (|s| - \tau \leq l \leq |s|, 1 \leq i \leq \tau + 1) \text{ do}
 5. \quad \quad \quad W(s, L^j_i) = \text{SubstringSelection}(s, L^j_i);
 6. \quad \quad \text{for } w \in W(s, L^j_i) \text{ do}
 7. \quad \quad \quad \quad \text{if } w \text{ is in } L^j_i \text{ then Verification}(s, L^j_i(w), \tau);
 8. \quad \text{Partition } s \text{ and add its segments into } L^1_{[a]};
\end{algorithmic}

Function SubstringSelection\((s, L^j_i)\)

Input: \(s\): A string; \(L^j_i\): Inverted index

Output: \(W(s, L^j_i)\): Selected substrings

1. \begin{algorithmic}
 2. \quad W(s, L^j_i) = \{w \mid w \text{ is a substring of } s\};
\end{algorithmic}

Function Verification\((s, L^j_i(w), \tau)\)

Input: \(s\): A string; \(L^j_i(w)\): Inverted list; \(\tau\): Threshold

Output: \(A = \{(s, r \in L^j_i(w)) \mid ED(s, r) \leq \tau\}\)

1. \begin{algorithmic}
 2. \quad \text{for } r \in L^j_i(w) \text{ do}
 3. \quad \quad \text{if } ED(s, r) \leq \tau \text{ then } A \leftarrow (s, r);
\end{algorithmic}

Fig. 2. An example of our segment filter based framework

Fig. 3. SegFilter algorithm

dynamic-programming algorithm. To improve the performance, we propose effective techniques to improve the substring-selection step (the SubstringSelection function) in Section \(\S\) and the verification step (the Verification function) in Section \(\S\).

Complexity: We first analyze the space complexity. Our indexing structure includes segments and inverted lists of segments. We first give the space complexity of segments. For each string in \(S_i\) we generate \(\tau + 1\) segments. Thus the number of segments is at most \((\tau + 1) \times |S_i|\), where \(|S_i|\) is the number of strings in \(S_i\). As we can use an
integer to encode a segment, the space complexity of segments is

$$O\left(\max_{l_{\min} \leq j \leq l_{\max}} \sum_{l=j-\tau}^{j} (\tau + 1) \times |S_l|\right),$$

where l_{\min} and l_{\max} respectively denote the minimal and the maximal string length.

Next we give the complexity of inverted lists. For each string in S_i, as the i-th segment of the string corresponds to an element in L_i, $|S_i| = |L_i|$. The space complexity of inverted lists (i.e., the sum of the lengths of inverted lists) is

$$O\left(\max_{l_{\min} \leq j \leq l_{\max}} \sum_{l=j-\tau}^{j} |L_i| = \max_{l_{\min} \leq j \leq l_{\max}} \sum_{l=j-\tau}^{j} (\tau + 1) \times |S_i|\right).$$

Then we give the time complexity. To sort the strings, we can first group the strings based on lengths and then sort strings in each group. Thus the sort complexity is $O(\sum_{l_{\min} \leq j \leq l_{\max}} |S_i| \log(|S_i|))$. For each string s_i, we select its substring set $\mathcal{W}(s_i, L_i)$ for $|s| - \tau \leq l \leq |s|$, $1 \leq i \leq \tau + 1$. The selection complexity is $O\left(\sum_{s \in S} \sum_{l=|s| - \tau}^{|s|} \sum_{i=1}^{\tau+1} \mathcal{X}(s, L_i)\right)$, where $\mathcal{X}(s, L_i)$ is the selection time complexity for $W_i(s, L_i)$, which is $O(\tau)$ (see Section 3). The selection complexity is $O(\tau^3|S|)$. For each substring $s \in \mathcal{W}(s, L_i)$, we verify whether strings in $L_i(w)$ are similar to s. The verification complexity is

$$O\left(\sum_{s \in S} \sum_{l=|s| - \tau}^{|s|} \sum_{i=1}^{\tau+1} \sum_{w \in \mathcal{W}(s, L_i)} \mathcal{V}(s, r)\right),$$

where $\mathcal{V}(s, r)$ is the complexity for verifying (s, r), which is $O(\tau \times \min(|s|, |r|))$ (see Section 3). In the paper we propose to reduce the size of $\mathcal{W}(s, L_i)$ and improve the verification cost $\mathcal{V}(s, r)$.

4. IMPROVING THE FILTER STEP BY SELECTING EFFECTIVE SUBSTRINGS

For any string $s \in S$ and a length l ($|s| - \tau \leq l \leq |s|$), we select a substring set $\mathcal{W}(s, l) = \bigcup_{i=\tau+1}^{\tau} \mathcal{W}(s, L_i)$ of s and use substrings in $\mathcal{W}(s, l)$ to find the candidates of s. We need to guarantee completeness of the method using $\mathcal{W}(s, l)$ to find candidate pairs. That is any similar pair must be found as a candidate pair. Next we give the formal definition.

Definition 4.1 (Completeness). A substring selection method satisfies completeness, if for any string s and a length l ($|s| - \tau \leq l \leq |s|$), $\forall r$ with length l which is similar to s and visited before s, r must have an i-th segment r_m which matches a substring $s_m \in \mathcal{W}(s, L_i)$ where $1 \leq i \leq \tau + 1$.

A straightforward method is to add all substrings of s into $\mathcal{W}(s, l)$. As s has $|s| - i + 1$ substrings with length i, the total number of s’s substrings is $\sum_{i=1}^{\tau} (|s| - i + 1) = \frac{|s|(|s|+1)}{2}$. For long strings, there are large numbers of substrings and it is rather expensive to enumerate all substrings.

Intuitively, the smaller size of $\mathcal{W}(s, l)$, the higher performance. Thus we want to find substring sets with smaller sizes. In this section, we propose several methods to select the substring set $\mathcal{W}(s, l)$. As $\mathcal{W}(s, l) = \bigcup_{i=\tau+1}^{\tau} \mathcal{W}(s, L_i)$ and we want to use inverted index L_i to do efficient filtering, next we focus on how to generate $\mathcal{W}(s, L_i)$ for L_i. Table 1 shows the notations used in this paper.
Length-based Method

As segments in L_i have the same length, denoted by l_i, the length-based method selects all substrings of s with length l_i, denoted by $W_i(s, L_i)$. Let $W_i(s, l) = \bigcup_{i=1}^{\tau} W_i(s, L_i)$. The length-based method satisfies completeness, as it selects all substrings with length l_i. The size of $W_i(s, L_i)$ is $|W_i(s, L_i)| = |s| - l_i + 1$, and the number of selected substrings is $|W_i(s, l)| = (\tau + 1)(|s| + 1) - l_i$.

Shift-based Method

However the length-based method does not consider the positions of segments. To address this problem, Wang et al. [Wang et al., 2009] proposed a shift-based method to address the entity identification problem. We can extend their method to support our problem as follows. As segments in L_i have the same length, they have the same start position, denoted by p_i, where $p_1 = 1$ and $p_i = p_1 + \sum_{k=1}^{i-1} l_k$ for $i > 1$. The shift-based method selects s's substrings with start positions in $[p_i - \tau, p_i + \tau]$ and with length l_i, denoted by $W_f(s, L_i)$. Let $W_f(s, l) = \bigcup_{i=1}^{\tau} W_f(s, L_i)$. The size of $W_f(s, L_i)$ is $|W_f(s, L_i)| = 2\tau + 1$. The number of selected substrings is $|W_f(s, l)| = (\tau + 1)(2\tau + 1)$.

The basic idea behind the method is as follows. Suppose a substring s_m of s with start position smaller than $p_i - \tau$ or larger than $p_i + \tau$ matches a segment in L_i. Consider a string $r \in L_i(s_m)$. We can partition $s(r)$ into three parts: the matching part $s_m(r_m)$, the left part before the matching part $s_l(r_l)$, and the right part after the matching part $s_r(r_r)$. As the start position of r_m is p_i and the start position of s_m is smaller than $p_i - \tau$ or larger than $p_i + \tau$, the length difference between s_l and r_l must be larger than τ. If we align the two strings by matching s_m and r_m (i.e., transforming r_l to s_l, matching r_m with s_m, and transforming r_r to s_r), they will not be similar, thus we can prune substring s_m. Hence the shift-based method satisfies completeness.

However, the shift-based method still involves many unnecessary substrings. For example, consider two strings $s_1 = “vankatesh”$ and $s_2 = “avataresha”$. Suppose $\tau = 3$ and $“vankatesh”$ is partitioned into four segments $\{va, nk, at, esh\}$. $s_2 = “avataresha”$ contains a substring “at” which matches the third segment in “vankatesh”, the shift-based method will select it as a substring. However we can prune it and the reason is as follows. Suppose we partition the two strings into three parts based on the matching segment. For instance, we partition “vankatesh” into \{“vank” , “at”, “esh”\}, and “avataresha” into \{“av”, “at”, “aresha”\}. Obviously the minimal edit distance (length difference) between the left parts (“vank” and “av”) is 2 and the minimal edit distance (length difference) between the right parts (“esh” and “aresha”) is 3. Thus if we align the two strings using the matching segment “at”, they will not be similar. In this way, we can prune the substring “at”.

4.1. Position-aware Substring Selection

Notice that all the segments in L_i have the same length l_i and the same start position p_i. Without loss of generality, we consider a segment $r_m \in L_i$. Moreover, all the strings

in inverted list \(L_i^j(r_m) \) have the same length \(l (l \leq |s|) \), and we consider a string \(r \) that contains segment \(r_m \). Suppose \(s \) has a substring \(s_m \) which matches \(r_m \). Next we give the possible start positions of \(s_m \). We still partition \(s(r) \) into three parts: the matching part \(s_m(r_m) \), the left part \(s_l(r_l) \), and the right part \(s_r(r_r) \). If we align \(r \) and \(s \) by matching \(r_m = s_m \), that is we transform \(r \) to \(s \) by first transforming \(r_l \) to \(s_l \) with \(\Delta_l = \text{ED}(r_l, s_l) \) edit operations, then matching \(r_m \) with \(s_m \), and finally transforming \(r_r \) to \(s_r \) with \(\Delta_r = \text{ED}(r_r, s_r) \) edit operations, the total transformation distance is \(\Delta = \Delta_l + \Delta_r \). As \(s \) is similar to \(r \), \(\Delta_l + \Delta_r \leq \tau \). Based on this observation, we give \(s_m \)'s minimal start position \((p_{\text{min}}) \) and the maximal start position \((p_{\text{max}}) \) as illustrated in Figure 4.

Minimal Start Position: Suppose the start position of \(s_m \), denoted by \(p \), is not larger than \(p_l \). Let \(\Delta = |s| - |r| \) and \(\Delta_l = p_l - p \). We have \(\Delta_l = \text{ED}(r_l, s_l) \geq \Delta_l \) and \(\Delta_r = \text{ED}(r_r, s_r) \geq \Delta_r + \Delta, \) as illustrated in Figure 4(a). If \(\Delta \) is similar to \(r \) (or any string in \(L_i^j(r_m) \)), we have \(\Delta_l + (\Delta_l + \Delta) \leq \Delta_l + \Delta_r \leq \tau \). That is \(\Delta_l \leq \left[\frac{\tau - \Delta}{2} \right] \) and \(p = p_l - \Delta_l + \left[\frac{\tau - \Delta}{2} \right] \). As \(p_{\text{min}} = p_l - \Delta_l + \left[\frac{\tau - \Delta}{2} \right] \).

Maximal Start Position: Suppose the start position of \(s_m \), \(p \), is larger than \(p_l \). Let \(\Delta = |s| - |r| \) and \(\Delta_r = p - p_l \). We have \(\Delta_l = \text{ED}(r_l, s_l) \geq \Delta_r \) and \(\Delta_r = \text{ED}(r_r, s_r) \geq \Delta_r - \Delta \) as illustrated in Figure 4(b). If \(\Delta_r \leq \Delta \), \(\Delta_r \geq \Delta - \Delta_r \), Thus \(\Delta = \Delta_r + (\Delta - \Delta_r) \leq \Delta_l + \Delta_r \leq \tau \), and in this case, the maximal value of \(\Delta_r \) is \(\Delta \); otherwise if \(\Delta_r > \Delta \), \(\Delta_r \geq \Delta_r - \Delta_r \). If \(s \) is similar to \(r \) (or any string in \(L_i^j(r_m) \)), we have

\[
\Delta_r + (\Delta_r - \Delta) \leq \Delta_l + \Delta_r \leq \tau.
\]

That is \(\Delta_r \leq \frac{\tau - \Delta}{2} \), and \(p = p_l + \Delta_r + l \leq p_l + \left[\frac{\tau - \Delta}{2} \right] \). Thus \(p_{\text{max}} = p_l + \left[\frac{\tau - \Delta}{2} \right] \). As the segment length is \(l_i \), based on the boundary, we have \(p_{\text{max}} \leq |s| - l_i + 1 \). Thus \(p_{\text{max}} = \min(|s| - l_i + 1, p_l + \left[\frac{\tau - \Delta}{2} \right]) \).

For example, consider string \(r = \text{vankatesh} \). Suppose \(\tau = 3 \) and “vankatesh” is partitioned into four segments, \{va, nk, at, esh\}. For string \(s = \text{avataresha} \), we have \(\Delta = |s| - |r| \) = 1. \(\left[\frac{\tau - \Delta}{2} \right] = 1 \) and \(\left[\frac{\tau - \Delta}{2} \right] = 2 \). For the first segment “va”, \(p_1 = 1 \). \(p_{\text{min}} = \max(1, p_l - \left[\frac{\tau - \Delta}{2} \right]) = 1 \) and \(p_{\text{max}} = 1 + \left[\frac{\tau - \Delta}{2} \right] = 3 \). Thus we only need to enumerate the following substrings “av”, “va”, “at” for the first segment. Similarly, we need to enumerate substrings “va”, “at”, “ta”, “ar” for the second segment, “ta”, “ar”, “re”, “es” for the third segment, and “res”, “esh”, “sha” for the fourth segment. We see that the position-aware method can reduce many substrings over the shift-based method (reducing the number from 28 to 14).

For \(L_i^j \), the position-aware method selects substrings with start positions in \([p_{\text{min}}, p_{\text{max}}] \) and length \(l_i \), denoted by \(\mathcal{W}_p(s, L_i^j) \). Let \(\mathcal{W}_p(s, l) = \bigcup_{l=1}^{l_i} \mathcal{W}_p(s, L_i^j) \). The size of \(\mathcal{W}_p(s, L_i^j) \) is \(|\mathcal{W}_p(s, L_i^j)| = \tau + 1 \) and the number of selected substrings is \(|\mathcal{W}_p(s, l)| = (\tau + 1)^2 \).

The position-aware method satisfies completeness as formalized in Theorem 4.2.
Theorem 4.2. The position-aware substring selection method satisfies the completeness.

Proof. See Section A in Appendix. \(\square\)

4.2. Multi-match-aware Substring Selection

We have an observation that string \(s\) may have multiple substrings that match some segments of string \(r\). In this case we can discard some of these substrings. For example, consider \(r = \text{"vankatesh"}\) with four segments, \(\{va, nk, at, esh\}\). \(s = \text{"avataresha"}\) has three substrings \(va, at, esh\) matching the segments of \(r\). We can discard some of these substrings to reduce the verification cost. To this end, we propose a multi-match-aware substring selection method.

Consider \(L_i\). Suppose string \(s\) has a substring \(s_m\) that matches a segment in \(L_i\). If we know that \(s\) must have a substring after \(s_m\) which will match a segment in \(L_j\) \((j > i)\), we can discard substring \(s_m\). For example, \(s = \text{"avataresha"}\) has a substring “va” matching a segment in \(r = \text{"vankatesh"}\). Consider the three parts \(r_m = \text{"va"}, r_l = \phi\) and \(s_l = \text{"a"}\), and \(r_r = \text{"nkatesh"}\) and \(s_r = \text{"taresha"}\). As \(d_l \geq 1\), if \(s\) and \(r\) are similar, \(d_r \leq \tau - d_l \leq \tau - 1 = 2\). As there are still 3 segments in \(r\), thus \(s_r\) must have a substring matching a segment in \(r\) based on the pigeon-hole principle. Thus we can discard the substring “va” and use the next matching substring to find similar pairs. Next we generalize our idea.

Suppose \(s\) has a substring \(s_m\) with start position \(p\) matching a segment \(r_m \in L_i\). We still consider the three parts of the two strings: \(s_l, s_m, s_r\) and \(r_l, r_m, r_r\) as illustrated in Figure 5. Let \(\Delta_i = |p_i - p|, d_l = ED(r_l, s_l) \geq \Delta_i\). As there are \(i - 1\) segments in \(s_l\), if each segment only has less than 1 edit operation when transforming \(r_l\) to \(s_l\), we have \(\Delta_l \leq i - 1\). If \(\Delta_l \geq i\), \(d_l = ED(r_l, s_l) \geq \Delta_i \geq i\). \(d_r = ED(r_r, s_r) \leq \tau - d_l \leq \tau - i\) (if \(s\) is similar to \(r\)). As \(r_r\) contains \(\tau + 1 - i\) segments, \(s_r\) must contain a substring matching a segment in \(r\) based on the pigeon-hole principle, which can be proved similar to Lemma 5.1. In this way, we can discard \(s_m\), since for any string \(r \in L_i(r_m)\), \(s\) must have a substring that matches a segment in the right part \(r_r\), and thus we can identify strings similar to \(s\) using the next matching substring. In summary, if \(\Delta_l = |p - p_l| \leq i - 1\), we keep the substring with start position \(p\) for \(L_i\). That is the minimal start position is \(l_1^i = \max(1, p_i - (i - 1))\) and the maximal start position is \(T_1^i = \min(|s| - l_i + 1, p_i + (i - 1))\).

For example, suppose \(\tau = 3\). Consider \(r = \text{"vankatesh"}\) with four segments, \(\{va, nk, at, esh\}\), and \(s = \text{"avataresha"}\). For the first segment, we have \(l_1^i = 1 - 0 = 1\) and \(T_1^i = 1 + 0 = 1\). Thus the selected substring is only “av” for the first segment. For the second segment, we have \(l_1^i = 3 - 1 = 2\) and \(T_1^i = 3 + 1 = 4\). Thus the selected substrings are “va”, “at”, and “ta” for the second segment. Similarly for the third segment, we have \(l_1^i = 5 - 2 = 3\) and \(T_1^i = 5 + 2 = 7\), and for the fourth segment, we have \(l_1^i = 7 - 3 = 4\) and \(T_1^i = \min(8, 7 + 3) = 8\).

Right-side Perspective: The above observation is made from the left-side perspective. Similarly, we can use the same idea from the right-side perspective. As there are \(\tau + 1 - i\) segments on the right part \(r_r\), there are at most \(\tau + 1 - i\) edit operations on \(r_r\). If we transform \(r\) to \(s\) from the right-side perspective, position \(p_i\) on \(r\) should be aligned with position \(p_i + \Delta\) on \(s\) as shown in Figure 5(b). Suppose the position \(p\) on \(s\) matching position \(p_i\) on \(r\). Let \(\Delta_r = |p - (p_i + \Delta)|\). We have \(d_r = ED(s_r, r_r) \geq \Delta_r\). As there are \(\tau + 1 - i\) segments on the right part \(r_r\), we have \(\Delta_r \leq \tau + 1 - i\). Thus the minimal start position for \(L_r\) is \(l_r^i = \max(1, p_i + \Delta - (\tau + 1 - i))\) and the maximal start position is \(T_r^i = \min(|s| - l_i + 1, p_i + \Delta + (\tau + 1 - i))\).
4.3. Comparison of Selection Methods

We compare the selected substring sets of different methods. Let \(W_l(s, l), W_f(s, l), W_p(s, l), \) and \(W_m(s, l) \) respectively denote the sets of selected substrings that use the length-based selection method, the shift-based selection method, the position-aware selection method, and the multi-match-aware selection method. Based on the size analysis of each set, we have \(|W_m(s, l)| \leq |W_p(s, l)| \leq |W_f(s, l)| \leq |W_l(s, l)| \). Next we prove \(W_m(s, l) \subseteq W_p(s, l) \subseteq W_f(s, l) \subseteq W_l(s, l) \) as formalized in Lemma 4.5.

Lemma 4.5. For any string \(s \) and a length \(l \), we have

\[W_m(s, l) \subseteq W_p(s, l) \subseteq W_f(s, l) \subseteq W_l(s, l). \]

Proof. See Section D in Appendix.

Consider the above example. We have \(\Delta = 1 \). For the fourth segment, we have \(\triangledown \tau^4 = 7 + 1 + (3 + 1 - 4) = 8 \) and \(\Upsilon \tau^4 = 7 + 1 + (3 + 1 - 4) = 8 \). The selected substring is only “sha” for the fourth segment. Similarly for the third segment, we have \(\triangledown \tau^3 = 5 \) and \(\Upsilon \tau^3 = 7 \). The selected substrings are “ar”, “re”, and “es” for the third segment.

Combine Left-side Perspective and Right-side Perspective: More interestingly, we can use the two techniques simultaneously. That is for \(L_i \), we only select the substrings with start positions between \(\triangledown_i = \max(\triangledown_{i+1}, \Upsilon_{i+1}) \) and \(\Upsilon_i = \min(\Upsilon_{i+1}, \Upsilon_{i+1}) \) and with length \(\ell_i \), denoted by \(W_m(s, L_i) \). Let \(W_m(s, l) := \bigcup_{i=1}^{\tau+1} W_m(s, L_i) \). The number of selected substrings is \(|W_m(s, l)| = \frac{2 + \Delta^2}{2} + \tau + 1\) as stated in Lemma 4.3.

Lemma 4.3. \(|W_m(s, l)| = \frac{2 + \Delta^2}{2} + \tau + 1\).

Proof. See Section C in Appendix.

The multi-match-aware method satisfies completeness as stated in Theorem 4.4.

Theorem 4.4. The multi-match-aware substring selection method satisfies the completeness.

Proof. See Section D in Appendix.

4.3. Comparison of Selection Methods

We compare the selected substring sets of different methods. Let \(W_l(s, l), W_f(s, l), W_p(s, l), \) and \(W_m(s, l) \) respectively denote the sets of selected substrings that use the length-based selection method, the shift-based selection method, the position-aware selection method, and the multi-match-aware selection method. Based on the size analysis of each set, we have \(|W_m(s, l)| \leq |W_p(s, l)| \leq |W_f(s, l)| \leq |W_l(s, l)| \). Next we prove \(W_m(s, l) \subseteq W_p(s, l) \subseteq W_f(s, l) \subseteq W_l(s, l) \) as formalized in Lemma 4.5.

Lemma 4.5. For any string \(s \) and a length \(l \), we have

\[W_m(s, l) \subseteq W_p(s, l) \subseteq W_f(s, l) \subseteq W_l(s, l). \]

Proof. See Section D in Appendix.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.
Moreover, we can prove that \(W_m(s, l) \) has the minimum size among all substring sets generated by the methods that satisfy completeness as formalized in Theorem 4.6.

Theorem 4.6. The substring set \(W_m(s, l) \) generated by the multi-match-aware selection method has the minimum size among all the substring sets generated by the substring selection methods that satisfy completeness.

Proof. See Section 4.8 in Appendix. \(\square \)

Theorem 4.6 proves that the substring set \(W_m(s, l) \) has the minimum size. Next we introduce another concept to show the superiority of our multi-match-aware method.

Definition 4.7 (Minimality). A substring set \(W(s, l) \) generated by a method with the completeness property satisfies minimality, if for any substring set \(W(s, l) \) generated by a method with the completeness property, \(W(s, l) \subseteq W'(s, l) \).

Next we prove that if \(l \geq 2(\tau + 1) \) and \(|s| \geq l \), the substring set \(W_m(s, l) \) generated by our multi-match-aware selection method satisfies minimality as stated in Theorem 4.8. The condition \(l \geq 2(\tau + 1) \) makes sense where each segment is needed to have at least two characters. For example, if \(10 \leq l < 12 \), we can tolerate \(\tau = 4 \) edit operations. If \(12 \leq l < 14 \), we can tolerate \(\tau = 5 \) edit operations.

Theorem 4.8. If \(l \geq 2(\tau + 1) \) and \(|s| \geq l \), \(W_m(s, l) \) satisfies minimality.

Proof. See Section 4.8 in Appendix. \(\square \)

4.4. Substring-selection Algorithm

Based on above discussions, we improve SUBSTRINGSELECTION algorithm by removing unnecessary substrings. For \(\mathcal{L}_i \), we use the multi-match-aware selection method to select substrings, and the selection complexity is \(O(\tau) \). Figure 6 gives the pseudo-code of the substring selection algorithm.

For example, consider the strings in Table 1. We create inverted indices as illustrated in Figure 2. Consider string \(s_1 = \text{"vankatresh"} \) with four segments, we build four inverted lists for its segments \(\{va, nk, at, es\} \). Then for \(s_2 = \text{"avataresha"} \), we use multi-match-aware selection method to select its substrings. Here we only select 8 substrings for \(s_2 \) and use the 8 substrings to find similar strings of \(s_2 \) from the inverted indices. Similarly, we can select substrings for other strings.

5. Improving the Verification Step

In our framework, for string \(s \) and inverted index \(\mathcal{L}_i \), we generate a set of its substrings \(W(s, \mathcal{L}_i) \). For each substring \(w \in W(s, \mathcal{L}_i) \), we need to check whether it appears in \(\mathcal{L}_i \). If \(w \in \mathcal{L}_i \), for each string \(r \in \mathcal{L}_i \), \((r, s)\) is a candidate pair and we need to verify the candidate pair to check whether they are similar. In this section we propose effective techniques to do efficient verification.
Traditional Method: Given a candidate pair \((r, s)\), a straightforward method to verify the pair is to use a dynamic-programming algorithm to compute their real edit distance. If the edit distance is not larger than \(\tau\), the pair is an answer. We can use a matrix \(M\) with \(|r| + 1\) rows and \(|s| + 1\) columns to compute their edit distance, in which \(M(0, j) = j\) for \(0 \leq j \leq |s|\), and \(M(i, 0) = i\) for \(1 \leq i \leq |r|\),

\[
M(i, j) = \min(M(i - 1, j) + 1, M(i, j - 1) + 1, M(i - 1, j - 1) + \delta)
\]

where \(\delta = 0\) if the \(i\)-th character of \(r\) is the same as the \(j\)-th character of \(s\); otherwise \(\delta = 1\). The time complexity of the dynamic-programming algorithm is \(O(|r| \times |s|)\).

Actually, we do not need to compute their real edit distance and only need to check whether their edit distance is not larger than \(\tau\). An improvement based on length pruning [Ukkonen 1985] is proposed which only computes the values \(M(i, j)\) for \(|i - j| \leq \tau\), as shown in the shaded cells of Figure 7(a). The basic idea is that if \(|i - j| > \tau\), \(M(i, j) > \tau\), and we do not need to compute such values. This method improves the time complexity \(\mathcal{O}(s, r)\) to \(O((2 \times \tau + 1) \times \min(|r|, |s|))\). Next, we propose a technique to further improve the performance by considering the length difference between \(r\) and \(s\).

5.1. Length-aware Verification
In this section, we propose a length-aware verification method. We first use an example to illustrate our idea. Consider string \(r = \text{“kaushuk chadhui”}\) and string \(s = \text{“caushik chakrabar”}\). Suppose \(\tau = 3\). Existing methods need to compute all the shaded values in Figure 7(a). We have an observation that we do not need to compute \(M(2, 1)\), which is the edit distance between “ka” and “c”. This is because if there is a transformation from \(r\) to \(s\) by first transforming “ka” to “c” with at least 1 edit operation (length difference) and then transforming “usuk chadhui” to “caushik chakrabar” with at least 3 edit operations (length difference), the transformation distance is at least 4 which is larger than \(\tau = 3\). In other words, even if we do not compute \(M(2, 1)\), we know that there is no transformation including \(M(2, 1)\) (the transformation from “ka” to “c”) whose distance is not larger than \(\tau\). Actually we only need to compute the highlighted values as illustrated in Figure 7(b). Next we formally introduce our length-aware method.

Length-aware Method: Without loss of generality, let \(|s| \geq |r|\) and \(\Delta = |s| - |r| \leq \tau\) (otherwise their edit distance must be larger than \(\tau\)). We call a transformation from \(r\) to \(s\) including \(M(i, j)\), if the transformation first transforms the first \(i\) characters of \(r\)
to the first j characters of s with d_1 edit operations and then transforming the other characters in r to the other characters in s with d_2 edit operations. Based on length difference, we have $d_1 \geq |i-j|$ and $d_2 \geq |(|s|-j) - (|r|-i)| = |\Delta+(i-j)|$. If $d_1 + d_2 > \tau$, we do not need to compute $M(i, j)$, since the distance of any transformation including $M(i, j)$ is larger than τ. To check whether $d_1 + d_2 > \tau$, we consider the following cases.

- If $i \geq j$, $d_1 + d_2 \geq i-j+\Delta+i-j$. If $i-j+\Delta+i-j > \tau$, that is $j < i-\frac{\tau-\Delta}{2}$, we do not compute $M(i, j)$. In other words, we only need to compute $M(i, j)$ with $j \geq i-\frac{\tau-\Delta}{2}$.
- If $i < j$, $d_1 = j-i$. If $j-i \leq \Delta$, $d_1 + d_2 \geq j-i+\Delta-j+i = \Delta$. As $\Delta \leq \tau$, there is no position constraint. We need to compute $M(i, j)$; otherwise if $j-i > \Delta$, we have $d_1 + d_2 \geq j-i+j-i-\Delta$. If $j-i+j-i-\Delta > \tau$, that is $j > i+\frac{\tau+\Delta}{2}$, we do not need to compute $M(i, j)$. In other words, we only need to compute $M(i, j)$ with $j \leq i+\frac{\tau+\Delta}{2}$.

Based on this observation, for each row $M(i, \ast)$, we only compute $M(i, j)$ for $i-\lfloor \frac{\tau-\Delta}{2} \rfloor \leq j \leq i+\lfloor \frac{\tau+\Delta}{2} \rfloor$. For example, in Figure 8, we only need to compute the values in black circles. Thus we can improve the time complexity $\mathcal{O}(\tau+1)\min(|r|, |s|)$ to $\mathcal{O}((\tau+1)\min(|r|, |s|))$.

![Fig. 8. Length-aware verification](image)

Early Termination: We can further improve the performance by doing an early termination. Consider the values in row $M(i, \ast)$. A straightforward early-termination method is to check each value in $M(i, \ast)$, and if all the values are larger than τ, we can do an early termination. This is because the values in the following rows $M(k > i, \ast)$ must be larger than τ based on the dynamic-programming algorithm. This pruning technique is called prefix pruning. For example in Figure 8(a), if $\tau = 3$, after we have computed $M(13, \ast)$, we can do an early termination as all the values in $M(13, \ast)$ are larger than τ. But in our method, after we have computed the values in $M(6, \ast)$, we can conclude that the edit distance between the two strings is at least 4 (larger than $\tau = 3$). Thus we do not need to compute $M(i > 6, \ast)$ and can terminate the computation as shown in Figure 8(b). To this end, we propose a novel early-termination method.

For ease of presentation, we first introduce several notations. Given a string s, let $s[i]$ denote the i-th character and $s[i : j]$ denote the substring of s from the i-th character to the j-th character. Notice that $M(i, j)$ denotes the edit distance between $r[1 : i]$ and $s[1 : j]$. We can estimate the lower bound of the edit distance between $r[i : |r|]$ and $s[j : |s|]$ using their length difference $|(|s|-j)-(|r|-i)|$. We use $E(i, j) = M(i, j) +
ALGORITHM 3: LENGTH-AWARE VERIFICATION (r, s, τ)

Input: r: A string; s: Another string; τ: Threshold;
Output: d = min(τ + 1, ED(s, r))

begin
 Δ = |s| − |r| ;
 for i = 1 to |r| do
 st = i − ⌊r−Δ Δ ⌋; en = i + ⌊r+Δ Δ ⌋;
 for j = st to en do
 M(i, j) = min(M(i − 1, j) + 1, M(i, j − 1) + 1, M(i − 1, j − 1) + δ);
 E(i, j) = M(i, j) + |(|s| − j) − (|r| − i)| ;
 if E(i, j) > τ for st ≤ j ≤ en then return τ + 1;
 return M[|r||s|] ;
end

Fig. 9. Length-aware verification algorithm

|(|s| − j) − (|r| − i)| to estimate the edit distance between s and r, which is called expected edit distance of s and r with respect to M(i, j). If each expected edit distance for M(i, j) in M(i, *) is larger than τ, the edit distance between r and s must be larger than τ, thus we can do an early termination. To achieve our goal, for each value M(i, j), we maintain the expected edit distance E(i, j). If each value in E(i, *) is larger than τ, we can do an early termination as formalized in Lemma 5.1.

LEMMA 5.1. Given strings s and r, if each value in E(i, *) is larger than τ, the edit distance of r and s is larger than τ.

PROOF. We prove that any transformation from r to s will involve more than τ edit operations if each value in E(i, *) is larger than τ. For any transformation T from r to s, T must include one of M(i, *). Without loss of generality, suppose T includes M(i, j). Then we have d1 = M(i, j) and d2 ≥ |(|s| − j) − (|r| − i)|. Thus |T| = d1 + d2 ≥ M(i, j) + |(|s| − j) − (|r| − i)| = E(i, j) > τ. Thus transformation T will involve more than τ edit operations. Therefore, the edit distance of r and s is larger than τ. □

Figure 9 shows the pseudo-code of the length-aware algorithm. Different from traditional methods, for each row M[i][*], we only compute the columns between i − ⌊r−Δ Δ ⌋ and i + ⌊r+Δ Δ ⌋ (lines 3-4). We also use the expected matrix to do early termination (lines 6-8). Next, we use an example to walk through our algorithm. In Figure 9(b), the expected edit distances are shown in the left-bottom corner of each cell. When we have computed M(6, *) and E(6, *), all values in E(6, *) are larger than 3, thus we can do an early termination and avoid many unnecessary computations.

We use the length-aware verification algorithm to improve the Verification function in Figure 8 (by replacing line 3). Our technique can be applied to any other algorithms which need to verify a candidate in terms of edit distance (e.g., ED-JOIN and NGPP).

5.2. Extension-based Verification

Consider a selected substring w of string s. If w appears in the inverted index Lj, for each string r in the inverted list Lj(w), we need to verify the pair ⟨s, r⟩. As s and r share a common segment w, we can use the shared segment to efficiently verify the pair. To achieve our goal, we propose an extension-based verification algorithm.

As r and s share a common segment w, we partition them into three parts based on the common segment. We partition r into three parts, the left part r1, the matching part rm = w, and the right part rr. Similarly, we get three parts for string s: s1, sm = w,
and s_r. Here we align s and r based on the matching substring r_m and s_m, and we only need to verify whether r and s are similar in this alignment. Thus we first compute the edit distance $d_l = ED(r_l, s_l)$ between r_l and s_l using the above-mentioned method. If d_l is larger than τ, we terminate the computation; otherwise, we compute the edit distance $d_r = ED(s_r, r_r)$ between s_r and r_r. If $d_l + d_r$ is larger than τ, we discard the pair; otherwise we take it as an answer.

Note that this method can correctly verify a candidate pair. Here we present the basic idea and will formally prove it in Theorem 3.3. Recall Lemma 3.1. If s and r are similar, s must have a substring that matches a segment of r. In addition, based on dynamic-programming algorithm, there must exist a transformation by aligning r_m with s_m and $ED(s, r) = d_l + d_r$. As our method selects all possible substrings and considers all such common segments, our method will not miss any results. On the other hand, the results found in our algorithm satisfy $d_l + d_r \leq \tau$. Since $ED(s, r) \leq d_l + d_r \leq \tau$, the results found in our algorithm must be true answers.

$$\tau = \min(\tau - |r_i - s_i|, i - 1)$$

![Diagram](image)

Fig. 10. Extension-based verification

Improve the Verification Algorithm Using Tighter Bounds: Actually, we can further improve the verification algorithm. For the left parts, we can give a tighter threshold $\tau_l \leq \tau$. The basic idea is as follows. As the minimal edit distance between the right parts r_r and s_r is $|r_r| - |s_r|$. Thus we can set $\tau_l = \tau - |r_r| - |s_r|$. If the edit distance between r_l and s_l is larger than threshold τ_l, we can terminate the verification; otherwise we continue to compute $d_r = ED(r_r, s_r)$. Similarly for the right parts, we can also give a tighter threshold $\tau_r \leq \tau$. As d_l has been computed, we can use $\tau_r = \tau - d_l$ as a threshold to verify whether r_r and s_r are similar. If d_r is larger than threshold τ_r, we can terminate the verification.

For example, suppose $\tau = 3$ and we want to verify $s_5 = \text{"kausik chakduri"}$ and $s_6 = \text{"caushik chakrabar"}$. s_5 and s_6 share a segment “chak”. We have $s_5 = \text{“kausic c.”}$ and $s_6 = \text{“caushik c.”}$, and $s_5 = \text{“duri”}$ and $s_6 = \text{“rabar”}$. As $|s_5_r| - |s_6_r| = 1$, $\tau_l = \tau - 1 = 2$. We only need to verify whether the edit distance between s_5 and s_6 is not larger than $\tau_l = 2$. After we have computed $M(0, *)$, we can do an early termination as each value in $E(6, *)$ is larger than 2.

Actually we can deduce two much tighter thresholds for τ_l and τ_r respectively. Consider the i-th segment, we can terminate the verification based on the multi-match-aware method. Thus we have $d_l \leq \tau_l = i - 1$. Combining with the above pruning condition, we have $\tau_l = \min(\tau - |r_l| - |s_l|, i - 1)$. As $|r_r| - |s_r| = (|r| - p_l - l_i) -
Our extension-based verification method satisfies correctness. Let us prove it.

Given a candidate pair \(\langle s, r \rangle \), a verification algorithm is correct, if it satisfies (1) If \(\langle s, r \rangle \) passes the algorithm, \(\langle s, r \rangle \) must be a similar pair; and (2) If \(\langle s, r \rangle \) is a similar pair, it must pass the algorithm.

To guarantee correctness of our extension-based method, we first give a formal definition of correctness.

Definition 5.2 (Correctness). Given a candidate pair \(\langle s, r \rangle \), a verification algorithm is correct, if it satisfies (1) If \(\langle s, r \rangle \) passes the algorithm, \(\langle s, r \rangle \) must be a similar pair; and (2) If \(\langle s, r \rangle \) is a similar pair, it must pass the algorithm.

Our extension-based method satisfies correctness as stated in Theorem 5.3.

Theorem 5.3. Our extension-based verification method satisfies correctness.

Proof. See Section 5.3 in Appendix. \(\square \)

5.3. Iterative-based Verification

In this section, we introduce an iterative-based verification method to further improve the verification step. Instead of verifying a candidate pair with a matching segment-substring using the extension-based verification method, we can iteratively apply our multi-match-aware technique on the left and right part of the matching segment-substring to filter this candidate pair. We first present the basic idea, then give the pseudo-code, and finally discuss the technical details.
Algorithm 5: IterativeVerify(r, s, w, τ)

Input: r: A string; s: Another string; w: Common segment; τ: Threshold;
Output: d = min((τ + 1) ED(s, r))
begin
 Compute r_i/s_j and r_i/s_r, based on w; τ_i = i − 1, τ_r = τ + i − 1;
 if IterativeVerify(r_i, s_i, τ_i, left) == pass then
 d_l = LENGTHAWAREVerification(r_i, s_i, τ_i);
 if IterativeVerify(r_i, s_r, τ_i, right) == pass then
 d_r = LENGTHAWAREVerification(r_i, s_r, τ_i);
 return d_l + d_r;
return τ + 1;

Function IterativeVerify(r’, s’, τ’, i, f)

Input: r’: A string; s’: Another string; τ’: A threshold; i: An integer; f: left or right;
Output: pass or fail
begin
if the i-th segment is the first matching segment then
 Partition r’ into τ’ + 1 segments (c_1;c_2 · · · c_x, c_x+1 · · · c_y) and the last τ’ − i segments of r’
 if f is right; the first i − 2 segments of r’, c_1;c_2 · · · c_x−1, and c_x · · · c_y if f is left;
 j = 2 if f is right; j = i − 2 if f is left;
if the j-th segment of r’ is not empty then
 Select substrings of s’ on the j-th segment of r’;
 if s’ has no substring matching the j-th segment of r’ then return fail;
else
 Suppose s’ has a substring w’ matching the j-th segment of r’. Partition r’/s’
 based on w’ and suppose the left parts are r’_l/s’_l and the right parts are r’_r/s’_r;
 if f is left then return IterativeVerify(r’_l, s’_l, τ’ − 1, i − 1, left);
 else return IterativeVerify(r’_r, s’_r, τ’ − 1, i + 1, right);
return pass;

Fig. 12. Iterative-based verification algorithm

Basic Idea: Consider two strings r and s where s has a selected substring which matches r’s i-th segment w. We still partition r/s into three parts, the left part r_l/s_l, the matching part r_m/s_m = w and the right part r_r/s_r. Instead of checking whether ED(r_l, s_l) ≤ τ_l = i − 1 and ED(r_r, s_r) ≤ τ_r = τ + i − 1 using the length-aware verification technique, we iteratively use the multi-match-aware technique to check whether r_l(r_r) and s_l(s_r) are similar. Without loss of generality, consider the left parts r_l and s_l.

We partition r_l into τ_l + 1 segments. If s_l has no selected substring which matches a segment of r_l, r and s cannot be similar and we can prune the pair.

For example consider a string r = “kausic_chakduri” with four segments “kau”, “sic,” “chak”, and “duri” and another string s = “caushik_chakrabar”. String s has a substring “chak” matching with the third segment of string r. Thus r_l = “kausic_” and s_l = “caushik_”. The extension-based verification will compute their edit distance using the tighter bound τ_l = i − 1 = 2. Actually we need not compute their real edit distance using the dynamic-programming method. Instead, we partition r_l into τ_l + 1 = 3 segments “kau”, “sic”, and “chak”. Based on the multi-match-aware substring selection method, we only select four substrings of s_l, “cau”, “sh”, “h1” and “k_”. As none of the four substrings matches any segment of r_l, we deduce that the edit distance between s_l and r_l is larger than τ_l = 2. Thus we can prune the pair of s and r.
Pseudo-code: Figure 12 shows the pseudo-code of our iterative-based method. It first verifies the left parts by calling subroutine ITERATIVEVERIFY (line 3). If the left-part verification passes, it verifies the right parts by calling subroutine ITERATIVEVERIFY (line 5) again. If the verifications on the both parts passes, it returns the real edit distance (line 3). ITERATIVEVERIFY first partitions the input strings into $\tau + 1$ segments (line 3). It employs different partition strategies for the leaf part and the right part, which will be discussed later. Then it selects substrings based on the left part or the right part (line 5). If there is no selected substring matching the segment, it returns fail (line 7); otherwise it iteratively calls itself to verify the candidate pair (line 14).

To use the iterative-based method in the verification step, we only need to replace lines 5-8 in Figure 3 with the ITERATIVEVERIFICATION algorithm.

Technical Details of The Iterative-based Method: We formally introduce how to use the iterative-based method to verify r and s, i.e., how to implement the ITERATIVEVERIFY function. Suppose s has a selected substring s_m which matches the i-th segment (r_m) of string r, and the left parts are r_1 / s_1 and right parts are r_r / s_r. We respectively discuss how to iteratively verify the left parts (r_1 / s_1) and right parts (r_r / s_r).

Left Parts: We consider r_1 / s_1 and check whether $ED(r_1, s_1) \leq \tau_1 = i - 1$. If s_m is not the first selected substring of s (with the minimum start position) which matches a segment of r, we still use the length-aware method; otherwise we use our iterative-based method. (Notice that the matching substring s_m has a very large probability (larger than 90% in our experiments) to be the first substring). The iterative-based method first partitions r_1 into $\tau_1 + 1 = i$ segments. Then it uses the multi-match-aware method to select substrings from s_1. If s_1 has a selected substring matching a segment of r_1, we iteratively call the iterative-based method; otherwise we prune (r, s).

Next we discuss how to partition r_1 into $\tau_1 + 1 = i$ segments. As r_m is the i-th segment of r, r_1 contains the first $i - 1$ segments of r. Since s_m is the first selected substring which matches the i-th segment of r, s has no selected substring which matches the first $i - 1$ segments. More interestingly we find that s_1 also has no selected substring that matches the first $i - 1$ segments (which will be proved in Theorem 7.3). Thus we keep the first $i - 2$ segments of r as the first $i - 2$ segments of r_1. In this way, we know that s_1 has no substring which matches the first $i - 2$ segments of r_1. Then we partition the $(i - 1)$-th segment of r into two segments and take them as the last 2 segments of r_1 as follows. Let $c_1 c_2 \cdots c_x \cdots c_y$ denote the $(i - 1)$-th segment of r and $s_1 = c'_1 c'_2 \cdots c'_x \cdots c'_y$. We compute the longest common suffix of $c_1 c_2 \cdots c_x \cdots c_y$ and s_1. Suppose $c_{x+1} \cdots c_y = c'_x \cdots c'_y$, is the longest common suffix. If $x > 1$, we partition the $(i - 1)$-th segment into two segments $c_1 c_2 \cdots c_{x-1}$ and $c_x \cdots c_y$. Thus we can partition r_1 into i segments. Based on the multi-match-aware method, s_1 has no selected substring which matches the i-th segments of r_1 as $c_x \neq c'_x$. Thus we only need to select substrings from s_1 for the $(i - 1)$-th segment of r_1 (e.g., $c_1 \cdots c_{x-1}$). We check whether the selected substrings match the $(i - 1)$-th segment of r_1. If yes, we iteratively call the iterative-based method on the left parts of the matching segments/substrings; otherwise we prune the pair of r and s. Notice that if $x = 1$, we cannot partition the $(i - 1)$-th segment into two segments and we still use the length-aware verification method to verify r_1 and s_1.

Right Parts: If $ED(r_1, s_1) \leq \tau_1 = i - 1$, we continue to verify the right parts r_r / s_r similarly. The differences are as follows. First we partition r_r into $r_r + 1 = \tau + 2 - i$ segments. Second the partition strategy is different. Next we discuss how to partition r_r into $\tau + 2 - i$ segments. Notice that if s has another substring which matches a

As $|s| - |r|_l$ may be unequal to $|s| - |r|$, the selected substrings of s_1 for segments of r_1 may be different from those selected substrings of s_1 (as a part of s) for segments of r. Thus we need to prove the statement.
segment among the last $\tau - i + 1$ segments of r, we can discard r_m and s_m and verify r and s using the next matching pair based on the multi-match-aware technique. Thus we keep the last $\tau - i$ segments of r as the last $\tau - i$ segments of r_r and we do not need to select substrings from s_r to match such segments. Then we repartition the $(i + 1)$-th segment of r into the first two segments of r_r as follows. We find the longest common prefix of the $(i + 1)$-th segment of r and s_r, and then partition $(i + 1)$-th segment of r into two segments similarly. Let $c_1 c_2 \cdots c_x$ denote the $(i + 1)$-th segment of r and $s_r = c'_1 c'_2 \cdots c'_x c'_y$. We compute the longest common prefix of $c_1 c_2 \cdots c_x$ and s_r. Suppose $c_1 \cdots c_{x - 1} = c'_1 \cdots c'_{y - 1}$ is the longest common prefix. If $x < y$, we partition the $(i + 1)$-th segment into two segments $c_1 c_2 \cdots c_x$ and $c_{x + 1} \cdots c_y$ and take them as the first two segments of r_r. Thus we can partition r_r into $\tau + 2 - i$ segments. Based on the multi-match-aware method, we only need to select substrings from s_r for the second segment of r_r (e.g., $c_{x + 1} \cdots c_y$) and check whether the selected substrings match the second segment. If yes, we iteratively call the iterative-based method on the right parts of the matching segments/substrings; otherwise we prune the pair of r and s. Notice that if $x = y$, we cannot partition the $(i + 1)$-th segment into two segments and we still use the length-aware verification method to verify r_r and s_r.

As verifying the left parts is similar to verifying right parts, we combine them and use the iterativeVerify function to verify them. In the function, r'/s' refer to r_i/s_i or $r_{i + 1}/s_i$, as shown in Figure 12. We use a flag to distinguish the left parts or the right parts. For the left parts we keep the first $i - 2$ segments and split the $i - 1$-th segment into two new segments and for the right parts we split the first segment into two new segment and keep the last $\tau - i$ segments. We select the substrings based on the left parts or right parts. Then we can use the segments and selected substrings to do pruning.

The iterative-based verification method satisfies the correctness as stated in Theorem 5.4.

Theorem 5.4. Our iterative-based verification method satisfies the correctness.

Proof. See Section 5.4 in Appendix. \(\square\)

5.4. Correctness and Completeness

We prove correctness and completeness of our algorithm as formalized in Theorem 5.5.

Theorem 5.5. Our algorithm satisfies the (1) completeness: Given any similar pair (s, r), our algorithm must find it as an answer; and (2) correctness: A pair (s, r) found in our algorithm must be a similar pair.

Proof. See Section 5.5 in Appendix. \(\square\)

6. DISCUSSIONS

In this section we first discuss how to support normalized edit distance (Section 6.1) and then extend our techniques to support R-S join (Section 6.2).

6.1. Supporting Normalized Edit Distance

Normalized edit distance, a.k.a. edit similarity, is also a widely used similarity function to quantify the similarity of two strings. The normalized edit distance of two strings r and s is defined as $\text{NED}(r, s) = 1 - \frac{\text{ED}(r, s)}{\max(|r|, |s|)}$. For example, $\text{NED}(\text{“kaushik chadhuri”}, \text{“kaushik chadhu”}) = \frac{11}{14}$. Given a normalized edit distance threshold δ, we say two strings are similar if their normalized edit distance is not smaller than δ. Then we formalize the problem of string similarity join with normalized edit distance constraint as follows.
ALGORITHM 6: SEGFILTER-NED (S, δ)

Input: S: A collection of strings
δ: A given normalized edit-distance threshold

Output: $A = \{(s \in S, r \in S) \mid \text{NED}(s, r) \geq \delta\}$

```
begin
  Sort $S$ by string length in descending order;
  for $s \in S$ do
    for $|s| \leq l \leq \lceil |s|/\delta \rceil$ do
      $\tau = \lceil (1 - \delta) \cdot l \rceil$
      for $L_i(1 \leq i \leq \tau + 1)$ do
        $W(s, L_i) = \text{SUBSTRING}\text{SELECTION}(s, L_i)$;
        for $w \in W(s, L_i)$ do
          if $w$ is in $L_i$ then $\text{VERIFICATION}(s, L_i(w), \tau)$;
      Partition $s$ into $\lceil (1 - \delta) \cdot |s| \rceil + 1$ segments and add them into $L_i|s|$;
end
```

Fig. 13. SEGFILTER-NED algorithm

Definition 6.1 (String Similarity Joins With Normalized Edit Distance Constraint).

Given two sets of strings R and S and an normalized edit-distance threshold δ, it finds all similar string pairs $(r, s) \in R \times S$ such that $\text{NED}(r, s) \geq \delta$.

Next we discuss how to support normalize edit distance. For two strings r and s, as $\text{NED}(r, s) = 1 - \frac{\text{ED}(r, s)}{\max(|r|, |s|)}$, $\text{ED}(r, s) = \max(|r|, |s|) \cdot (1 - \text{NED}(r, s))$. If $\text{NED}(r, s) \geq \delta$, $\text{ED}(r, s) = \max(|r|, |s|) \cdot (1 - \text{NED}(r, s)) \leq \max(|r|, |s|) \cdot (1 - \delta)$. Notice that in the index phase we need to partition string r into $\tau + 1$ segments. If $|s| > |r|$, we cannot determine the number of segments. To address this issue, we first index the long strings (r) and then visit the short strings (s). That is we index segments of the long strings and select substrings from the short strings. In this case, we always have $|s| \leq |r|$. Thus $\text{ED}(r, s) \leq |r| \cdot (1 - \delta)$. Let $\tau = |r| \cdot (1 - \delta)$, we can partition r to $\tau + 1 = \lceil |r| \cdot (1 - \delta) \rceil + 1$ segments using the even partition scheme. In addition, as $|r| - |s| \leq \text{ED}(r, s) \leq |r| \cdot (1 - \delta)$, we have $|r| \leq \lceil \frac{|s|}{\delta} \rceil$. Thus for string s, we only need to find candidates for strings with length between $|s|$ and $\lceil \frac{|s|}{\tau} \rceil$. The substring selection phase and verification phase are still the same as the original method.

Figure 13 gives the pseudo-code SEGFILTER-NED to support normalized edit distance. We first sort strings in S by string length in descending order (line 2) and then visit each string s in sorted order (line 3). For each possible length ($\lceil |s|/\delta \rceil$) of strings which may be similar to s (line 4), we transform the normalized edit distance threshold δ to edit distance threshold τ (line 5). Then for each inverted index $L_i(1 \leq i \leq \tau + 1)$ (line 5), we select the substrings of s (line 9) and then verify each selected substring w in L_i (line 10). If yes, for any string r in the inverted list $L_i(w)$, the string pair (r, s) is a candidate pair. We verify the pair (line 11). Finally, we partition s into $\lceil (1 - \delta) \cdot |s| \rceil + 1$ segments, and insert the segments into the inverted index $L_i|s| (1 \leq i \leq \lceil (1 - \delta) \cdot |s| \rceil + 1)$ (line 12). Here algorithms SUBSTRINGSELECTION and VERIFICATION are the same as the algorithms in Figure 13.

Next we give a running example of our SEGFILTER-NED algorithm. Consider the string set in Table 1 and suppose the normalized edit distance threshold $\delta = 0.82$. We sort the strings in descending order as show in Table 1(c). For the first string s_6, we partition it to $\lceil (1 - \delta) \cdot |s_6| \rceil + 1 = 4$ segments and insert the segments into $L|s_6|$. Next for s_5 we select substrings for $L|s_6|$ using the multi-match-aware method and check...
if there is any selected substring matching with its corresponding segment. Here we find “chak” and the pair \(\langle s_6, s_5 \rangle \) is a candidate. Then we verify this pair using the iterative-based method based on the matching part “chak” and it is not a result. Next we partition \(s_5 \) into \(\left(1 - \delta \right) \cdot |s_5| + 1 = 3 \) segments. Similarly we repeat the above steps and we find another two candidate pairs \(\langle s_3, s_4 \rangle \) and \(\langle s_3, s_6 \rangle \). We verify them using the iterative-based method and get a final result \(\langle s_3, s_6 \rangle \).

6.2. Supporting R-S Join

To support \(\text{r-S} \) join on two sets \(\mathcal{R} \) and \(\mathcal{S} \), we first sort the strings in the two sets respectively. Then we index the segments of strings in a set, e.g., \(\mathcal{R} \). Next we visit strings of \(\mathcal{S} \) in order. For each string \(s \in \mathcal{S} \) with length \(|s| \), we use the inverted indices of strings in \(\mathcal{R} \) with lengths between \(|s| - \tau, |s| + \tau \) to find similar pairs. We can remove the indices for strings with lengths smaller than \(|s| - \tau \). Finally we verify the candidates. Notice that in Section 5.1, for two strings \(r \) and \(s \), we only consider the case that \(|r| \geq |s| \) where we partition \(r \) to segments and select substrings from \(s \). Actually, Theorem 4.3 still holds for \(|r| < |s| \).

The pseudo code of \(\text{SEGFILTER-RSJOIN} \) algorithm is illustrated in Figure 15. It first sorts the strings in the two sets (line 2), and then builds indices for strings in \(\mathcal{R} \) (lines 4-9). Next it visits strings in \(\mathcal{S} \) in sorted order. For each string \(s \), it selects sub-

ALGORITHM 7: SEGFILTER-RSJOIN \((\mathcal{R}, \mathcal{S}, \tau) \)

Input: \(\mathcal{R} \): A collection of strings
\(\mathcal{S} \): Another collection of strings
\(\tau \): A given edit-distance threshold

Output: \(\mathcal{A} = \{ (r \in \mathcal{R}, s \in \mathcal{S}) \mid \text{ED}(r, s) \leq \tau \} \)

```
begin
    Sort \( \mathcal{R} \) and \( \mathcal{S} \) by string length in ascending order;
    for \( r \in \mathcal{R} \) do
        Partition \( r \) and add its segments into \( L_r \);
    for \( s \in \mathcal{S} \) do
        for \( L_i \) (\( |s| - \tau \leq |s| + \tau, 1 \leq i \leq \tau + 1 \)) do
            \( W(s, L_i) = \text{SUBSTRINGSELECTION}(s, L_i) \);
            for \( w \in W(s, L_i) \) do
                if \( w \) is in \( L_i \) then \( \text{VERIFICATION}(s, L_i(w), \tau) \);
```

Figure 15. SEGFILTER-RSJOIN algorithm
strings of \(s \) by calling algorithm SubstringSelection (line 7) and finds candidates using the indices. Finally it verifies the candidates by calling algorithm Verification (line 9). Here algorithms SubstringSelection and Verification are the same as the algorithms in Figure 3.

7. EXPERIMENTAL STUDY
We have implemented our method and conducted an extensive set of experimental studies. We used six real-world datasets. To evaluate self-join, we used three datasets, DBLP Author, DBLP Author+Title, and AOL Query Log. DBLP Author is a dataset with short strings, DBLP Author+Title is a dataset with long strings, and the Query Log is a set of query logs. Note that the DBLP Author+Title dataset is the same as that used in ED-Join and the DBLP Author dataset is the same as that used in Trie-Join. To evaluate R-S join, we used other three datasets: CITESEERX Author, CITESEERX Author+Title, and AOL Query Log 2. AOL Query Log 2 is another set of query logs which is different from AOL Query Log 1. We joined DBLP Author and CITESEERX author, DBLP Author+Title and CITESEERX Author+Title, and AOL Query Log 1 and AOL Query Log 2. Table III shows the detailed information of the datasets and Figure 16 shows the string length distributions of different datasets.

<table>
<thead>
<tr>
<th>Datasets</th>
<th>Cardinality</th>
<th>Avg Len</th>
<th>Max Len</th>
<th>Min Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBLP Author</td>
<td>612,781</td>
<td>14.83</td>
<td>46</td>
<td>6</td>
</tr>
<tr>
<td>DBLP Author+Title</td>
<td>863,073</td>
<td>105.82</td>
<td>886</td>
<td>21</td>
</tr>
<tr>
<td>Citeeseer Author</td>
<td>1,000,000</td>
<td>20.35</td>
<td>54</td>
<td>5</td>
</tr>
<tr>
<td>Query Log 1</td>
<td>1,000,000</td>
<td>39.76</td>
<td>501</td>
<td>29</td>
</tr>
<tr>
<td>Citeeseer Author+Title</td>
<td>1,000,000</td>
<td>107.45</td>
<td>808</td>
<td>22</td>
</tr>
</tbody>
</table>

We compared our algorithms with state-of-the-art methods, ED-Join [Xiao et al. 2008a], QChunk-Join [Qin et al. 2011] and Trie-Join [Wang et al. 2010]. As ED-Join, QChunk-Join and Trie-Join outperform other methods, e.g., Part-Enum [Ara-su et al. 2006] and All-Pairs-Ed [Bayardo et al. 2007] (also experimentally shown in [Xiao et al. 2008a; Wang et al. 2010; Qin et al. 2011]), in the paper we only compared our method with them. We downloaded their binary codes from their homepages, ED-Join, QChunk-Join, and Trie-Join.

All the algorithms were implemented in C++ and compiled using GCC 4.2.4 with -O3 flag. All the experiments were run on a Ubuntu machine with an Intel Core 2 Quad X5450 3.00GHz processor and 4 GB memory.

7.1. Evaluating Substring Selection
In this section, we evaluate substring selection techniques. We implemented the following four methods. (1) The length-based selection method, denoted by Length, which selects the substrings with the same lengths as the segments. (2) The shift-based method, denoted by Shift, which selects the substring by shifting \([-\tau, \tau]\) positions as discussed in Section 4. (3) Our position-aware selection method, denoted by Position.

1. http://www.informatik.uni-trier.de/~ley/db
ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.
Our multi-match-aware selection method, denoted by Multi-match. We first compared the total number of selected substrings. Figure 17 shows the results. We can see that the Length-based method selected large numbers of substrings. The number of selected substring of the Position-based method was about a tenth to a fourth of that of the Length-based method and a half of the Shift-based method. The Multi-match-based method further reduced the number of selected substrings to about a half of that of the Position-based method. For example, on DBLP Author dataset, for $\tau = 1$, the Length-based method selected 19 million substrings, the Shift-based method selected 5.5 million substrings, the Position-based method reduced the number to 3.7 million, and the Multi-match-based method further deceased the number to 2.4 million. Based on our analysis in Section 4, for strings with l, the length-based method selected $(\tau + 1)(|s| + 1) − l$ substrings, the shift-based method selected $(\tau + 1)(2\tau + 1)$ substrings, the position-based method selected $(\tau + 1)^2$ substrings, and the multi-match-aware method selected $\left\lfloor \frac{\tau^2 - \Delta^2}{\tau} \right\rfloor + \tau + 1$ substrings. If $|s| = l = 15$ and $\tau = 1$, the number of selected substrings of the four methods are respectively 17, 6, 4, and 2. Obviously the experimental results consisted with our theoretical analysis.

We also compared the elapsed time to generate substrings. Figure 18 shows the results. We see that the Multi-match-based method outperformed the Position-based method which in turns was better than the Shift-based method and the Length-based method. This is because the elapsed time depended on the number of selected substrings and the Multi-match-based selected the smallest number of substrings.

7.2. Evaluating Verification

In this section, we evaluate our verification techniques. We implemented four methods. (1) The naive method, denoted by $2\tau + 1$, which computed $2\tau + 1$ values in each row and used the naive early-termination technique (if all values in a row are larger than τ, we terminate). (2) Our length-aware method, denoted by $\tau + 1$, which computed $\tau + 1$...
Our extension-based method, denoted by Extension, which used the extension-based framework. It also computed $\tau + 1$ rows and used the expected edit distance with tighter threshold to do early termination. (4) Our iterative-based method, denoted by Iterative, which used the iterative-based verification algorithm. Figure 19 shows the results.

We see that the naive method had the worst performance, as it needed to compute many unnecessary values in the matrix. Our length-aware method was 2-5 times faster than the naive method. This is because our length-aware method can decrease the complexity from $2\tau + 1$ to $\tau + 1$ and used expected edit distances to do early termination. The extension-based method achieved higher performance and was 2-4 times faster than the length-aware method. The reason is that the extension-based method can avoid the duplicated computations on the common segments and it also used a tighter bound to verify the left parts and the right parts. The Iterative method achieved the best performance, as it can prune dissimilar candidate pairs quickly and avoid many unnecessary computations. For example, on the Query Log 1 dataset, for $\tau = 8$
the naive method took 3, 500 seconds, the length-aware method decreased the time to 1500 seconds, the extension-based method reduced it to 600 seconds, and the iterative method further improved the time to about 250 seconds. On the DBLP Author+Title dataset, for \(\tau = 10 \), the elapsed time of the four methods were respectively 1800 seconds, 700 seconds, 475 seconds, and 100 seconds.

7.3. Comparison with Existing Methods

In this section, we compare our method with state-of-the-art methods ED-JOIN [Xiao et al. 2008a], QCHUNK-JOIN [Qin et al. 2011] and TRIE-JOIN [Wang et al. 2010]. As TRIE-JOIN had multiple algorithms, we reported the best results. For ED-JOIN and QCHUNK-JOIN, we tuned its parameter \(q \) and reported the best results. Notice that to avoid involving false negatives, it requires to select a small \(q \) for a large edit-distance threshold. As TRIE-JOIN was efficient for short strings, we downloaded the same dataset from TRIE-JOIN homepage (i.e., Author with short strings) and used it to compare with TRIE-JOIN. As ED-JOIN was efficient for long strings, we downloaded the same dataset from ED-JOIN homepage (i.e., Author+Title with long strings) and used it to compare with ED-JOIN.

Candidate Sizes: We first compare the candidate sizes of various methods. Figure 20 shows the results. Notice that TRIE-JOIN directly computed the answers and thus it involved the smallest number of candidates. SEGFILTER generated smaller numbers of candidates than ED-JOIN and QCHUNK-JOIN. This is attributed to our effective substring selection techniques which can prune large numbers of dissimilar pairs. ED-JOIN and QCHUNK-JOIN pruned dissimilar pairs based on the gram-based count filter. SEGFILTER utilized the shared segments to prune dissimilar pairs. Since we can minimize the number of selected substrings and achieve high pruning power, SEGFILTER generates smaller numbers of candidates. For example, on the DBLP Author+Title dataset, SEGFILTER had 1 billion candidates while ED-JOIN and QCHUNK-JOIN had about 10 billion candidates.

Running Time of Different Steps: ED-JOIN and QCHUNK-JOIN includes three steps: preprocessing step, filter step and verification step. The preprocessing step includes tokenizing records into q-grams, generating binary data, and sorting the binary data. SEGFILTER contains two steps: filter step and verification step. TRIE-JOIN directly computes the answers. We compared the running time of each step and Figure 21 shows the results (In the Figure, we use different colors to distinguish different steps). For different thresholds, the preprocessing time in ED-JOIN and QCHUNK-JOIN was stable since it only depended on the dataset size. With the increase of the thresholds, the filtering time and the verification time also increased since large thresholds will lead to more results. SEGFILTER involved less filtering time than ED-JOIN and QCHUNK-JOIN, because we only needed to consider smaller numbers of segments and selected substrings while they required to enumerate larger numbers of grams/chunks. SEGFILTER also involved less verification time since it has smaller numbers of candidates and used effective extension-based and iterative-based techniques. Notice that our extension-based and iterative-based verification methods are designed for SEGFILTER which are not applicable for ED-JOIN and QCHUNK-JOIN.

Overall Join Time: We compare the overall time, including preprocessing time, filtering time and verification time. Figure 22 shows the results. On the DBLP Author dataset with short strings, TRIE-JOIN outperformed ED-JOIN and QCHUNK-JOIN, and our method was much better than them, especially for \(\tau \geq 2 \). The main reason is as follows. ED-JOIN and QCHUNK-JOIN must use a smaller \(q \) for a larger threshold. In this way ED-JOIN and QCHUNK-JOIN will involve large numbers of candidate pairs, since a smaller \(q \) has rather lower pruning power [Xiao et al. 2008a]. TRIE-JOIN
used the prefix filtering to find similar pairs using a trie structure. If a small number of strings shared prefixes, TRIE-JOIN had low pruning power and was expensive to traverse the trie structure. Instead our framework utilized segments to prune large numbers of dissimilar pairs. The segments were selected across the strings and not restricted to prefix filtering. For instance, for $\tau=4$, TRIE-JOIN took 2500 seconds. SEG-FILTER improved it to 700 seconds. ED-JOIN and QCHUNK-JOIN were rather slow and even larger than 10,000 seconds.

On the DBLP Author+Title dataset with long strings, our method significantly outperformed ED-JOIN, QCHUNK-JOIN and TRIE-JOIN, even in 2-3 orders of magnitude. This is because TRIE-JOIN was rather expensive to traverse the trie structures with long strings, especially for large thresholds. ED-JOIN needed to use a mismatch technique and QCHUNK-JOIN needed to use a error estimation-based filtering in verifica-
tion phase which were inefficient while our verification method was more efficient than existing ones. For instance, for $\tau = 8$, TRIE-JOIN needed 15,000 seconds, QCHUNK-JOIN took 9500 seconds, ED-JOIN decreased it to 5000 seconds, and SEGFILTER improved the time to 70 seconds.

Index Size: We compared index sizes on three datasets, as shown in Table IV. We can observe that existing methods involve larger indices than our method. For example, on the DBLP Author+Title dataset, ED-JOIN had 335 MB index, TRIE-JOIN used 90 MB, and our method only took 2.1 MB. There are two main reasons. Firstly for each string with length l, ED-JOIN generated $l - q + 1$ grams where q is the gram length, and our method only generated $\tau + 1$ segments. Secondly for a string with length l, we only maintained the indices for strings with lengths between $l - \tau$ and l, and ED-JOIN kept indices for all strings. TRIE-JOIN needed to use a trie structure to maintain strings, which had overhead to store the strings (e.g., pointers to children and indices for searching children with a given character).

Table IV. Index sizes (MB)

<table>
<thead>
<tr>
<th>Data Sets</th>
<th>q = 4</th>
<th>q = 4</th>
<th>$\tau = 2$</th>
<th>$\tau = 4$</th>
<th>$\tau = 6$</th>
<th>$\tau = 8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Sizes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBLP Author</td>
<td>8.7</td>
<td>25.34</td>
<td>18.32</td>
<td>8.06</td>
<td>1.15</td>
<td>1.92</td>
</tr>
<tr>
<td>Query Log 1</td>
<td>20</td>
<td>72.17</td>
<td>69.85</td>
<td>18.69</td>
<td>2.98</td>
<td>4.96</td>
</tr>
<tr>
<td>DBLP Author+Title</td>
<td>88</td>
<td>335.24</td>
<td>90.17</td>
<td>23.21</td>
<td>1.26</td>
<td>2.1</td>
</tr>
</tbody>
</table>

7.4. Scalability

In this section, we evaluate the scalability of our method. We varied the number of strings in the dataset and tested the elapsed time.

7.4.1. Evaluating Edit Distance. Figure 23 shows the results using edit-distance function. We can see that our method achieved nearly linear scalability as the number of strings increases. For example, for $\tau = 4$, on the DBLP Author dataset, the elapsed time for 400,000 strings, 500,000 strings, and 600,000 strings were respectively 360 seconds, 530 seconds, and 700 seconds. This is attributed to our effective segment filter.

7.4.2. Evaluating Normalized Edit Distance. To support normalized edit distance, TRIE-JOIN and ED-JOIN needed to use the maximal length of strings to deduce the edit-distance thresholds. If the length difference between strings is large, these two methods are rather expensive and lead to low performance.‡‡ We also compared with these two state-of-the-art methods. However they are rather inefficient and cannot report the results in 24 hours. Thus we do not show the results in our experiments. Figure 24 shows the results of our SEGFILTER-NED algorithm. We can see that our method scales very well for the normalized edit distance and it achieves as high efficiency as on the edit-distance function.

7.4.3. Evaluating R-S Join. We evaluate our similarity join algorithm to support R-S join. We compared with TRIE-JOIN. As ED-JOIN and QCHUNK-JOIN focused on self-join and the authors did not implement the R-S join algorithms, we did not show their results. We increased the number of strings in CITESEERX Author, Query Log 2, and CITESEERX Author+Title by 200,000 each time and respectively joined them with DBLP Author, Query Log 1, and DBLP Author+Title. We evaluated the elapsed time.

‡‡Notice that we cannot extend ED-JOIN to support normalized edit distance efficiently. This is because they did not group the strings based on lengths. They used prefix filter and thus we cannot use our techniques to deduce tighter bounds.
Figure 26 shows the results. We can see that our method still scales well for R-S join and outperformed Trie-Join. For example, on the CITESEERX Author+Title dataset. For $\tau = 8$, the elapsed time for 0.2 million strings was about 33 seconds, while for 1 mil-
lion strings, the time was about 170 seconds. This is because our filtering algorithms and verification algorithms can improve the performance.

8. RELATED WORK

String Similarity Join: There have been many studies on string similarity joins [Gravano et al. 2001; Arasu et al. 2008; Bayardo et al. 2007; Chaudhuri et al. 2006; Sarawagi and Kirpal 2004; Xiao et al. 2008a; Xiao et al. 2009; Qin et al. 2011; Vernica et al. 2010]. The approaches most related to ours are TRIE-JOIN [Wang et al. 2010], All-Pairs-Ed [Bayardo et al. 2007], ED-JOIN [Xiao et al. 2008a], QCHUNK-JOIN [Qin et al. 2011] and Part-Enum [Arasu et al. 2006]. All-Pairs-Ed is a q-gram-based method. It first generates q-grams for each string and then selects the first \(q \tau + 1 \) grams as a gram prefix based on a pre-defined order. It prunes the string pairs with no common grams and verifies the survived string pairs. ED-JOIN improves All-Pairs-Ed by using location-based and content-based mismatch filters. It has been shown that ED-JOIN outperforms All-Pairs-Ed [Bayardo et al. 2007]. QCHUNK-JOIN is a variant of All-Pairs-Ed which utilizes an asymmetric signature scheme to index the q-gram and search the q-chunks, and adopts an error estimation-based filtering. Although our techniques utilize length difference to do pruning, they are different from the error estimation-based filtering as follows. First, our position-aware substring selection technique is in the filtering step which can prune large numbers of dissimilar string pairs. However the error estimation-based filtering method is in the verification step which only prunes the candidate pairs one by one. Second, our length-aware verification technique can improve the verification time for both similar string pairs and dissimilar strings pairs while the error estimation-based filtering can only prune dissimilar pairs. Third, our early termination technique can get much better estimation on edit distance than the error estimation-based method. For example, consider a matrix entry \(M(i, j) \) for string \(r \) and string \(s \). They use two estimated values \(|i - j| \) and \(|(|r| - i) - (|s| - j)| \) to estimate the edit distance while we can get the accurate value of \(M(i, j) \) and only use \(|(|r| - i) - (|s| - j)| \) to estimate the edit distance. Fourth, our extension-based verification technique only considers a matching segment while the error estimation-based method requires to consider all matching grams. Thus the error estimation-based method considers many more candidate pairs than our method. Also our extension-based verification technique uses much tighter bounds to accelerate the verification step. TRIE-JOIN uses a trie structure to do similarity joins based on prefix filtering. Part-Enum proposed an effective signature scheme called Part-Enum to do similar joins for hamming distance. It has been proved that All-Pairs-Ed and Part-Enum are worse than ED-JOIN, QCHUNK-JOIN and TRIE-JOIN [Wang et al. 2010; Feng et al. 2012]. Thus we only compared with state-of-the-art methods ED-JOIN and TIE-JOIN.

Gravano et al. [Gravano et al. 2001] proposed gram-based methods and used SQL statements for similarity joins inside relational databases. Sarawagi et al. [Sarawagi and Kirpal 2004] proposed inverted index-based algorithms to solve similarity-join problem. Chaudhuri et al. [Chaudhuri et al. 2006] proposed a primitive operator for effective similarity joins. Arasu et al. [Arasu et al. 2006] developed a signature scheme which can be used as a filter for effective similarity joins. Xiao et al. [Xiao et al. 2008a] proposed ppjoin to improve all-pair algorithm by introducing positional filtering and suffix filtering. Xiao et al. [Xiao et al. 2009] studied top-\(k \) similarity joins, which can directly find the top-\(k \) similar string pairs without a given threshold.

In addition, Jacox et al. [Jacox and Samet 2008] studied the metric-space similarity join. As this method is not as efficient as ED-JOIN and TRIE-JOIN [Wang et al. 2010], we did not compare with it in the paper. Chaudhuri et al. [Chaudhuri et al. 2006] proposed the prefix-filtering signature scheme for effective similarity join. Recently, Wang
et al. [Wang et al. 2011] devised a new similarity function by tolerating token errors in
token-based similarity and developed effective algorithms to support similarity join on
such functions. Jestes et al. [Jestes et al. 2010] studied the problem of efficient string
joins in probabilistic string databases, by using lower bound filters based on probabilisitic q-grams to effectively prune string pairs. Silva et al. [Silva et al. 2010] focused
on similarity joins as first-class database operators. They proposed several similarity
join operators to support similarity joins in databases. Recently Vernica et al. [Vernica
et al. 2010] studied how to support similarity joins in map-reduce environments.

Difference from Our Conference Version [Li et al. 2011b]: The significant additions
in this extended manuscript are summarized as follows.
• We proposed new optimization techniques to improve our verification method. Section 5.3 was newly added. We also conducted a new experiment to evaluate our new
optimization techniques and show their superiority on real datasets. Figures 19-22
were newly added based on our new method.
• We discussed how to support normalized edit distance and how to support R-S
join. Section 6 was newly added. We also conducted experiments to evaluate our new tech-
niques and Sections 7.4.2 and 7.4.3 were newly added.
• We formally proved all the theorem and lemmas and the appendix was newly added.
We refined the paper to make it easy to follow and added some new references.

Approximate String Search: The other related studies are approximate string
searching [Chaudhuri et al. 2003; Li et al. 2008; Hadjieleftheriou et al. 2008a; Li et al.
2011a; Hadjieleftheriou et al. 2009; Zhang et al. 2010; Behm et al. 2011; Behm et al.
2009; Yang et al. 2008; Wang et al. 2012; Li et al. 2013; Deng et al. 2013], which given
a query string and a set of strings, finds all similar strings of the query string in the
string set. Hadjieleftheriou and Li [Hadjieleftheriou and Li 2009] gave a tutorial to
the approximate string searching problem. Existing methods usually adopted a gram
based indexing structure to do efficient filtering. They first generated grams of each
string and built gram based inverted lists. Then they merged the inverted lists to find
answers. Navarro studied the approximate string matching problem [Navarro 2001],
which given a query string and a text string, finds all substrings of the text string that
are similar to the query string. Notice that these two problems are different from our
similarity-join problem, which given two sets of strings, finds all similar string pairs.

Approximate Entity Extraction: There are some studied on approximate entity
extraction [Agrawal et al. 2008; Chakrabarti et al. 2008; Wang et al. 2009; Li et al.
2011a; Sun and Naughton 2011; Deng et al. 2012], which, given a dictionary of entities
and a document, finds all substrings of the document that are similar to some entities.
Existing methods adopted inverted indices and used different filters (e.g., length filter,
count filter, position filter, and token order filter) to facilitate the extraction.

Estimation: There are some studies on selectivity estimation for approximate string
queries and similarity joins [Hadjieleftheriou et al. 2008a; Lee et al. 2007; Lee et al.
2009; Lee et al. 2011; Jin et al. 2008].

9. CONCLUSION
In this paper, we have studied the problem of string similarity joins with edit-distance
constraints. We proposed a new filter, the segment filter, to facilitate the similarity
join. We devised a partition scheme to partition a string into several segments. We
sorted and visited strings in order. We built inverted indices on top of the segments of
the visited strings. For the current string, we selected some of its substrings and utilized the selected substrings to find similar string pairs using the inverted indices and then inserted segments of the current string into the inverted indices. We developed a position-aware method and a multi-match-aware method to select substrings. We proved that the multi-match-aware selection method can minimize the number of selected substrings. We also developed efficient techniques to verify candidate pairs. We proposed a length-aware method, an extension-based method, and an iterative-based method to further improve the verification performance. We extended our techniques to support normalized edit distance and R-S join. Experiments show that our method outperforms state-of-the-art studies on both short strings and long strings.

Acknowledgement
This work was partly supported by the National Natural Science Foundation of China under Grant No. 61003004 and 61272090, National Grand Fundamental Research 973 Program of China under Grant No. 2011CB302206, and a project of Tsinghua University under Grant No. 20111081073, and the “NExT Research Center” funded by MDA, Singapore, under Grant No. WBS:R-252-300-001-490.

ElectRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.

REFERENCES
AGRAWAL, S., CHAKRABARTI, K., CHAUDHURI, S., AND GANTI, V. 2008. Scalable ad-hoc entity extraction from text collections. PVLDB 1, 1, 945–957.
A Partition-based Method for String Similarity Joins with Edit-Distance Constraints

SUN, C. AND NAUGHTON, J. F. 2011. The token distribution filter for approximate string membership. In WebDB.

Online Appendix to:
A Partition-based Method for String Similarity Joins with
Edit-Distance Constraints

GUOLIANG LI, DONG DENG, and JIANHUA FENG
Tsinghua University

A. PROOF OF THEOREM 4.2

Theorem 4.2. The position-aware substring selection method satisfies the completeness.

Proof. For any string s, consider a string r with length $l(|s| - \tau \leq l \leq |s|)$ which is similar to s and visited before s. Consider any transformation T from s to r with $|T| \leq \tau$ edit operations. Based on Lemma 3.1, s must have a substring s_m matching a segment r_m of r in the transformation T. We split r into three parts: the left part before the matching segment $r_l(s_l)$, the matching segment $r_m(s_m)$, and the right part after the matching segment $r_r(s_r)$. Suppose r_m is the i-th segment of r. Thus $r \in L_i(r_m)$. Next we prove that $s_m \in W_p(s, L_i) \subseteq W_p(s, l)$.

Firstly as $s_m = r_m, |s_m| = |r_m| = l_i$. Suppose the start position of s_m in s is p. Next we only need to prove that $p \in [p_{\min}, p_{\max}]$. As $[p_{\min}, p_{\max}] = [1, |s| - l_i + 1] \cap |p_i - \frac{\tau - \Delta}{2}, p_i + \frac{\tau + \Delta}{2}|$, we only need to prove that $p \in [1, |s| - l_i + 1]$ and $p \in [p_i - \frac{\tau - \Delta}{2}, p_i + \frac{\tau + \Delta}{2}]$.

Case 1: $p \in [1, |s| - l_i + 1]$. Obviously, based on the boundary, for any substring, the minimal start position is 1. As the length of s_m is l_i, the maximal start position is $|s| - l_i + 1$. Thus p must be in $[1, |s| - l_i + 1]$.

Case 2: $p \in [p_i - \frac{\tau - \Delta}{2}, p_i + \frac{\tau + \Delta}{2}]$. We prove it by contradiction. Suppose $p \notin [p_i - \frac{\tau - \Delta}{2}, p_i + \frac{\tau + \Delta}{2}]$. As T transforms s_l to r_l, matches s_m with r_m, and transforms s_r to r_r, we have $\tau \geq |T| \geq ED(s_l, r_l) + ED(s_m, r_m) + ED(s_r, r_r) \geq |p_i - p| + ||r| - p_i| - (|s| - p)|$.

If $p < p_i - \frac{\tau - \Delta}{2}$, we have

$$|T| \geq |p_i - p| + ||r| - p_i| - (|s| - p)| \geq (\frac{\tau - \Delta}{2} + 1) + (\Delta + (\frac{\tau - \Delta}{2} + 1))$$

$$\geq (2(\frac{\tau - \Delta}{2} + 1) + (\Delta + 1) \geq \tau - \Delta + (\Delta + 1) \geq \tau + 1 > \tau$$

If $p > p_i + \frac{\tau + \Delta}{2}$, we have

$$|T| \geq |p_i - p| + ||r| - p_i| - (|s| - p)| \geq (\frac{\tau + \Delta}{2} + 1) + (\frac{\tau + \Delta}{2} + 1 - \Delta)$$

$$\geq (2(\frac{\tau + \Delta}{2} + 1) + (1 - \Delta) \geq \tau + \Delta + (1 - \Delta) \geq \tau + 1 > \tau$$

In both cases, we have $|T| > \tau$ which contradicts with $|T| \leq \tau$. Thus $p \in [p_i - \frac{\tau - \Delta}{2}, p_i + \frac{\tau + \Delta}{2}]$.

Based on Case 1 and Case 2, $p \in [p_{\min}, p_{\max}]$. Thus for any string r with length $l(|s| - \tau \leq l \leq |s|)$ which is similar to s and visited before s, r must have an i-th segment r_m that matches a substring $s_m \in W_p(s, L_i)$. □
B. PROOF OF LEMMA 4.3

LEMMA 4.3. \(|\mathcal{W}_m(s, l)| = \lfloor \frac{\tau^2 - \Delta^2}{\Delta} \rfloor + 1.\)

PROOF. As \(\mathcal{W}_m(s, l) = \bigcup_{i=1}^{\tau+1} \mathcal{W}_m(s, \ell_i)\), \(|\mathcal{W}_m(s, l)| = \sum_{i=1}^{\tau+1} |\mathcal{W}_m(s, \ell_i)| = \sum_{i=1}^{\tau+1} (|T_i| - \ell_i + 1) = \sum_{i=1}^{\tau+1} (\min(|s| - l_i + 1, p_i + (i - 1), p_i + \Delta + (\tau + 1 - i)) - \max(1, p_i - (i - 1), p_i + \Delta - (\tau + 1 - i)) + 1).\)

As \((p_{i+1} - (i + 1)) - (p_i - i) = p_{i+1} - p_i - 1 \geq 0, p_i - i\) is a monotonically increasing function. Thus for any \(i \in [1, \tau + 1]\), we have \(p_i - (i - 1) \geq p_i - (1 - 1) = 1\) and \(p_i + \Delta + (\tau + 1 - i) = p_i + \Delta + (\tau + 1 - i) = p_i + \Delta + (\tau + 1 - i) \leq p_{r+1} - (\tau + 1) + \Delta + \tau + 1 = p_{r+1} + \Delta = p_{r+1} + |s| - |r| = p_{r+1} + |s| - (p_{r+1} + l_{r+1}) = |s| - l_{r+1} \leq |s| - l_i < |s| - l_i + 1, thus\)

\(|\mathcal{W}_m(s, l)| = \sum_{i=1}^{\tau+1} (|T_i| - \ell_i + 1) = \sum_{i=1}^{\tau+1} (\min(p_i + (i - 1), p_i + \Delta + (\tau + 1 - i)) - \max(p_i - (i - 1), p_i + \Delta - (\tau + 1 - i)) + 1)\)

Consider \(\ell_i = \max(p_i - (i - 1), p_i + \Delta - (\tau + 1 - i))\). If \(p_i - (i - 1) \geq p_i + \Delta - (\tau + 1 - i)\), we have \(\ell_i = p_i - (i - 1)\). In this case \(|s| \leq \lfloor \frac{\tau^2 - \Delta^2}{\Delta} \rfloor + 1\). On the contrary, if \(p_i - (i - 1) < p_i + \Delta - (\tau + 1 - i)\), we have \(\ell_i = p_i + \Delta - (\tau + 1 - i)\) for \(i > \lfloor \frac{\tau^2 - \Delta^2}{\Delta} \rfloor + 1\).

Similarly, for \(T_i = \min(p_i + (i - 1), p_i + \Delta + (\tau + 1 - i))\), if \(p_i + (i - 1) \leq p_i + \Delta + (\tau + 1 - i)\), we have \(T_i = p_i + (i - 1)\). In this case \(|s| \leq \lfloor \frac{\tau^2 + \Delta}{\Delta} \rfloor + 1\). On the contrary if \(p_i + (i - 1) > p_i + \Delta + (\tau + 1 - i)\), we have \(T_i = p_i + \Delta + (\tau + 1 - i)\) for \(i > \lfloor \frac{\tau^2 + \Delta}{\Delta} \rfloor + 1\).

In this way, to compute \(\ell_i - T_i + 1\), we split \(i \in [1, \tau + 1]\) into \(i \leq \lfloor \frac{\tau^2 - \Delta^2}{\Delta} \rfloor + 1, \lfloor \frac{\tau^2 - \Delta^2}{\Delta} \rfloor + 2 \leq i \leq \lfloor \frac{\tau^2 + \Delta}{\Delta} \rfloor + 1, \) and \(\lfloor \frac{\tau^2 + \Delta}{\Delta} \rfloor + 2 \leq i \leq \tau + 1\).

\(|\mathcal{W}_m(s, l)| = \sum_{i=1}^{\tau+1} (|T_i| - \ell_i + 1) = \sum_{i=1}^{\lfloor \frac{\tau^2 - \Delta^2}{\Delta} \rfloor + 1} (p_i + (i - 1) - (p_i - (i - 1)) + 1) + \sum_{i=\lfloor \frac{\tau^2 + \Delta}{\Delta} \rfloor + 2}^{\tau+1} (p_i + (i - 1) - (p_i + \Delta - (\tau + 1 - i)) + 1) + \sum_{i=\lfloor \frac{\tau^2 + \Delta}{\Delta} \rfloor + 2}^{\tau+1} (p_i + \Delta + (\tau + 1 - i) - (p_i + \Delta - (\tau + 1 - i)) + 1) = \sum_{i=1}^{\lfloor \frac{\tau^2 - \Delta^2}{\Delta} \rfloor + 1} (2i - 1) + \sum_{i=\lfloor \frac{\tau^2 + \Delta}{\Delta} \rfloor + 2}^{\tau+1} (\tau - \Delta + 1) + \sum_{i=\lfloor \frac{\tau^2 + \Delta}{\Delta} \rfloor + 2}^{\tau+1} (2\tau - 2i + 3) = \tau^2 + \Delta \tau - \Delta^2 + \Delta + 1 + \lfloor \frac{\tau^2 - \Delta^2}{\Delta} \rfloor + \lfloor \frac{\tau^2 + \Delta}{\Delta} \rfloor + 2 \lfloor \frac{\tau^2 - \Delta^2}{\Delta} \rfloor - 2\lfloor \frac{\tau^2 + \Delta}{\Delta} \rfloor\)

If \(\tau + \Delta\) is even, \(\tau - \Delta\) must be even. Thus \(\lfloor \frac{\tau^2 - \Delta^2}{\Delta} \rfloor = \lfloor \frac{\tau^2 - \Delta^2}{\Delta} \rfloor + 1, and \lfloor \frac{\tau^2 + \Delta}{\Delta} \rfloor = \lfloor \frac{\tau^2 + \Delta}{\Delta} \rfloor + 1, \) and

\(|\mathcal{W}_m(s, l)| = \frac{\tau^2 - \Delta^2}{\Delta} + 1 + \tau + 1 = \frac{\tau^2 - \Delta^2}{\Delta} + 1 + \tau + 1\)

If \(\tau + \Delta\) is odd, \(\tau - \Delta\) must be odd. Thus \(\lfloor \frac{\tau^2 - \Delta^2}{\Delta} \rfloor = \lfloor \frac{\tau^2 - \Delta^2}{\Delta} \rfloor - 1, and \lfloor \frac{\tau^2 + \Delta}{\Delta} \rfloor = \lfloor \frac{\tau^2 + \Delta}{\Delta} \rfloor - 1, \) and

\(|\mathcal{W}_m(s, l)| = \frac{\tau^2 - \Delta^2 + 1}{\Delta} + \tau = \frac{\tau^2 - \Delta^2 + 1}{\Delta} + \tau + 1\)

Thus the lemma is proved. □

C. PROOF OF THEOREM 4.4

To prove Theorem 4.4, we first give a lemma to prove that the multi-match-aware selection method from the left-side perspective satisfies completeness.

LEMMA 4.4.1. The multi-match-aware selection method from the left-side perspective satisfies the completeness.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.
PROOF. For any string s, consider a string r with length $l(|s| - \tau \leq l \leq |s|)$ which is similar to s and visited before s. Consider any transformation T from r to s with $|T| \leq \tau$ edit operations. Based on Lemma 3.1, s must have a substring s_m matching a segment r_m of r in the transformation T. We assume that r_m is the last segment of r which matches a substring s_m of s in transformation T. Without loss of generality, suppose the start position of s_m in s is p and r_m is the i-th segment of r. Thus $r \in L_i^1(r_m)$. Based on Theorem 4.2, we have $|s_m| = l_i$ and $p \in [1, \ l_i - l_i + 1]$.

As $[\downarrow_i^l, \uparrow_i^l] = [1, [l_i - l_i + 1] \cap [p_i - (i - 1), p_i + (i - 1)]$, we only need to prove that $p \in [p_i - (i - 1), p_i + (i - 1)]$.

We prove it by contradiction. Suppose $p \notin [p_i - (i - 1), p_i + (i - 1)]$, we have $ED(s_i, r_t) \geq |p - p_i| \geq i$. As T transforms s_i to r_t, matches s_m with r_m, and transforms s_r to r_r, we have $\tau \geq |T| \geq ED(s_i, r_t) + ED(s_r, r_r) \geq i + ED(s_r, r_r)$, thus $ED(s_r, r_r) \leq \tau - i$. On the other hand, as there are $\tau + 1 - i$ segments in r_r, there must exist a segment in r_r which matches a substring of s_r based on Lemma 3.1. This contradicts with the assumption that r_m is the last segment of r which matches a substring of s. Thus $p \in [p_i - (i - 1), p_i + (i - 1)]$.

Therefore for any string r with length $l(|s| - \tau \leq l \leq |s|)$ which is similar to s and visited before s, r must have an i-th segment r_m matching a substring $s_m \in W_r(s, L_i^1)$. \hfill \square

Similarly, we can prove that the multi-match-aware selection method from the right-side perspective also satisfies the completeness based on Lemma 4.4.1 Next we prove that the multi-match-aware selection method satisfies the completeness. For each inverted index L_i^1, this method selects a set $W_m(s, L_i^1)$ which is composed of the substrings of s with start positions in $[\downarrow_i^l, \uparrow_i^l]$ and with length l_i, where $\downarrow_i^l = \max(\downarrow_i^l + 1, \uparrow_i^l)$ and $\uparrow_i^l = \min(\uparrow_i^l, \uparrow_i^l + 1)$, and $\downarrow_i^l = \max(\downarrow_i^l, \uparrow_i^l + \Delta + (\tau + 1 - i))$ and $\uparrow_i^l = \min(\uparrow_i^l, \downarrow_i^l + \Delta + (\tau + 1 - i))$. Then the method unions the sets to generate $W_m(s, l) = \bigcup_{i=1}^{l} W_m(s, L_i^1)$. Next we prove Theorem 4.4.3.

THEOREM 4.4. The multi-match-aware substring selection method satisfies the completeness.

PROOF. For any string s, consider a string r with length $l(|s| - \tau \leq l \leq |s|)$ which is similar to s and visited before s. Consider any transformation T from r to s with $|T| \leq \tau$ edit operations. For any substring s_m of s matching a segment r_m of r in T, based on Theorem 4.2, s_m’s start position p must be in $[1, \ l_i - l_i + 1]$, and $|s_m| = l_i$ (suppose r_m is the i-th segment of r).

Next, we only need to prove that in the transformation T, there exists an i-th segment r_m for r matching a substring of s such that $p \in [\max(p_i - (i - 1), p_i + \Delta + (\tau + 1 - i)), \min(p_i + (i - 1), p_i + \Delta + (\tau + 1 - i))]$. That is we only need to prove that $p \in [p_i - (i - 1), p_i + (i - 1)]$ and $p \in [p_i + \Delta + (\tau + 1 - i), p_i + \Delta + (\tau + 1 - i)]$.

Based on Lemma 3.1, there must exist at least one substring of s that matches a segment of r in transformation T. Consider the first segment r_m of r that matches a substring s_m of s in transformation T. Without loss of generality, suppose the start position of s_m in s is p and r_m is the k-th segment of r. Thus $r \in L_i^1(r_m)$. We split $s(r)$ into three parts: the part before the matching segment s_i, the matching segment $s_m(r_m)$, and the part after the matching segment s_r. Based on Lemma 4.4.1 (from the right-side perspective), $p \in [p_k + \Delta + (\tau + 1 - k), p_k + \Delta + (\tau + 1 - k)]$. If $p \in [p_k - (k - 1), p_k + (k - 1)]$, we set $i = k$ and the theorem is proved; otherwise suppose $p \notin [p_k - (k - 1), p_k + (k - 1)]$, we have $ED(s_i, r_t) \geq |p - p_k| \geq k$. As T transforms s_i to r_t, matches s_m with r_m, and transforms s_r, $\tau \geq |T| \geq ED(s_i, r_t) + ED(s_r, r_r) \geq k + \ldots$
ED(s_r, r_r), thus ED(s_r, r_r) $\leq \tau - k$. On the other hand, as there are $\tau + 1 - k$ segments in r_r, there must exist a segment in r_r which matches a substring of s_r in transformation T based on Lemma 3.1.

Suppose r_m is the first segment in r_r that matches a substring s_m' of s_r in transformation T. Without loss of generality, suppose the start position of s_m' in s is i' and r_m is the j-th ($j > k$) segment of r. Thus $r \in \mathcal{L}_j(r_m')$. We split s_r (r_r) into three parts: the part before the matching segment $s_j'(r_j')$, the matching segment $s_m'(r_m')$, and the part after the matching segment $s_j'(r_j')$. Next we prove that $p' \in [p_j + \tau - (\tau + 1 - j), p_j + \tau + (\tau + 1 - j)]$. We prove it by contradiction. Suppose $p' \notin [p_j + \tau - (\tau + 1 - j), p_j + \tau + (\tau + 1 - j)]$. We have ED($r_j', s_j'$) $\geq |(|s| - p') - |(r) - p_j| |p_j + (|s| - l) - p'| = |(p_j + \tau) - p'| \geq \tau + 1 - j - 1$.

As T transforms s_l to r_l, matches s_m with r_m, transforms s_j' to r_j', matches s_j' with r_m', and transforms s_j' to r_j', $\tau \geq |T| \geq ED(r_l, s_l) + ED(r_j', s_j') + ED(r_j', s_j') \geq k + ED(r_j', s_j') + \tau + 1 - j + 1$, thus ED($r_j', s_j'$) $\leq \tau - k - (\tau + 1 - j + 1) = j - k - 2$. On the other hand, as there are $j - k - 1$ segments in transformation T, there must exist a segment of r_j' which matches a substring of s_j' in the transformation T based on Lemma 3.1. Thus we contradict the assumption that r_m' is the first segment in r_r that matches a substring of s_r. Thus $p' \in [p_j + \tau - (\tau + 1 - j), p_j + \tau + (\tau + 1 - j)]$. If $p' \in [p_j - (j - 1), p_j + (j - 1)]$, we set $i = j$ and the theorem is proved; otherwise, we have $p' \notin [p_j - (j - 1), p_j + (j - 1)]$. We can repeat our above proof until the theorem is proved or reaching the last segment of r (denoted by r_m'') that matches a substring of s (denoted by s_m''). In the latter case, we have r_m'' is the i-th segment of r and the start position of s_m'' is p''. Based on the above proof, we have $p'' \in [p_i + \tau - (\tau + 1 - i), p_i + \tau + (\tau + 1 - i)]$.

Based on the proof in Lemma 3.1, we have $p'' \in [p_i - (i - 1), p_i + (i - 1)]$. Thus $p'' \in [p_i - (i - 1), p_i + (i - 1)] \cap [p_i + \tau - (\tau + 1 - i), p_i + \tau + (\tau + 1 - i)] = [\lceil l, \lceil i \rfloor]$.

In summary, for any string r with length $l(|s| - \tau \leq l \leq |s|)$ which is similar to s and visited before s, r must have an i-th segment r_m matching a substring $s_m \in W_m(s, \mathcal{L}_j)$. \hfill \Box

D. PROOF OF LEMMA 4.5

Lemma 4.5. Let $W_l(s, l), W_f(s, l), W_p(s, l), W_m(s, l)$ respectively denote the set of s-selected substrings using the length-based selection method, the shift-based selection method, the position-aware selection method, and the multi-match-aware selection method. For any string s and a length l, we have

$$W_m(s, l) \subseteq W_p(s, l) \subseteq W_f(s, l) \subseteq W_l(s, l).$$

Proof. If $\tau = 0$, the four methods select s as its selected substring. Thus $W_l(s, l) = W_f(s, l) = W_p(s, l) = W_m(s, l) = \{s\}$. Next we prove the lemma for $\tau > 0$.

Given \mathcal{L}_l, firstly the substring length of each method is the same, i.e., l_i. Next we consider the start positions.

(i) **We first prove** $W_f(s, l) \subseteq W_l(s, l)$.

For $W_l(s, l)$, the start positions are in $[1, |s| - l_i + 1]$. For $W_f(s, l)$, the start positions are in $[\max(1, p_i - \tau), \min(|s| - l_i + 1, p_i + \tau)]$.

To prove $W_f(s, l) \subseteq W_l(s, l)$, we only need to prove

$$[1, |s| - l_i + 1] \supseteq [\max(1, p_i - \tau), \min(|s| - l_i + 1, p_i + \tau)].$$

It is obvious that $\max(1, p_i - \tau) \geq 1$ and $\min(|s| - l_i + 1, p_i + \tau) \leq |s| - l_i + 1$. Thus we have $W_f(s, l) \subseteq W_l(s, l)$.

(ii) **We then prove** $W_p(s, l) \subseteq W_f(s, l)$.
For \(\mathcal{W}_p(s, l)\), the start positions are in
\[
\left[\max(1, p_i - \left\lfloor \frac{\tau - \Delta}{2} \right\rfloor), \min(|s| - l_i + 1, p_i + \left\lfloor \frac{\tau + \Delta}{2} \right\rfloor)\right] = \left[p_i - \left\lfloor \frac{\tau - \Delta}{2} \right\rfloor, p_i + \left\lfloor \frac{\tau + \Delta}{2} \right\rfloor \right] \cap [1, |s| - l_i + 1]
\]

For \(\mathcal{W}_f(s, l)\), as \([\max(1, p_i - \tau), \min(|s| - l_i + 1, p_i + \tau)] = [p_i - \tau, p_i + \tau] \cap [1, |s| - l_i + 1]\), to prove \(\mathcal{W}_p(s, l) \subseteq \mathcal{W}_f(s, l)\), we only need to prove
\[
[p_i - \tau, p_i + \tau] \supseteq [p_i - \left\lfloor \frac{\tau - \Delta}{2} \right\rfloor, p_i + \left\lfloor \frac{\tau + \Delta}{2} \right\rfloor]
\]

As \(0 \leq \Delta \leq \tau, p_i - \tau \leq p_i - \left\lfloor \frac{\tau - \Delta}{2} \right\rfloor \) and \(p_i + \tau \geq p_i + \left\lfloor \frac{\tau + \Delta}{2} \right\rfloor\). Thus \(\mathcal{W}_p(s, l) \subseteq \mathcal{W}_f(s, l)\).

\((iii)\) Next we prove \(\mathcal{W}_m(s, l) \subseteq \mathcal{W}_p(s, l)\).

For \(\mathcal{W}_m(s, l)\), the start positions are in
\[
[\perp_i, T_i] = [\max(\perp_i, 1), \min(T_i, T_i')] = [\max(1, p_i - (i - 1), p_i + \Delta - (\tau + 1 - i)), \min(|s| - l_i + 1, p_i + (i - 1), p_i + \Delta + (\tau + 1 - i))] = [\max(p_i - (i - 1), p_i + \Delta - (\tau + 1 - i)), \min(p_i + (i - 1), p_i + \Delta + (\tau + 1 - i)] \cap [1, |s| - l_i + 1]
\]

To prove \(\mathcal{W}_m(s, l) \subseteq \mathcal{W}_p(s, l)\), we only need to prove
\[
[p_i - \left\lfloor \frac{\tau - \Delta}{2} \right\rfloor, p_i + \left\lfloor \frac{\tau + \Delta}{2} \right\rfloor] \supseteq [\perp_i, T_i].
\]

Firstly we prove \(\perp_i = \max(p_i - (i - 1), p_i + \Delta - (\tau + 1 - i)) \geq p_i - \left\lfloor \frac{\tau - \Delta}{2} \right\rfloor\). If \(p_i - (i - 1) \geq p_i + \Delta - (\tau + 1 - i)\), we have \(\perp_i = p_i - (i - 1)\). In this case \(i \leq \left\lfloor \frac{\tau - \Delta}{2} \right\rfloor + 1\). That is \(i - 1 \leq \left\lfloor \frac{\tau - \Delta}{2} \right\rfloor\). Obviously \(\perp_i = p_i - (i - 1) \geq p_i - \left\lfloor \frac{\tau - \Delta}{2} \right\rfloor\). On the contrary, if \(p_i - (i - 1) < p_i + \Delta - (\tau + 1 - i)\), we have \(\perp_i = p_i + \Delta - (\tau + 1 - i)\). In this case \(i > \left\lfloor \frac{\tau - \Delta}{2} \right\rfloor + 1\). That is \(i - 1 > \left\lfloor \frac{\tau - \Delta}{2} \right\rfloor\). As \(\perp_i = p_i + \Delta - (\tau + 1 - i) = p_i + (i - 1) - (\tau - \Delta)\), \(\perp_i \geq p_i - \left\lfloor \frac{\tau - \Delta}{2} \right\rfloor\).

Then we prove that \(T_i = \min(p_i + (i - 1), p_i + \Delta + (\tau + 1 - i)) \leq p_i + \left\lfloor \frac{\tau + \Delta}{2} \right\rfloor\). If \(p_i + (i - 1) \leq p_i + \Delta + (\tau + 1 - i)\), we have \(T_i = p_i + (i - 1)\). In this case \(i \leq \left\lfloor \frac{\tau + \Delta}{2} \right\rfloor + 1\). That is \(i - 1 \leq \left\lfloor \frac{\tau + \Delta}{2} \right\rfloor\). Obviously \(T_i = p_i + (i - 1) \leq p_i + \left\lfloor \frac{\tau + \Delta}{2} \right\rfloor\). On the contrary if \(p_i + (i - 1) > p_i + \Delta + (\tau + 1 - i)\), we have \(T_i = p_i + \Delta + (\tau + 1 - i)\). In this case \(i > \left\lfloor \frac{\tau + \Delta}{2} \right\rfloor + 1\). That is \(i - 1 > \left\lfloor \frac{\tau + \Delta}{2} \right\rfloor\). As \(T_i = p_i + \Delta + (\tau + 1 - i) = p_i - (i - 1) + \tau + \Delta\), \(T_i \leq p_i + \left\lfloor \frac{\tau + \Delta}{2} \right\rfloor\). Thus we have \(\mathcal{W}_m(s, l) \subseteq \mathcal{W}_p(s, l)\).

Therefore \(\mathcal{W}_m(s, l) \subseteq \mathcal{W}_p(s, l) \subseteq \mathcal{W}_f(s, l) \subseteq \mathcal{W}_l(s, l)\) and the lemma is proved. \(\square\)

E. PROOF OF THEOREM 4.6
To prove Theorem 4.6, we first prove that the substring set \(\mathcal{W}_m(s, l)\) generated by the multi-match-aware selection method has the minimum size. That is for any other substring set \(\mathcal{W}(s, l)\) generated by a method that satisfies completeness, we have \(|\mathcal{W}_m(s, l)| \leq |\mathcal{W}(s, l)|\). The basic idea of our proof is as follows. For each substring \(s_m \in \mathcal{W}_m(s, l)\), we generate a substring set \(\Phi(s_m, l)\), such that

\textbf{Condition (1)}: If a substring selection method satisfies completeness, it must select a substring in \(\Phi(s_m, l)\);
Condition (2): For any two substrings \(s_m \neq s_{m'} \) in \(\mathcal{W}_m(s, l) \), if a substring selection method satisfies completeness, it must select a substring in \(\Phi(s_m, l) \) and another substring in \(\Phi(s_{m'}, l) \), and the two substrings are not the same. Notice that two selected substrings are said to be the same, if they are selected for the same segment and have the same start positions and lengths.

Obviously if we can generate a substring set \(\Phi(s_m, l) \) satisfying the above two conditions, we have \(|\mathcal{W}_m(s, l)| \leq |\mathcal{W}(s, l)| \) (We will prove it in Theorem 4.12). Next we discuss how to generate the substring set \(\Phi(s_m, l) \).

Notice that based on the definition of completeness, we need to guarantee completeness for every string with length \(|s| \), thus \(\mathcal{W}_m(s, l) \) does not depend on the content of \(s \). In other words, the size of \(\mathcal{W}_m(s, l) \) only depends on \(|s| \). Without loss of generality, we consider a string \(s \) whose characters are distinct, i.e., \(s[i] \neq s[j] \) for \(i \neq j \) where \(s[i] \) is the \(i \)-th character of \(s \) for \(1 \leq i \leq |s| \).

Next we construct a string \(r \) with length \(l \) based on \(s \), such that (1) \(r \) is similar to \(s \) with \(\tau \) edit operations; (2) if a substring selection method that satisfies completeness does not select a substring from \(\Phi(s_m, l) \), the method will miss the similar pair \((s, r) \).

We generate \(r \) from \(s \) as follows. Suppose the length of \(r \) is \(l \), and the start position of the \(i \)-th segment is \(p_i \) and the length is \(l_i \). We first partition \(s \) into \(\tau + 1 \) substrings and then use the \(k \)-th substring of \(s \) to generate the \(k \)-th segment of \(r \). Let \(l'_k \) and \(p'_k \) respectively denote the length and the start position of the \(k \)-th substring of \(s \). We use \(p_k \) and \(l_k \) to deduce \(l'_k \) and \(p'_k \). Obviously we have \(p'_1 = 1 \) and \(p'_k = p'_k + \sum_{j=1}^{k-1} \l'_j \). Next we focus on how to get the length of each substring of \(s (l'_k) \) and how to generate a segment of \(r \) as follows.

Suppose \(s_m \) is selected from the \(i \)-th segment, i.e., \(s_m \in \mathcal{W}_m(s, l_i) \), and the position of \(s_m \) in \(s \) is \(p \). Based on the multi-match-aware selection method, as \(p \in [p_i - (i - 1), p_i + (i - 1)] \) \(\cap [p_i + \triangle - (\tau + 1 - i), p_i + \triangle + (\tau + 1 - i)] \), we can easily deduce that \(|p - p_i| \leq i - 1 \) and \(|(l - p_i) - (|s| - p)| = |p - p_i - \triangle| \leq \tau + 1 - i \). We first consider \(p \leq p_i \).

- For each \(k \in [1, p_i - p] \), we generate the \(k \)-th segment of \(r \) from the \(k \)-th substring of \(s \) by applying an insertion. As an insertion operation will increase the length by 1, we have \(l'_k = l_k + 1 \). Notice that as \(p_i - p \leq i - 1 \) (based on the multi-match-aware selection), we can choose \(p_i - p \) substrings from the first \(i - 1 \) substrings of \(s \) (before \(s_m \)) to apply an insertion on each substring. Here we choose the first \(p_i - p \) substrings.
- For each \(k \in [p_i - p + 1, i - 1] \), we generate the \(k \)-th segment of \(r \) from the \(k \)-th substring of \(s \) by applying a substitution operation. As a substitution operation will not change the substring length, we have \(l'_k = l_k \).
- For \(k = i \), the \(i \)-th segment of \(r \) is exactly the \(i \)-th substring of \(s \) (i.e., \(s_m \)), thus \(l'_k = l_k \).
- For each \(k \in [i + 1, \tau + 1 - (p_i - p + \triangle)] \), we generate the \(k \)-th segment of \(r \) from the \(k \)-th substring of \(s \) by applying a substitution operation. As a substitution operation will not change the substring length, we have \(l'_k = l_k \).
- For each \(k \in [\tau + 1 - (p_i - p + \triangle) + 1, \tau + 1] \), we generate the \(k \)-th segment of \(r \) from the \(k \)-th substring of \(s \) by applying a deletion operation. As a deletion operation will decrease the length by 1, we have \(l'_k = l_k - 1 \). Notice that to make the length of \(r \) be \(l \), we need to do some deletions on the last \(\tau + 1 - i \) substrings of \(s \) (after \(s_m \)). As \(l = |s| - \triangle \), we need to do \(p_i - p + \triangle \) deletions. As \(p_i - p + \triangle \leq \tau + 1 - i \) (based on the multi-match-aware selection), we can choose \(p_i - p + \triangle \) substrings from the last \(\tau + 1 - i \) substrings of \(s \). Here we choose the last \(p_i - p + \triangle \) substrings of \(s \) to apply a deletion operation for each substring.
Obviously, we only do \(\tau \) edit operations on \(s \) to generate \(r \). Thus \(r \) is similar to \(s \) with \(\tau \) edit operations. Next we discuss how to apply the insertion, substitution, and deletion operations.

- For \(k \in [1, p_i - p] \), we do insertion operations. As we can use a special character that does not appear in \(s \) to apply the insertion operation, we do not need to select any substring of \(s \) for the \(k \)-th segment of \(r \). This is because the \(k \)-th segment of \(r \) will not match any substring of \(s \) as it contains a special character.
- For \(k \in [p_i - p + 1, i - 1] \), we need to do a substitution operation on each substring of \(s \). Similarly, we can use a special character that does not appear in \(s \) to apply the substitution, thus we also do not select any substring for the \(k \)-th segment of \(r \).
- For \(k = i \), as \(s_m \) matches \(r_m \), we add \(s_m \) into \(\Phi(s_m, l) \).
- For \(k \in [i + 1, \tau + 1 - (p_i - p + \triangle)] \), we need to do a substitution operation on each substring of \(s \). Similarly, we can use a special character that does not appear in \(s \) to apply the substitution, thus we also do not select any substring for the \(k \)-th segment of \(r \).
- Finally for each \(k \in [\tau + 1 - (p_i - p + \triangle) + 1, \tau + 1] \), we need to do deletion operations. If each substring has no smaller than 3 characters, we generate the \(k \)-th segment of \(r \) from the \(k \)-th substring of \(s \) by deleting a middle (i.e. neither the first nor the last) character of the substring to apply the deletion operation. In this case we do not need to select such substrings for the \(k \)-th segment of \(r \). This is because as the characters in the substrings are distinct, if we delete a middle character of the substring, the generated segment will not match any substring of \(s \). Thus if each substring has no smaller than 3 characters, \(\Phi(s_m, l) = \{s_m\} \). Similarly, if \(p \geq p_i + \triangle \) or \(p_i + \triangle > p > p_i \), \(\Phi(s_m, l) = \{s_m\} \) (each substring has no smaller than 3 characters).

In this case, we can easily prove that \(\Phi(s_m, l) \) satisfies condition (1) as formalized in Lemma 4.6.1. Next we consider the case that some substrings have less than 3 characters.

If \(p \leq p_i \), for the last \(p_i - p + \triangle \) substrings of \(s \), instead of deleting a character in each substring, we delete the last \(p_i - p + \triangle \) characters of \(s \). In this way, we set the \(k \)-th segment \(r[p_k, l_k] \) of string \(r \) as \(s[|−(p_i−p+\triangle)−(|r|−p_k)| \leq l_k] \). We give the basic idea as follows. Consider the \(k \)-th segment \(r[p_k, l_k] \) of \(r \) for \(k \in [\tau + 1 - (p_i - p + \triangle) + 1, \tau + 1] \). Let \(s[x_1 \cdots |s|] \) denote the substring of \(s \) from the \(x_k \)-th character to the end of \(s \) and \(r[p_k \cdots |r|] \) denote the substring of \(r \) from the \(p_k \)-th character to the end of \(r \). As we delete the last \(p_i - p + \triangle \) characters of \(s \) to make \(s[x_k \cdots |s|] \) and \(r[p_k \cdots |r|] \) have the same length, we have \(s[x_k \cdots |s|] = |r[p_k \cdots |r|]| = p_i - p + \triangle \). That is \(x_k = |s[|−(p_i−p+\triangle)−(|r|−p_k)| \leq l_k] \). Thus \(r[p_k, l_k] = s[x_k, l_k] = l_k \) for \(k \in [\tau + 1 - (p_i - p + \triangle) + 1, \tau + 1] \). Note that the \(k \)-th segment of \(r \) will not match any other substring of \(s \) as the characters of \(s \) are distinct. Thus \(\Phi(s_m, l) = \{s_m\} \cup \{s[|−(p_i−p+\triangle)−(|r|−p_k)| \leq l_k]|k \in [\tau + 1 - (p_i - p + \triangle) + 1, \tau + 1]\} \). We can easily prove that \(\Phi(s_m, l) \) satisfies condition (1) as formalized in Lemma 4.6.1.

Similarly, if \(p \geq p_i + \triangle \), we do deletion operations on the first \(p - p_i \) substrings of \(s \). We delete the first \(p - p_i \) characters of \(s \), and we have \(x_k = p_k + (p - p_i) \) and \(l_k = l_k \) for \(k \in [1, p_i - p] \). Thus \(\Phi(s_m, l) = \{s_m\} \cup \{s[p_k + (p - p_i), l_k]|k \in [1, p_i - p]\} \). We can easily prove that \(\Phi(s_m, l) \) satisfies condition (1) as formalized in Lemma 4.6.1.

If \(p_i < p < p_i + \triangle \), we do deletion operations on the first \(p - p_i \) substrings and the last \(p_i - p + \triangle \) substrings. We delete the first \(p - p_i \) characters of \(s \) and the last \(p_i - p + \triangle \) characters of \(s \), and we have \(x_k = p_k + (p - p_i) \) and \(l_k = l_k \) for \(k \in [1, p_i - p] \), and \(x_k = |s[|−(p_i−p+\triangle)−(|r|−p_k)| \leq l_k] \) for \(k \in [\tau + 1 - (p_i - p + \triangle) + 1, \tau + 1] \). In this case, \(\Phi(s_m, l) = \{s_m\} \cup \{s[p_k + (p - p_i), l_k]|k \in [1, p_i - p]\} \cup \{s[|−(p_i−p+\triangle)−(|r|−p_k)| \leq l_k]|k \in [\tau + 1 - (p_i - p + \triangle) + 1, \tau + 1]\} \). We can easily prove that \(\Phi(s_m, l) \) satisfies condition (1) as formalized in Lemma 4.6.1.
LEMA 4.6.1. If a selection method satisfies completeness, it must select a substring in $\Phi(s_m, l)$ for each $s_m \in \mathcal{W}_m(s, l)$.

PROOF. Firstly if each substring of s has at least 3 characters, $\Phi(s_m, l) = \{s_m\}$. As only s_m matches a segment of string r, if a substring selection method does not select s_m, the method must miss a similar pair (s, r). Thus any selection method that satisfies completeness must select a substring in $\Phi(s_m, l)$.

Secondly, if some substrings of s have less than 3 characters and we need to do deletion operations on such substrings. We consider the following three cases.

Case (1): $p \leq p_i$. $\Phi(s_m, l) = \{s_m\} \cup \{s[|s|-(p_i-p+\Delta)-(|r|-p_k), l_k]\}$. As only substrings in $\Phi(s_m, l)$ matches a segment of string r. If a substring selection method does not select a substring, the method must miss a similar pair (s, r). Thus any selection method that satisfies completeness must select a substring in $\Phi(s_m, l)$.

Case (2): $p \geq p_i + \Delta$. It is similar to Case (1).

Case (3): $p_i < p < p_i + \Delta$. It is similar to Case (1) and Case (2).

Thus the lemma is proved. □

Then we prove that for any two substrings $s_m \neq s_{m'}$ in $\mathcal{W}_m(s, l)$, if a substring selection method satisfies completeness, it must contain a substring in $\Phi(s_m, l)$ and another substring in $\Phi(s_{m'}, l)$ such that the two substrings are not the same as formalized in Lemma 4.6.2.

LEMA 4.6.2. For any two substrings $s_m \neq s_{m'}$ in $\mathcal{W}_m(s, l)$, if a method satisfies completeness, it must contain a substring in $\Phi(s_m, l)$ and another substring in $\Phi(s_{m'}, l)$, and the two substrings are not the same.

PROOF. Without loss of generality, suppose $s_m \in \mathcal{W}_m(s, L_1) \subseteq \mathcal{W}_m(s, l)$ with start position p and $s_{m'} \in \mathcal{W}_m(s, L_2) \subseteq \mathcal{W}_m(s, l)$ with start position p' (Notice that i may be equal to j). We only need to prove that, for any $s_k \in \Phi(s_m, l)$ and $s_{k'} \in \Phi(s_{m'}, l)$, (1) $s_k \neq s_{k'}$; or (2) If $s_k = s_{k'}$, a method that only selects s_k (or $s_{k'}$) from $\Phi(s_m, l)$ and $\Phi(s_{m'}, l)$ will miss a similar pair.

Firstly, if s_k and $s_{k'}$ are selected for different segments, we have $s_k \neq s_{k'}$ and the lemma is proved. Secondly, s_k and $s_{k'}$ are selected for the same segment. Without loss of generality, suppose they are selected for the k-th segment of r. We consider the following cases.

Case 1: $s_k = s_{m}$ and $s_{k'} = s_{m'}$. In this case as $s_m \neq s_{m'}$, $s_k \neq s_{k'}$.

Case 2: $s_k = s[|s|-(p_i-p+\Delta)-(|r|-p_k), l_k]$ and $s_{k'} = s_{m'}$. In this case $p < p_i + \Delta$. We prove that $s_k \neq s_{k'}$ as follows. If $k \neq j$, $s_k \neq s_{k'}$, as s_k is selected for the k-th segment and $s_{k'}$ is selected for j-th segment. If $k = j$, the start positions of s_k in $\mathcal{W}_m(s, L_2)$ are in $[p_k + \Delta - \tau + 1 - k, p_k + \Delta + (\tau + 1 - k)] \cap [p_k - (k - 1), p_k + (k - 1)]$. We can deduce $|s|-(p_i-p+\Delta)-(|r|-p_k) < p_k + \Delta - (\tau + 1 - k)$ as follows. As $s_k = s[|s|-(p_i-p+\Delta)-(|r|-p_k), l_k]$, we have $k \in [\tau + 1 - (p_i-p+\Delta)+1, \tau + 1]$.

Case 3: $s_k = s_{m}$ and $s_{k'} = s[|s|-(p_j-p'+\Delta)-(|r|-p_k), l_k]$. It is similar to Case (2);

Case 4: $s_k = s[p_k + (p-p_i), l_k]$ and $s_{k'} = s_{m'}$. In this case, $p > p_i$. We prove that $s_k \neq s_{k'}$ as follows. If $k \neq j$, $s_k \neq s_{k'}$, as s_k is selected for the k-th segment and $s_{k'}$ is selected for j-th segment. If $k = j$, the start positions of s_k in $\mathcal{W}_m(s, L_2)$ are in...
As \(k \in [1, p-p_i]\), we have \(p_k + (k-1) \leq p_k + (p-p_i) - 1 < p_k + (p-p_i)\). Thus \(s[p_k + (p-p_i), l_k]\) will not match any substring in \(W_m(s, L'_l)\). That is \(s_k \neq s'_k\).

Case 5: \(s_k = s_m\) and \(s'_k = s[p_k + (p'-p_j), l_k]\). It is similar to Case (4);

Case 6: \(s_k = s[p_k + (p-p_i), l_k]\) and \(s'_k = s[s - (p_j - p' + \Delta) - (|r| - p_k), l_k]\), that is \(p > p_i\) and \(p' < p_j + \Delta\). We prove that \(s_k \neq s'_k\) as follows. Based on the proofs of Case 4 and Case 3, we have \(p_k + (k-1) \leq p_k + (p-p_i)\) and \(|s - (p_j - p' + \Delta) - (|r| - p_k)| < p_k + \Delta - (\tau + 1 - k)\). Meanwhile as \(\Delta \leq \tau\), we have \(p_k + \Delta - (\tau + 1 - k) \leq p_k + (k-1)\).

Thus \(s[p_k + (p-p_i), l_k] \neq s[s - (p_j - p' + \Delta) - (|r| - p_k), l_k]\) as their start positions are not the same. That is \(s_k \neq s'_k\).

Case 7: \(s_k = s[s - (p_i - p + \Delta) - (|r| - p_k), l_k]\) and \(s'_k = s[p_k + (p'-p_j), l_k]\). It is similar to Case (6).

Case 8: \(s_k = s[p_k + (p-p_j), l_k]\) and \(s'_k = s[p_k + (p'-p_j), l_k]\), that is \(p > p_i\) and \(p' > p_j\).

In this case, we consider the following two cases:

1. \((p-p_i) \neq p'-p_j\): We have \(p_k + (p-p_i) \neq p_k + (p'-p_j)\), thus \(s_k \neq s'_k\).
2. \((p-p_i) = p'-p_j\): We have \(s_k = s_k\) as \(p_k + (p-p_i) = p_k + (p'-p_j)\) and both of their lengths are \(l_k\) Next we prove \(i \neq j\) by contradiction. Suppose \(i = j\), we have \(p_i = p_j\). As \(p-p_i = p'-p_j\), \(p = p'\). Thus \(s_m = s_m\) as they have the same start positions and the same lengths. This contradicts with \(s_m \neq s'_m\). Thus \(i \neq j\).

Then we prove that a method that only selects \(s_k\) (or \(s'_k\)) from \(\Phi(s_m, l)\) and \(\Phi(s_m', l)\) will miss a similar pair. We construct a new string \(r'\) similar to the case of generating the string \(r\) using \(s_m\) except that (1) For the \(k\)-th substring of \(s\), we apply an additional substitution operation (by substituting character \(s[p_k+(p-p_i)]\) with a special character) such that the \(k\)-th segment of \(r'\) will not match any substring of \(s\); and (2) The \(j\)-th segment of \(r'\) is exactly the \(j\)-th substring of \(s\). Next we prove that the number of edit operations in the new transformation from \(s\) to \(r'\) is \(\tau\). Compared with the transformation \(T\) from \(s\) to \(r\) and the new transformation \(T'\) from \(s\) to \(r'\), \(T'\) has an additional substitution operation on the \(k\)-th substring and a matching operation on the \(j\)-th substring of \(s\). Next we prove that in transformation \(T\), we do a substitution operation on the \(j\)-th substring.

As \(s'_m \in W_m(s, L'_l)\), we have \(p' \in [p_j - (j-1), p_j + (j-1)] \cap [p_j + \Delta - (\tau + 1 - j), p_j + \Delta + (\tau + 1 - j)]\). Thus \(p' - p_j < j < \tau + 1 - (p_j - p' + \Delta) + 1\). In addition, as \(p-p_i = p'-p_j\), we have \(\tau + 1 - (p_j - p' + \Delta) + 1 = \tau + 1 - (p_i - p + \Delta) + 1\). Thus \(p-p_i < j < \tau + 1 - (p_i - p + \Delta) + 1\). As \(i \neq j\), in the transformation \(T\), we do a substitution operation on the \(j\)-th substring.

Thus \(T \& T'\) have the same number of edit operations, that is the number of edit operations in \(T'\) is \(\tau\).

Note that in the transformation \(T'\) from \(s\) to \(r'\), we only have the following match operations: (1) the substring \(s_m\) matches the \(i\)-th segment; (2) the \(j\)-th substring matches the \(j\)-th segment; and (3) the other substrings in \(\Phi(s_m, l)\) and \(\Phi(s_m', l)\) except \(s_m\) match some other segments of \(r'\). Next we prove that \(s_k\) is neither \(s_m\) nor the \(j\)-th substring.

Firstly as \(s_m\) is a substring for the \(i\)-th segment and \(s_k\) is a substring for the \(k\)-th segment \((k \neq i)\), \(s_k \neq s_m\). Secondly \(s_k \neq s'_m\) as they are selected for different segments. Thus \(s_k = s_k \neq s'_m\). Next we prove that the \(j\)-th substring of \(s\) is exactly \(s'_m\). Thus \(s_k\) is not the \(j\)-th substring of \(s\). We prove it as follows. The start position of the \(j\)-th substring of \(s\) is \(p_j + (p-p_i)\) as we do \(p-p_i\) deletion operations in the transformation \(T\). In addition the start position of \(s'_m\) is \(p'\). As \(p_j + (p-p_i) = p_j + (p'-p_j) = p'\), the \(j\)-th substring and \(s'_m\) have the same start positions. On the other hand they have the same length. Thus the \(j\)-th substring in the transformation \(T\) is exactly \(s'_m\).

As \(s_k\) does not match a segment of \(r'\), if we only select \(s_k\), we will miss the similar pair \((s, r')\). Thus we cannot only select \(s_k\) (or \(s'_k\)) from \(\Phi(s_m, l)\) and \(\Phi(s_m', l)\).
Case 9: \(s_k = s[s] - (p_i - p + \Delta) - (|r| - p) l_k\) and \(s'_k = s[s] - (p_j - p' + \Delta) - (|r| - p) l_k\). It is similar to Case (8).

Thus the lemma is proved. \(\square\)

Based on the two lemmas, next we prove that the substring set \(W_m(s, l)\) generated by the multi-match-aware selection method has the minimum size.

Theorem 4.6. The substring set \(W_m(s, l)\) generated by the multi-match-aware selection method has the minimum size among all the substring sets generated by the substring selection methods that satisfy completeness.

Proof. Consider any substring selection method satisfying completeness. For each \(s_m \in W_m(s, l)\), based on Lemma 5.6.1, the method must select a substring in \(\Phi(s_m, l)\). Based on Lemma 5.6.2, for different substrings \(s_m\) and \(s'_m\) in \(W_m(s, l)\), the method must select two different substrings. Thus the method must select \(|W_m(s, l)|\) substrings, and the theorem is proved. \(\square\)

F. PROOF OF THEOREM 4.8

Theorem 4.8. If \(l \geq 2(\tau + 1)\) and \(|s| \geq l\), \(W_m(s, l)\) satisfies minimality.

Proof. If \(l \geq 2(\tau + 1)\), the substrings with deletion operations must contain at least 3 characters. In this case, \(\Phi(s_m, l) = \{s_m\}\), thus any substring selection method must select \(\{s_m\}\) based on Theorem 4.8. Thus \(W_m(s, l)\) satisfies minimality. \(\square\)

G. PROOF OF THEOREM 5.3

To prove Theorem 5.3, we first give an observation. Consider a string \(r\) and a string \(s\) where \(s\) has a substring \(s_m\) which matches \(r\)'s \(i\)-th segment \(r_m\). If \(\langle s, r \rangle\) passes our verification algorithm, that is \(ED(r_i, s_i) \leq i - 1\) and \(ED(r_r, s_r) \leq \tau + 1 - i\), \(\langle s, r \rangle\) must be a similar pair as \(ED(r, s) \leq ED(r_i, s_i) + ED(r_r, s_r) \leq \tau\). Thus our extension-based method satisfies condition (1) of the correctness (Definition 5.2). To prove condition (2), we need to prove that if \(s\) and \(r\) are similar, \(s\) must have a substring \(s_m\) which matches the \(i\)-th segment \(r_m\) of \(r\) such that \(s_m \in W_m(s, l)\), \(ED(r_i, s_i) \leq i - 1\) and \(ED(r_r, s_r) \leq \tau + 1 - i\) as stated in Lemma 5.3.3. To prove Lemma 5.3.3, we first give two lemmas as follows.

Lemma 5.3.1. If \(s\) is similar to \(r\) within edit distance threshold \(\tau\), \(s\) must have a substring \(s_m\) which matches a segment \(r_m\) of \(r\), such that \(s_m \in W_m(s, l)\) and \(ED(r, s) = ED(r_i, s_i) + ED(r_r, s_r)\).

Proof. We first prove that given a transformation \(T\) from \(r\) to \(s\) with \(|T| = ED(r, s)\) edit operations, for any segment \(r_m\) of \(r\) matching a substring \(s_m\) of \(s\) in \(T\), \(ED(r, s) = ED(r_i, s_i) + ED(r_r, s_r)\). As \(T\) transforms \(r_i\) to \(s_i\), matches \(r_m\) with \(s_m\), and transforms \(r_r\) to \(s_r\), we have \(|T| \geq ED(r_i, s_i) + ED(r_m, s_m) + ED(r_r, s_r)|. In addition, based on the definition of edit distance, we have \(ED(r_i, s_i) + ED(r_m, s_m) + ED(r_r, s_r) \geq ED(r, s)|. As \(|T| = ED(r, s)| and \(ED(r_m, s_m) = 0\), we have \(ED(r, s) = ED(r_i, s_i) + ED(r_r, s_r)|.

Then, based on the proof of Theorem 4.4, for any transformation \(T\) such that \(|T| = ED(r, s) \leq \tau\), there must exist a substring \(s_m \in W_m(s, l)\) of \(s\) that matches a segment \(r_m\) of \(r\), and we have \(ED(r, s) = ED(r_i, s_i) + ED(r_r, s_r)|. Thus the lemma is proved. \(\square\)

Lemma 5.3.2. If \(s\) is similar to \(r\) within edit distance threshold \(\tau\), \(s\) must have a substring \(s_m\) which matches the \(i\)-th segment \(r_m\) of \(r\), such that \(s_m \in W_m(s, l)\), \(ED(r, s) = ED(r_i, s_i) + ED(r_r, s_r)| and \(ED(r_r, s_r) \leq \tau + 1 - i\).

Proof. Based on Lemma 5.3.1, \(s\) must have a substring \(s_m\) which matches a segment \(r_m\) of \(r\), such that \(s_m \in W_m(s, l)\) and \(ED(r, s) = ED(r_i, s_i) + ED(r_r, s_r)|. We as-
sume \(r_m \) is the first segment of \(r \) which matches a substring \(s_m \in W_m(s, l) \) of \(s \) and
\[ED(r, s) = ED(r_1, s_1) + ED(r, s_r). \]
Without loss of generality, suppose \(r_m \) is the \(i \)-th segment of \(r \). Next we prove that \(ED(r_s, s_r) \leq \tau + 1 - i \). We prove it by contradiction. Suppose \(ED(r_s, s_r) \geq \tau + 1 - i \). As \(ED(r_1, s_1) + ED(r, s_r) = ED(r, s) \leq \tau \), we have \(ED(r_1, s_1) \leq \tau - ED(r_s, s_r) = \tau - (i - 2) \), i.e., \(r_1 \) and \(s_1 \) are similar within edit distance threshold \(\tau' = i - 2 \). On the other hand we have \(i - 1 \) segments in \(r_i \). Based on Theorem 3, \(s_1 \) must have a substring in \(W_m(s_1, |r_i|) \) matching a segment of \(r_i \). As \(r_m \) is the first segment of \(r \) that matches a substring of \(s \), none of the substrings in \(W_m(s, L_j^i) (1 \leq j \leq i - 1) \) match any substring of \(s \). Next we prove that for any \(1 \leq j \leq i - 1 \), \(W_m(s_1, L_j^i) \subseteq W_m(s, L_j^i) \).

Suppose the lengths of the \(j \)-th segments of \(r \) and \(r_i \) are respectively \(l_j \) and \(l'_j \) and the corresponding start positions are \(p_j \) and \(p'_j \). As the \(i - 1 \) segments of \(r_i \) are exactly the first \(i - 1 \) segments of \(r \), for any \(1 \leq j \leq i - 1 \) we have \(l_j = l'_j \) and \(p_j = p'_j \). Based on Section 4, for any \(1 \leq j \leq i - 1 \), \(W_m(s, L_j^i) \) is the set of substrings of \(s \) with length \(l_j \) and with start positions in

\[
[\bot_j, \top_j] = [\max(l'_j, \bot_j), \min(T'_j, \top_j)]
\]

Thus we only need to prove that

\[
[p_j + \Delta - (\tau + 1 - j), p_j + \Delta + (\tau + 1 - j)] \supseteq [p_j + |s_i| - |r_i| - (i - 1 - j), p_j + |s_i| - |r_i| + (i - 1 - j)]
\]

We have an observation that \(|r_i| + 1 = p_i \) and \(|s_i| + 1 \) equals to the start position of \(s_m \). Thus \(|s_i| - |r_i| \) is exactly the difference between the start position of \(s_m \) and \(r_m \). On the other hand, we have the start position of \(s_m \) in

\[
[\bot_i, \top_i] = [\max(\bot_i, \bot_j), \min(\top_i, \top_j)] \supseteq [\bot_j, \top_j] = [p_i + \Delta - (\tau + 1 - i), p_i + \Delta + (\tau + 1 - i)]
\]

where \(p_i \) is the start position of \(r_m \). Thus \(\Delta - (\tau + 1 - i) \leq |s_i| - |r_i| \leq \Delta + (\tau + 1 - i) \).

Then we have

\[
p_j + |s_i| - |r_i| - (i - 1 - j) \geq p_j + \Delta - (\tau + 1 - i) - (i - 1 - j) > p_j + \Delta - (\tau + 1 - j)
\]

\[
p_j + |s_i| - |r_i| + (i - 1 - j) \leq p_j + \Delta + (\tau + 1 - i) + (i - 1 - j) < p_j + \Delta + (\tau + 1 - j).
\]

Thus for any \(1 \leq j \leq i - 1 \), \(W_m(s_1, L_j^i) \subseteq W_m(s, L_j^i) \). That is none of the substrings in \(W_m(s_1, |r_i|) \) matches any segment of \(r_i \). This contradicts with Theorem 4. Thus the lemma is proved.

The lemma above is gotten from the left-side perspective. Similarly, we can get another conclusion from the right-side perspective that if \(s \) is similar to \(r \), \(s \) must have a substring \(s_m \) which matches the \(i \)-th segment \(r_m \) of \(r \), such that \(s_m \in W_m(s, l) \),
\[ED(r, s) = ED(r_1, s_1) + ED(r, s_r) \] and \(ED(r_1, s_1) \leq i - 1 \). Next we combine these two conclusions and prove Lemma 5.
5.3.3. If \(s \) is similar to \(r \) within edit distance threshold \(\tau \), \(s \) must have a substring \(s_m \) which matches the \(i \)-th segment \(r_m \) of \(r \), such that \(s_m \in W_m(s,l) \), \(ED(r, s) = ED(r_1, s_1) + ED(r_r, s_r) \), \(ED(r_1, s_1) \leq i - 1 \) and \(ED(r_r, s_r) \leq \tau + 1 - i \).

Proof. Consider the last segment \(r_m \) of \(r \) which matches with a substring \(s_m \in W_m(s,l) \) such that \(ED(r, s) = ED(r_1, s_1) + ED(r_r, s_r) \). Without loss of generality, suppose \(r_m \) is the \(i \)-th segment of \(r \). Based on the proof of Lemma 5.3.2 (from the right-side perspective) \(ED(r_1, s_1) \leq i - 1 \). If \(ED(r_r, s_r) \leq \tau + 1 - i \), the lemma is proved; otherwise we have \(ED(r_r, s_r) \geq \tau + 2 - i \) and \(ED(r_1, s_1) + ED(r_r, s_r) = ED(r, s) \leq \tau \), thus \(ED(r_1, s_1) \leq i - 2 \) while there are \(i - 1 \) segments in \(r_1 \). Let \(r' = i - 2, r'' \), \(s' \) and \(s'' \) are similar within edit distance threshold \(\tau \). Based on Lemma 5.3.1 there must be at least one substring \(s'_m \in W_m(s_l, |r_1|) \subset W_m(s,l) \) of \(s_l \) matching a segment \(r'_m \) of \(r_1 \) such that \(ED(r_1, s_1) = ED(r'_1, s'_1) + ED(r'_r, s'_r) \) where \(r'_r \) and \(s'_r \) are the right parts of \(r_m \) and \(s_m \) are the right parts. We still consider the last segment \(r'_m \) of \(r_1 \) that satisfies the condition above and suppose \(r''_m \) is the \(j \)-th segment. Based on Lemma 5.3.2 (from the right-side perspective) \(ED(r'_1, s'_1) \leq j - 1 \). As \(s'_m \in W_m(s, l) \), \(ED(r, s) = ED(r_1, s_1) + ED(r_r, s_r) = ED(r'_1, s'_1) + ED(r'_r, s'_r) + ED(r_r, s_r) \) and \(ED(r'_1, s'_1) \leq j - 1 \), if \(ED(r'_r, s'_r) + ED(r_r, s_r) \leq \tau + 1 - j \), the lemma is proved; otherwise we have \(ED(r'_r, s'_r) + ED(r_r, s_r) \geq \tau + 2 - j \) and \(ED(r, s) = ED(r'_1, s'_1) + ED(r'_r, s'_r) + ED(r_r, s_r) \leq \tau \). Thus \(ED(r'_1, s'_1) \leq j - 2 \) while there are \(j - 1 \) segments in \(r'_1 \). We can repeat our proof above until the lemma is proved or reaching the first segment \(r''_m \) of \(r \) which matches a substring \(s''_m \in W_m(s,l) \) of \(s \) such that \(ED(r, s) = ED(r'_1, s'_1) + ED(r''_r, s''_r) + \cdots + ED(r'_r, s'_r) + ED(r_r, s_r) \). Without loss of generality suppose \(r''_m \) is the \(k \)-th segment of \(r \). Based on the proof of Lemma 5.3.2 (from the left-side perspective) we have \(ED(r'_r, s'_r) + \cdots + ED(r''_r, s''_r) + ED(r_r, s_r) \leq k - 1 \). Based on the above we have \(ED(r'_1, s'_1) \leq \tau + 1 - k \). Thus the lemma is proved.

In summary, if \(s \) is similar to \(r \) within edit distance threshold \(\tau \), \(s \) must have a substring \(s_m \) which matches the \(i \)-th segment \(r_m \) of \(r \), such that \(s_m \in W_m(s,l) \), \(ED(r, s) = ED(r_1, s_1) + ED(r_r, s_r) \), \(ED(r_1, s_1) \leq i - 1 \) and \(ED(r_r, s_r) \leq \tau + 1 - i \).

Based on the lemmas above, we prove Theorem 5.3.

Theorem 5.3. Our extension-based verification method satisfies the correctness.

Proof. We first prove the condition (1). If \(\langle s, r \rangle \) passes our verification algorithm, then there exists a segment \(r_m \) matching a substring \(s_m \), \(ED(s_1, r_1) \leq i - 1 \) and \(ED(s_r, r_r) \leq \tau + 1 - i \). Thus \(ED(s_1, r_1) + ED(s_r, r_r) \leq \tau \) and there exists a transformation from \(r \) to \(s \) with no larger than \(\tau \) edit operations. Hence \(\langle s, r \rangle \) must be a similar pair.

Then we prove the condition (2). If \(\langle s, r \rangle \) is a similar pair, based on Lemma 5.3.1, there exists a substring \(s_m \in W_m(s,l) \) matching the \(i \)-th segment \(r_m \) of \(r \), \(ED(s_1, r_1) \leq i - 1 \) and \(ED(s_r, r_r) \leq \tau + 1 - i \). Thus \(\langle s, r \rangle \) must pass our extension-based algorithm.

H. PROOF OF THEOREM 5.4

To prove Theorem 5.4, we need to prove that our iterative-based verification method satisfies conditions (1) and (2) of the correctness (Definition 5.2). It is easy to prove condition (1) similar to Theorem 5.3. To prove condition (2), we first prove that for two similar strings, their left parts can pass the iterative-based verification from the left-side perspective as stated in Lemma 5.4.1. We can get a similar conclusion from the right-side perspective. Finally we combine these two conclusions and prove Theorem 5.4.

Lemma 5.4.1. If \(s \) is similar to \(r \) within edit distance threshold \(\tau \), \(s \) must have a substring \(s_m \) which matches a segment \(r_m \) of \(r \), such that \(s_m \in W_m(s,l) \) and \(\langle r_1, s_1 \rangle \) can pass the ITERATIVEVERIFICATIONLEFT algorithm.

Proof. If \(\langle s, r \rangle \) are similar, based on Lemma 5.3.2, there must exist a substring \(s_m \in W_m(s,l) \) which matches the \(i \)-th segment \(r_m \) of \(r \) such that \(ED(s, r) = ED(s_1, r_1) + \cdots + ED(s_r, r_r) \leq \tau + 1 - i \).
ED(s_r, r_r) and ED(s_t, r_t) ≤ \tau_t = i - 1. If r_m and s_m are not the first pair matching with each other, the iterative-based method calls the length-aware verification method on r_r and s_t, r_r and s_t can pass the algorithm as ED(r_r, s_t) ≤ \tau_t. Otherwise, as stated in Section 5.3, we find the longest common suffix of r_r and s_t. If |x| = 1 we use the length-aware verification method to verify r_r and s_t. As ED(r_r, s_t) ≤ \tau_t, it can pass the ITERATIVE-VERIFICATION algorithm. If |x| > 1, we partition r_r to i segments as stated in Section 5.3. As ED(r_r, s_t) ≤ \tau_t = i - 1 and r_r contains i segments, based on Theorem 4.4 there must be a segment of r_r matching a substring of s_t. Next we prove there exists a substring in \(W_m(s_t, L_r^{-1}) \) matching the (i-1)-th segment of r_r. We can prove that neither the first i - 2 segments of r_r nor the i-th segment of r_r matches a substring of s_t.

We first prove the i-th segment c_x . . . c_y cannot match any substrings in \(W_m(s_t, L_r^{-i}) \). The start position of strings in \(W_m(s_t, L_r^{-1}) \) are in \([p'_r - (i - 1), p'_r + (i - 1)] \). As the position of c_x is \(|s_t| - 1\), we only need to prove the length of \(s_t[p'_r + |s_t| - |r|\ldots|s_t| - 1] \) is exactly \(c_x . . . c_y \). The length of \(c_x . . . c_y \) is \(|s_t| - 1\). On the other hand we have \(|c_y| = |c_x| = |s_t| - 1\) so \(|x| = |y| = |s_t| - 1\). Thus we need to prove \(|r| - p'_r = y' - x' + 1 \). On one hand we have \(x = x' = y' - x \). On the other hand we have the position of \(c_y \) is \(|s_t| - 1\) and \(p'_r \) is the position of \(c_x \), \(y - x = |r| - 1 - p'_r \). Thus \(|r| - p'_r = y' - x' + 1 \) and we have \(s_t[p'_r + |s_t| - |r|\ldots|s_t| - 1] = c_x . . . c_y \).

Thus the i-th segment of r_r cannot match any substring in \(W_m(s_t, L_r^{-i}) \).

Then we consider the first i - 2 segments of r_r which are exactly the first i - 2 segments of r. As r_m is the first segment of r which matches a substring of s, none of the substrings in \(W_m(s_t, L_r^{-1}) \) matching the first i - 2 segments of r. Next we prove that for any 1 ≤ j ≤ i - 2, \(W_m(s_t, L_r^{-j}) \) is the set of substrings of s with length l_j and with start position in

\[
[l_j, T_j] = \left[\max(L'_j, \bot_j^0), \min(T'_j, \top_j^0) \right] = \left[\max(p_j - (j - 1), p_j + \Delta - (\tau + 1 - j)), \min(p_j + (j - 1), p_j + \Delta + (\tau + 1 - j)) \right] = \left[p_j - (j - 1), p_j + (j - 1) \right] \cap \left[p_j + \Delta - (\tau + 1 - j), p_j + \Delta + (\tau + 1 - j) \right]
\]

\(W_m(s_t, L_r^{-j}) \) is the set of substrings of s with length l_j and with start position in

\[
[l_j', T_j'] = \left[\max(L'_j, \bot_j^0), \min(T'_j, \top_j^0) \right] = \left[\max(p_j - (j - 1), p_j + |s_t| - |r| - (\tau + 1 - j)), \min(p_j + (j - 1), p_j + |s_t| - |r| + (\tau + 1 - j)) \right] = \left[p_j - (j - 1), p_j + (j - 1) \right] \cap \left[p_j + |s_t| - |r| - (i - j), p_j + |s_t| - |r| + (i - j) \right].
\]

Thus we only need to prove that

\[
[p_j + \Delta - (\tau + 1 - j), p_j + \Delta + (\tau + 1 - j)] \supseteq [p_j + |s_t| - |r| - (i - j), p_j + |s_t| - |r| + (i - j)]
\]

We have an observation that \(|r| + 1 = r_m\) and \(|s_t| + 1\) equals to the start position of \(s_m \). Thus \(|s_t| - |r|\) is exactly the difference between the start position of \(s_m \) and \(r_m \). On
We first prove completeness of our method. That is given a similar pair \(s, r \), our algorithm must find it as an answer; and (2) correctness: A pair \(s, r \) found in our algorithm must be a similar pair.

Proof. We first prove completeness of our method. That is given a similar pair \(s, r \), our method must find it as an answer. Without loss of generality, suppose \(r \) is visited before \(s \). Based on Theorem 5.3, our multi-match-based method must find this pair as a candidate pair. Based on Theorem 5.3, the similar pair \(s, r \) can pass our extension-based verification, and thus it must be added as an answer. Thus our algorithm satisfies completeness.

Then we prove correctness of our method. That is a pair \(s, r \) found in our algorithm must be a similar pair. Based on Theorem 5.3, any pair \(s, r \) passed our extension-based verification must be a similar pair. Thus our algorithm satisfies correctness. \(\square \)