Top-k String Similarity Search with Edit-Distance Constraints

Dong Deng, Guoliang Li, Jianhua Feng
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China.

Abstract—String similarity search is a fundamental operation in many areas, such as data cleaning, information retrieval, and bioinformatics. In this paper we study the problem of top-k string similarity search with edit-distance constraints, which, given a collection of strings and a query string, returns the top-k strings with the smallest edit distances to the query string. Existing methods usually try different edit-distance thresholds and select an appropriate threshold to find top-k answers. However it is rather expensive to select an appropriate threshold. To address this problem, we propose a progressive framework by improving the traditional dynamic-programming algorithm to compute edit distance. We prune unnecessary entries in the dynamic-programming matrix and only compute those pivotal entries. We extend our techniques to support top-k similarity search. We develop a range-based method by grouping the pivotal entries to avoid duplicated computations. Experimental results show that our method achieves high performance, and significantly outperforms state-of-the-art approaches on real-world datasets.

I. INTRODUCTION

String similarity search takes as input a set of strings and a query string, and outputs all the strings in the set that are similar to the query string. It is an important operation and has many real applications such as data cleaning, information retrieval, and bioinformatics. For example, most search engines support query suggestions, which can be implemented using the similarity search operation. Consider a query log (“schwarzenegger,” “russell,”...) and a query “shwarseneger.” String similarity search returns “schwarzenegger” as a suggestion. It has attracted significant attention from the database community recently [14].

Existing similarity search methods [14] require users to specify a similarity function and a similarity threshold. They find those strings with similarities to the query string within the given threshold. However it is rather hard to give an appropriate threshold, as a small threshold will involve many dissimilar answers and a large threshold may lead to few results. To address this problem, in this paper we study the problem of top-k string similarity search, which, given a collection of strings and a query string, returns the top-k most similar strings to the query string.

There are many similarity functions to quantify the similarity of two strings, such as Jaccard similarity, Cosine similarity, and edit distance. In this paper, we focus on edit distance. The edit distance of two strings is the minimum number of single-character edit operations (i.e. insertion, deletion, and substitution) needed to transform one string to another. For example, the edit distance between “schwarzenegger” and “ahwarseneger” is 3. Edit distance can be used to capture typographical errors for text documents and evaluate similarities for homologous proteins or genes [21], and is widely adopted in many real-world applications.

We can extend existing threshold-based similarity search methods [14] to support our problem as follows. We increase the edit-distance threshold by 1 each time (initialized as 0). For each threshold, we use existing methods to find those strings with edit distances to the query string no larger than the threshold. If there are smaller than k similar strings, we check the next threshold; otherwise we compute top-k similar strings with this threshold. However this method is rather expensive because it executes multiple similarity search operations for different thresholds. To address this problem, we propose a progressive framework to efficiently find top-k answers.

A well-known method to compute the edit distance between two strings employs a dynamic-programming algorithm using a matrix (see Section 1.3). Notice that we do not need to compute all entries of the matrix. Instead we propose a progressive method which prunes unnecessary entries and only computes some entries. We extend this technique to support top-k similarity search (see Section 1.4). To further improve the performance, we propose pivotal entries and only need to compute the pivotal entries in the matrix (see Section 5). We develop a range-based method to group the pivotal entries to avoid duplicated computations (see Section 6). To summarize, we make the following contributions.

- We devise a progressive framework to address the problem of top-k string similarity search.
- We propose pivotal entries to find top-k answers, which can avoid many unnecessary computations by pruning large numbers of useless entries.
- We develop a range-based method to group the pivotal entries so as to avoid duplicated computations.
- We have implemented our techniques, and experimental results show that our method achieves high performance and significantly outperforms existing methods.

The rest of this paper is organized as follows. We formalize the top-k string similarity search problem and review related works in Section 1. A progressive framework is proposed in Section 1.3. We devise a pivotal-entry based method in Section 1.4. A range-based method is proposed in Section 5. Experimental results are provided in Section 7. We conclude the paper in Section 7.
II. PRELIMINARIES

A. Problem Formulation

Given a collection of strings and a query string, top-k string similarity search finds top-k strings with the highest similarities to the query string. In this paper we use edit distance to quantify the similarity of two strings. The edit distance of two strings is the minimum number of single-character edit operations (i.e., insertion, deletion, and substitution) needed to transform one string to another. Given two strings r and s, we use ED(r, s) to denote their edit distance. For example, ED (“serajit”, “srajit”) = 3. Next we formulate the problem of top-k string similarity search with edit-distance constraints.

Definition 1 (Top-k string similarity search): Given a string set S and a query string q, top-k string similarity search returns a string set R ⊆ S such that |R| = k and for any string r ∈ R and s ∈ S − R, ED(r, q) ≤ ED(s, q).

Example 1: Consider the string set in Table I and a query “srajit”. Top-3 string similarity search returns {“surajit”, “serajit”, “sarit”}. The edit distances of the three strings to the query are respectively 1, 2 and 2. The edit distances of other strings to the query are not smaller than 2.

<table>
<thead>
<tr>
<th>ID</th>
<th>s1</th>
<th>s2</th>
<th>s3</th>
<th>s4</th>
<th>s5</th>
<th>s6</th>
</tr>
</thead>
<tbody>
<tr>
<td>String</td>
<td>sarit</td>
<td>serajit</td>
<td>suijt</td>
<td>suit</td>
<td>surajit</td>
<td>thrifty</td>
</tr>
</tbody>
</table>

B. Related Works

Top-k String Similarity Search: Yang et al. [23] proposed a gram-based method to support top-k similarity search. It increased thresholds by 1 each time from 0 and tuned the gram length dynamically. However it needed to build redundant inverted indexes for different gram lengths and resulted in low efficiency. Zhang et al. [24] indexed signatures (e.g., grams) of strings using a B+-tree and utilized the B+-tree to compute top-k answers. It iteratively traversed the B+-tree nodes, computed a lower bound of edit distances between the query and strings under the node, and used the lower bound to update the threshold. However this method had to enumerate many strings to adjust the threshold. Kahveci et al. [11] transformed a set of contiguous substrings into a Minimum Bounding Rectangle (MBR) and used the MBR to estimate the edit-distance threshold of top-k answers. However the MBR-based estimation usually estimated a large threshold and thus this method resulted in low efficiency.

String Similarity Search with Thresholds: There are many studies on approximate string search [5], [14], [8], [24], which, given a set of strings, a query string, a similarity function, and a threshold, finds all strings with similarities to the query string within the threshold. Existing methods usually employed a gram-based method. They first generated q-grams of each string, and proved that two strings are similar only if their gram sets share enough common grams. They used inverted indexes to index the grams. Given a query string, they generated its grams, retrieved the corresponding inverted lists, and merged the inverted lists to find similar answers. We can extend these methods to support the top-k similarity search problem as follows. We increase the edit-distance threshold by 1 each time (initialized as 0). For each threshold, we find similar strings of the query using existing methods [14]. If the size of the similar string set is not smaller than k, we terminate and return k strings with the minimum edit distances. However these methods have to enumerate different edit-distance thresholds and involve many unnecessary computations.

Similarity Joins: There have been many studies on string similarity joins [7], [2], [3], [6], [18], [21], [22], [19], [21], [16]. Given two sets of strings, a similarity join finds all similar string pairs. Xiao et al. [22] studied top-k similarity joins by using a prefix filtering based technique. Their problem is different from ours and their prefix-filtering based method cannot be used in our problem.

Fuzzy Prefix Search: Ji et al. [10] utilized the trie structure to support fuzzy prefix search (type-ahead search). They specified a threshold and computed results based on the thresholds. Wang et al. [19] proposed a trie-based framework to support similarity joins. Although they used a trie structure to support approximate search, they focused on prefix search and their methods cannot support top-k similarity search.

Others: Navarro studied the approximate string matching problem [17], which, given a query string and a text string, finds all substrings of the text that are similar to the query. There are some studies on selectivity estimation [9], [12], [13] and approximate entity extraction [1], [4], [20], [15].

III. A PROGRESSIVE FRAMEWORK

We first propose a method to progressively compute edit distance (Section IIIA) and then develop a progressive framework to support top-k search (Section IIIB).

A. Progressively Computing Edit Distance

We first consider the problem of computing the edit distance between two strings. The traditional method uses a dynamic programming method. Given two strings r and s, it utilizes a matrix D with |r| + 1 rows and |s| + 1 columns to compute their edit distance. Let |s| denote s’s length, s[j] denote the j-th character of s, and s[i, j] denote s’s substring from the i-th character to the j-th character. D[i][j] is the edit distance between the prefix r[1, i] and the prefix s[1, j]. Obviously D[i][0] = i for each 0 ≤ i ≤ |r| and D[0][j] = j for each 0 ≤ j ≤ |s|. Then it iteratively computes D[i][j] for 1 ≤ i ≤ |r| and 1 ≤ j ≤ |s| as follows:

\[
D[i][j] = \min(D[i-1][j]+1, D[i][j-1]+1, D[i-1][j-1]+\delta),
\] (1)

where \(\delta = 0\) if \(r[i] = s[j]\); otherwise \(\delta = 1\). \(D[|r|][|s|]\) is exactly the edit distance between r and s. The time complexity is \(O(|r| \times |s|)\) and the space complexity is \(O(\min(|r|, |s|))\).

For example, Figure IIA shows the matrix D to compute the edit distance of \(r = “\text{serajit}”\) and \(s = “\text{srajit}”\).

A progressive method: We propose a progressive method to compute the edit distance, which only computes some entries
Compute edit distance of two strings

(a) Traditional method

(b) Progressive method

\[
\begin{array}{c|cccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
0 & & 1 & 2 & 3 & 4 & 5 & 6 \\
1 & & & & & & & \\
2 & & & & & & & \\
3 & & & & & & & \\
4 & & & & & & & \\
5 & & & & & & & \\
6 & & & & & & & \\
\end{array}
\]

\[
\begin{array}{c|cccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
0 & & 1 & 2 & 3 & 4 & 5 & 6 \\
1 & & & & & & & \\
2 & & & & & & & \\
3 & & & & & & & \\
4 & & & & & & & \\
5 & & & & & & & \\
6 & & & & & & & \\
\end{array}
\]

(2) Insertion: As we can insert \(r[i+1] \) after \(s[j] \), \(D[i+1][j] \leq D[i][j] + 1 \) if \(i + 1, j \not\in H \). Then \(D[i+1][j] = x + 1 \) if we add \(i+1, j \) into \(E_{x+1} \). Similarly, we use FINDMATCH\((i+1, j)\) to find entries whose values are \(x + 1 \).

(3) Deletion: As we can delete \(s[j+1] \) from \(s \), \(D[i][j+1] \leq D[i][j] + 1 \) if \((i, j+1) \not\in H \). Then \(D[i][j+1] = x + 1 \) if we add \(i, j+1 \) into \(E_{x+1} \). Similarly, we use FINDMATCH\((i, j+1)\) to find entries whose values are \(x + 1 \).

We can prove that our progressive method correctly computes \(E_x \) as formalized in Lemma 1.

Lemma 1: The entry set \(E_x \) computed by our method satisfies (1) completeness: if \(D[i][j] = x \) \((i, j) \in E_{x} \) must be in \(E_x \); and (2) correctness: if \((i, j) \in E_x \), \(D[i][j] = x \).

Example 3: Table \(T \) illustrates how to compute the edit distance between “seraji” and “sraji”. Firstly, we compute \(E_0 = \text{FINDMATCH}(−1, −1) = \{(0, 0), (1, 1)\} \). Then we compute \(E_1 \) based on \(E_0 \). Consider \((0, 0) \in E_0 \). We want to add \((1, 1)\) (substitution), \((1, 0)\) (insertion), and \((0, 1)\) (deletion), into \(E_1 \). As \(1, 1 \in H = E_0 \), we do not add it into \(E_1 \). For \((1, 1, 1) \in E_1 \), we want to add \((2, 2)\) (substitution), \((2, 1)\) (insertion), and \((1, 2)\) (deletion), into \(E_1 \). For \((2, 1) \in E_1 \), we use FINDMATCH operation to add \((2, 1)\), \((3, 2)\), \((4, 3)\), \((5, 4)\), \((6, 5)\) into \(E_1 \). Similarly we compute \(E_2 \). As \(6, 6 \in E_2 \), we return \(2 \) as the edit distance of the two strings.

Complexity: Given two strings \(r \) and \(s \), suppose their edit distance is \(\tau \). For any entry \((i, j) \in E_x \), we have \(|i - j| \leq ED(r[i], s[j]) \leq \tau \) for each \(i, j \leq \tau \). Thus \(E_x \subseteq \{(r[i], s[j]) \mid |i - j| \leq \tau \} \). Notice that we can share computations based on \(x \) at most \(\tau \times \min(|r|, |s|) \). The space complexity is \(O(\tau \times \min(|r|, |s|)) \). In addition, each entry in \(E_{x+1} \) is computed from at most three entries (left entry, top entry, top-left entry) in \(E_x \). Thus the time complexity is \(O(\sum_{x=0}^\tau |E_x|^3) \). As there are at most \((2\tau + 1) \times \min(|r|, |s|) \) entries in \(U_{x=0}^\tau E_x \), the time complexity is \(O(\tau \times \min(|r|, |s|)) \).

B. Progressive Similarity Search

We extend the progressive method to support top-\(k \) similarity search. Given a collection of strings, \(S \), and a query string \(q \), for each string \(s \in S \), we compute its entry set, denoted by \(E_x(s) \). Let \(E'_x \) denote the set of triples \((s, i, j) \) where \(s \in S \) and \((i, j) \in E_x(s) \).

For each triple \((s, i, j) \in E'_x \), if \(i = |s| \) and \(j = |q| \), the edit distance between \(s \) and \(q \) is \(x \) and we add it into the result set \(R \). If \(|R| \geq k \), we have found the top-\(k \) answers and terminate the iteration.

Next we discuss how to compute \(E_x \). For \(x = 0 \), we enumerate each string \(s \in S \) and use the FINDMATCH operation to generate the entry set for \(s \). For each entry \((i, j) \in E_0(s) \), we add triple \((i, j) \) into \(E'_0 \). For \(x + 1 \), we enumerate each triple \((s, i, j) \in E'_x \) and use the EXTENSION operation to compute \(E_{x+1}(s) \). For each pair \((i', j') \in E_{x+1}(s) \), we add \((s, i', j') \) into \(E'_{x+1} \).

However, this method is expensive as it needs to enumerate every string in \(S \). Notice that we can share computations on common prefixes of different strings. Consider two strings

We use a hash table to implement \(H \), and thus the complexity to check whether an entry is in \(H \) is \(O(1) \).
Based on the complexity analysis in Section III.A, if we can reduce the size of E_x in order to improve the performance of computing the edit distance between two strings (Section II.A) and then extend this technique to support similarity search (Section II.B).

A. Using Pivotal Entries to Compute Edit Distance

Based on the complexity analysis in Section III.A, if we can reduce the size of E_x, we can improve the performance. Here we discuss how to reduce the size of E_x. Consider an entry (i, j) in E_x. The goal of keeping (i, j) in E_x is to add $(i+1, j)$, $(i, j+1)$, and $(i+1, j+1)$ into E_{x+1}. If $(i+1, j+1)$ is also in E_x, we can remove (i, j) from E_x. The main reason is as follows. First, $(i+1, j+1)$ is already in E_x, thus it cannot be added into E_{x+1}. Second we prove that $(i+1, j)$ and $(i, j+1)$ are not needed to add into E_{x+1}. Consider $(i+1, j)$.
TABLE III
AN EXAMPLE FOR TOP-3 SIMILARITY SEARCH "arajit" ON \mathcal{S} USING THE PROGRESSIVE SEARCH FRAMEWORK

(a) $T_0 = \{(n_0, 0), \langle n_0, 0 \rangle, \langle n_1, 1 \rangle\}$
(b) Computing T_1 based on T_0

<table>
<thead>
<tr>
<th>T_0</th>
<th>Substitution</th>
<th>Insertion</th>
<th>Deletion</th>
<th>Substitution</th>
<th>Insertion</th>
<th>Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$(n_21, 1)$</td>
<td>$(n_0, 0)$</td>
<td>$(n_0, 1)$</td>
<td>$(n_2, 4)$</td>
<td>$(n_1, 1)$</td>
<td>$(n_1, 2)$</td>
</tr>
<tr>
<td></td>
<td>$(n_0, 1)$</td>
<td>$(n_21, 0)$</td>
<td></td>
<td>$(n_0, 2)$</td>
<td>$(n_0, 1)$</td>
<td>$(n_1, 1)$</td>
</tr>
<tr>
<td></td>
<td>$(n_2, 4)$</td>
<td>$(n_6, 2)$</td>
<td>$(n_6, 2)$</td>
<td>$(n_3, 2)$</td>
<td>$(n_1, 1)$</td>
<td>$(n_0, 5)$</td>
</tr>
<tr>
<td></td>
<td>$(n_3, 2)$</td>
<td>$(n_7, 2)$</td>
<td>$(n_8, 3)$</td>
<td>$(n_0, 4)$</td>
<td>$(n_10, 5)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(n_10, 5)$</td>
<td>$(n_13, 4)$</td>
<td>$(n_10, 5)$</td>
<td>$(n_9, 3)$</td>
<td>$(n_0, 4)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(n_9, 4)$</td>
<td>$(n_10, 5)$</td>
<td>$(n_17, 3)$</td>
<td>$(n_13, 4)$</td>
<td>$(n_0, 3)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(n_13, 4)$</td>
<td>$(n_13, 4)$</td>
<td>$(n_13, 4)$</td>
<td>$(n_12, 2)$</td>
<td>$(n_13, 4)$</td>
<td>$(n_10, 5)$</td>
</tr>
<tr>
<td></td>
<td>$(n_12, 2)$</td>
<td>$(n_12, 2)$</td>
<td>$(n_12, 2)$</td>
<td>$(n_11, 1)$</td>
<td>$(n_20, 6)$</td>
<td>$(n_2, 3)$</td>
</tr>
<tr>
<td></td>
<td>$(n_11, 1)$</td>
<td>$(n_11, 1)$</td>
<td>$(n_11, 1)$</td>
<td>$(n_20, 6)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(c) Computing T_2 based on T_1

<table>
<thead>
<tr>
<th>T_1</th>
<th>Substitution</th>
<th>Insertion</th>
<th>Deletion</th>
<th>Substitution</th>
<th>Insertion</th>
<th>Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$(n_22, 2)$</td>
<td>$(n_0, 1)$</td>
<td>$(n_0, 1)$</td>
<td>$(n_2, 4)$</td>
<td>$(n_0, 1)$</td>
<td>$(n_0, 1)$</td>
</tr>
<tr>
<td></td>
<td>$(n_0, 1)$</td>
<td>$(n_22, 0)$</td>
<td></td>
<td>$(n_0, 2)$</td>
<td>$(n_0, 1)$</td>
<td>$(n_0, 1)$</td>
</tr>
<tr>
<td></td>
<td>$(n_2, 4)$</td>
<td>$(n_22, 0)$</td>
<td>$(n_22, 0)$</td>
<td>$(n_3, 3)$</td>
<td>$(n_0, 1)$</td>
<td>$(n_1, 1)$</td>
</tr>
<tr>
<td></td>
<td>$(n_3, 3)$</td>
<td>$(n_7, 3)$</td>
<td>$(n_7, 3)$</td>
<td>$(n_12, 2)$</td>
<td>$(n_0, 1)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(n_12, 2)$</td>
<td>$(n_12, 2)$</td>
<td>$(n_12, 2)$</td>
<td>$(n_11, 1)$</td>
<td>$(n_0, 1)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(n_11, 1)$</td>
<td>$(n_11, 1)$</td>
<td>$(n_11, 1)$</td>
<td>$(n_12, 2)$</td>
<td>$(n_0, 1)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(n_12, 2)$</td>
<td>$(n_12, 2)$</td>
<td>$(n_12, 2)$</td>
<td>$(n_11, 1)$</td>
<td>$(n_0, 1)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(n_11, 1)$</td>
<td>$(n_11, 1)$</td>
<td>$(n_11, 1)$</td>
<td>$(n_12, 2)$</td>
<td>$(n_0, 1)$</td>
<td></td>
</tr>
</tbody>
</table>

D$[i+1][j] < x+1$, it will not be in E_{x+1}. If $D[i+1][j] = x+1$, we have $D[i+2][j+1] = x+1$ as stated in Lemma 3. As $D[i+1][j] = D[i+2][j+1]$, we keep $D[i+2][j+1]$ and do not keep $i+1,j$ in E_{x+1} (Here we only show the idea and the details will be discussed later). Similarly, we do not need to add $i+1,j$ into E_{x+1}.

Lemma 3: Consider $D[i][j] = D[i+1][j+1] = x$. If $D[i+1][j] = x+1$, we have $D[i+2][j+1] = x+1$. If $D[i][j] = x+1$, we have $D[i+1][j+1] = x+1$.

Iteratively, if $i+j, i+j+1, \ldots, i+j+\Delta+j$ are in E_x and $i+j+\Delta+j+\Delta$ are not in E_x, we only keep the last one $(i+j+\Delta+j)$ in E_x. Next we formalize our idea. For ease of presentation, we first extend $D[i][j]$ in Equation 11 to support $i > |r|$ or $j > |s|$ as follows.

If $i > |r|$ or $j > |s|$, $D[i][j] = \min(D[i][j]+1, D[i-1][j]+1, D[i-1][j-1]+1)$.

If $i \leq |r|$ and $j \leq |s|$, $D[i][j] = \min(D[i][j]+1, D[i-1][j]+1, D[i-1][j-1]+1)$, where $s = |s|$; otherwise $s = 1$. If $D[i][j] = D[i+j]$, we call (i,j) is dominated by $(i+j,\Delta+j)$.

Then we introduce a concept called pivotal entry.

Definition 2 (Pivotal Entry): An entry (i,j) in E_x is called a pivotal entry, if $D[i+1][j+1] \neq D[i][j]$.

Obviously $(|r|,|s|)$ is a pivotal entry. Let E'_r denote the set of pivotal entries in E_r. If $(|r|,|s|) \in E'_r$, we compute the edit distance of r and s, and iteratively compute E'_r from $x = 0$. If $(|r|,|s|) \in E'_r$, we return x as their edit distance. For example, in Figure 3, $(0,0)$ is not a pivotal entry as $D[1][1] = D[0][0]$. $(1,1)$ is a pivotal entry and $E'_0 = \{(1,1)\}$. Although $(2,1), (3,2), (4,3), (5,4)$ are in E_1, they are not pivotal entries, as they are dominated by $(6,5)$. We have $E'_1 = \{(1,2), (2,2), (6,5)\} \text{ and } E'_2 = \{(1,3), (2,3), (6,6)\}$.

Algorithm to Compute E'_r: To compute E'_r, we first extend the FINDMATCH operation and propose a new operation FINDPIVOTAL, which finds the maximal value m such that $r[i] = s[i]$ for $i \in [1,m]$. Next we discuss how to compute E'_r based on E'_r. We first prove that there are at most $2r+1$ pivotal entries in E'_r. First, for any entry (i,j), if $|i-j| > x$, we have $D[i][j] > x$ (As the edit distance between $r[i] = s[i]$ is not smaller than their length difference, etc., $D[i][j] \geq |i-j|$). Thus for any entry (i,j) in E_r, we have $x \leq i-j \leq x$. Second, let $E'_r[y]$ denote the set of entries whose i-value minus j-value is y, i.e., $y = i-j$. For any $y \in [-x,x]$, there is at most one pivotal entry in $E'_r[y]$. We can prove it by contradiction. Suppose there are two entries (i,j) and (i',j') in $E'_r[y]$. Without loss of generality, suppose $i' > i$. As $D[i][j] = D[i'][j'] = x$, we can prove that for $0 \leq \Delta \leq j' - i$, $D[i+j][j+\Delta] = x$, as formalized in Lemma 4. Thus (i,j) is not a pivotal entry, which contradicts with the assumption.

Lemma 4: Given any two entries (i,j) and (i',j') in $E'_r[y]$ ($i < i'$, $\forall \Delta \in [0, i'-i]$), $D[i+j][j+\Delta] = x$.

Based on Lemma 4, we prove that $E'_r[y]$ has at most one pivotal entry and E'_r has at most $2x+1$ pivotal entries as formalized in Lemma 5.
Based on Lemma 5, we only keep 2r + 1 entries in E_r^p. For each entry $E_r^p[y]$, it may be computed from three entries, and we only need to keep the entry with the maximal i-value. Using this property, next we propose an extension operation called PIVOTALEXTENSION to compute E_{r+1}^p based on E_r^p. For any entry $(i, j) = E_r^p[i−j] ∈ E_r^p$, PIVOTALEXTENSION applies the following operations.

(1) Substitution: We can substitute $r[i + 1]$ for $s[j + 1]$, and $(i + 1, j + 1)$ may be a pivotal entry. As $D[i + 2][j + 2]$ may be equal to $D[i + 1][j + 1]$, we use the FINDPIVOTAL operation to find entry $(i′, j′) = $FINDPIVOTAL$(i + 1, j + 1)$. If there is no entry in $E_{r+1}^p[i−j]$, we add $(i′, j′)$ into $E_{r+1}^p[i−j]$; otherwise suppose $(i′′, j′′)$ has been added into $E_{r+1}^p[i−j]$. If $i′ > i′′$, we use $(i′, j′)$ to update $(i′′, j′′)$ and $E_{r+1}^p[i−j] = (i′, j′)$.

(2) Insertion: We can insert $r[i + 1]$ after $s[j]$, and $(i + 1, j)$ may be a pivotal entry. As $D[i + 2][j + 2]$ may be equal to $D[i + 1][j + 2]$, we use the FINDPIVOTAL operation to find the entry $(i′, j′) = $FINDPIVOTAL$(i + 1, j)$. If there is no entry in $E_{r+1}^p[i−j+1]$, we add $(i′, j′)$ into $E_{r+1}^p[i−j+1]$; otherwise suppose $(i′′, j′′)$ has been added into $E_{r+1}^p[i−j+1]$. If $i′ > i′′$, we use $(i′, j′)$ to update $(i′′, j′′)$ and $E_{r+1}^p[i−j+1] = (i′, j′)$.

(3) Deletion: We can delete $s[j + 1]$ from s, and $(i, j + 1)$ may be a pivotal entry. As $D[i + 2][j + 2]$ may be equal to $D[i + 1][j + 1]$, we use the FINDPIVOTAL operation to find the entry $(i′, j′) = $FINDPIVOTAL$(i + 1, j)$. If there is no entry in $E_{r+1}^p[i−(j−1)]$, we add $(i′, j′)$ into $E_{r+1}^p[i−(j+1)]$; otherwise suppose $(i′′, j′′)$ has been added into $E_{r+1}^p[i−(j+1)]$. If $i′ > i′′$, we use $(i′, j′)$ to update $(i′′, j′′)$ and $E_{r+1}^p[i−(j+1)] = (i′, j′)$.

Iteratively, we can compute E_{r+1}^p. Lemma 6 proves that our method can correctly compute the pivot set.

Lemma 6: E_r^p computed by our method satisfies (1) completeness: if (i, j) is a pivotal entry, $(i, j) ∈ E_r^p$; and (2) correctness: if $(i, j) ∈ E_r^p$, (i, j) must be a pivotal entry.

Example 5: Table 4 illustrates how to use pivotal entries to compute the edit distance of “srajit” and “serajit”. First, $E_0^p = $FINDPIVOTAL$((-1, -1)) = \{ (1, 1) \}$. Then we compute E_1^p based on E_0^p. Consider $(1, 1) ∈ E_0^p$. We add $E_1^p[0] = (2, 2)$ (substitution), $E_1^p[1] = (2, 1)$ (insertion) and $E_1^p[−1] = (1, 2)$ (deletion) into E_1^p. For $(2, 1) ∈ E_0^p$, we use FINDPIVOTAL operation to find pivotal entries and set $E_1^p[1] = (6, 5)$. For $(2, 2) ∈ E_0^p$, we set $E_1^p[0] = (2, 2)$. For $(1, 2) ∈ E_0^p$, we set $E_1^p[−1] = (1, 2)$. Then we apply PIVOTALEXTENSION operation on E_1^p. We add $E_2^p[0] = (6, 6)$ into E_1^p instead of $(2, 2)$ and $(3, 3)$ which are not pivotal entries. Finally, as $(6, 6) ∈ E_2^p$, we return 2 as the edit distance.

Complexity: As $|E_r^p| ≤ 2r + 1$ and each row (column) has at most $|r| (|s|)$ entries, the space complexity is $O(\min(\tau, |r|, |s|))$. The worst-case time complexity is still $O(\tau \times \min(|r|, |s|))$. Since we can prune many useless entries, this method can improve the performance.

B. Using Pivotal Triples to Support Similarity Search

The definition of pivotal entries depends on the two given strings. Consider a trie node n, a query string q, and an integer j. Suppose n_c and n_c' are two children of n. If $ED(n_c, q[1+j]) ≠ ED(n_c', q[1+j])$, (n, j) is a pivotal entry for strings under node n_c. If $ED(n_c, q[1+j]) = ED(n_c', q[1+j])$, (n, j) is not a pivotal entry for strings under node n_c. Thus pivotal entries cannot apply to support multiple strings. To address this issue, we introduce a new concept.

Definition 3 (Pivotal Triple): Given an entry (n, j), one of n’s children n_c, and a query q, triple (n, j, n_c) is called a pivotal triple, if $ED(n_c, q[1+j]) ≠ ED(n, q[1+j])$.

The pivotal triple (n, j, n_c) means that for all strings under node n_c, (n, j) is a pivotal entry. Let T_p^p denote the pivotal triple set of pivotal triples (n, j, n_c) such that $ED(n, q[1+j]) = x$. We use $T_p^p[y]$ to denote the subset of pivotal triples in T_p^p with $y = |n| − j$. For example, consider the trie in Figure 4 and query “srajit”. Consider node n_0 and its child n_1 (“a”) and child n_21 (“c”). Let $D[n_1][j] = ED(n_0, q[1+j])$. As $D[n_0][0] \neq D[n_21][1]$, $(n_0, 0, n_21)$ is not a pivotal triple. As $D[n_0][0] = D[n_1][1]$, $(n_0, 0, n_1)$ is a pivotal triple. Similarly $(n_1, 1, n_2)$, $(n_1, 1, n_6)$, $(n_1, 1, n_{11})$ are pivotal triples. Thus $T_p^p = \{(n_0, 0, n_21), (n_1, 1, n_2), (n_1, 1, n_6), (n_1, 1, n_{11})\}$

We still iteratively compute T_p^p from $x = 0$. For each triple (n, j, n_c) in T_p^p, if n is a leaf node and $j = |q|$, the string corresponding to n is an answer and we add it into the result set R. If there are k answers in R, we terminate the iteration. Iteratively, we can compute the top-k answers efficiently. Next we discuss how to compute T_p^p.

Algorithm to Compute T_p^p: For $x = 0$, from the root r, for each of its children, n_c, we find pivotal triples as follows. Suppose n_c is the child of $n = r$ with label $q[1]$ and let $n−n_c$ denote the set of other children of n except n_c. For each node $n_s ∈ n−n_c$, as $ED(n_s, q[0]) ≠ ED(n_s, q[1])$ $(q[0]) = \epsilon$, $(n, 0, n_s)$ is a pivotal triple and added into $T_p^p[0]$ (the entry $(n, 0)$ is a pivotal entry for all strings under node n_s). For node n_c, as $ED(n, q[0]) = ED(n, q[1])$, entry $(n, 0)$ is not a pivotal entry for strings under node n_c. Next for each child...
of node n_c, we repeat the above step to find pivotal triples under node n_c. Iteratively we can compute T^p_0. This is an iterative method and next we introduce an operation called FINDTRIPLE to directly compute the pivotal entries by calling FINDTRIPLE($n = r, 0, n_c, q$) for every child n_c of r.

FINDTRIPLE(n, j, n_c, q) is extended from the FINDPIVOTAL operation (Figure 4(a)). Let $n_l = n_c$ and n_m denote the last matching node, that is the label of n_m is $q[j + m]$ and none of its children has a label of $q[j + m + 1]$. FINDPIVOTAL adds the following possible pivotal triples (we will use UPDATETRIPLE to remove the non-pivotal triples later).

Algorithm 1 shows the pseudo-code of FINDTRIPLE.

1. For each node n_l ($1 \leq i \leq m-1$), its child n_{i+1} matches $q[j + i]$. Thus $ED(n_l, q[1, j+i]) = ED(n_{i+1}, q[1, j+i + 1])$ and $(n_l, j+i, n_{i+1})$ is not a pivotal triple. For $n_s \in n_l\rightarrow n_{i+1}$, n_s does not match $q[j + i + 1]$ and $(n_s, j+i, n_{i+1})$ is a possible pivotal triple. Thus FINDTRIPLE adds $(n_s, j+i, n_{i+1})$.

2. For each n_m and each of its child n_s, n_s does not match $q[j + m + 1]$ and $(n_s, j+m, n_m)$ is a possible pivotal triple. Thus FINDTRIPLE adds $(n_s, j+m, n_m)$.

For example, consider the query “srajit” and the trie structure in Figure 4. For the root, as its child n_{24} does not match $q[1]$, $(n_0, 0)$ is a pivotal entry for node n_{24}. Thus $(n_0, 0, n_{24})$ is a pivotal triple. As the child n_1 matches $q[1]$, $(n_0, 0)$ is not a pivotal entry for node n_1. Thus $(n_0, 0, n_1)$ is not a pivotal triple. Next for n_1, all of its children do not match $q[2]$, $(n_1, 1)$ is a pivotal entry for nodes n_2, n_3, n_4. Thus $(n_1, 1, 2), (n_1, 1, 3), (n_1, 1, 4)$ are pivotal triples.

Next we discuss how to compute T^p_{x+1} based on T^p_x. We propose a new extension operation TRIEXTENSION. For each pivotal triple (n, j, n_c) in $T^p_y = |n | - j]$, TRIEXTENSION applies the following operations.

(1) Substitution: For the child n_c of node n, we can substitute the character of n_c for $q[j + 1]$. Thus for each child n_d of n_c, $(n_c, j + 1, n_d)$ may be a pivotal entry for strings under node n_c and we want to add triple $(n_c, j + 1, n_d)$ into $T^p_x[y = |n_c | - (j + 1)]$. As $(n_c, j+1, n_d)$ may affect (or be affected by) other triples in $T^p_x[y]$. We use function UPDATETRIPLE ($(n_c, j+1, n_d)$) to update pivotal triples.

UPDATETRIPLE (Figure 4(b)): We use function FINDTRIPLE ($n_c, j + 1, n_d, q$) to find possible pivotal triples in $T^p_{x+1}[y]$, denoted by $T^p_{x+1}[y]$. For each triple (n'_c, j', n'_d) in $T^p_{x+1}[y]$, let U denote the set of triples (n''_c, j'', n''_d) in $T^p_{x+1}[y]$ such that $|n''_c | - j'' = y$ and n''_c is a descendant or an ancestor of n'_c. If $U = \phi$, (n'_c, j', n'_d) does not affect (and is not affected by) other triples, and we add (n'_c, j', n'_d) into $T^p_{x+1}[y]$; otherwise for each triple (n''_c, j'', n''_d), we check whether it affects (or is affected by) (n'_c, j', n'_d) and update T^p_{x+1} as follows.

(i) If $j'' > j'$, n''_d must be a descendant of n'_d. For strings under node n''_d, (n''_c, j'', n''_d) is a pivotal entry, and we still keep triple (n''_c, j'', n''_d). Let n_1, n_2, \ldots, n_m denote the nodes on the path from $n_1 = n'$ to $n_m = n''$. We have $ED(n_1, q[1, j']) = ED(n_2, q[1, j' + 1]) = \ldots = ED(n_m, q[1, j'']) = x + 1$. Thus (n''_c, j'', n''_d) is not a pivotal triple and we need to add the following triples into $T^p_{x+1}[y]$: $(n'_i, j' + i + 1, n_s)$ for
TABLE V
AN EXAMPLE FOR TOP-3 SIMILARITY SEARCH “srajit” ON S USING THE PIVOTAL-BASED SEARCH FRAMEWORK

(a) \(T_0^p = \{(n_0, 0, n_22), (n_1, 1, n_2), (n_1, 1, n_9), (n_1, 1, n_11)\} \)

(b) Computing \(T_1^p \) based on \(T_0^p \)

<table>
<thead>
<tr>
<th>(T_1^p)</th>
<th>(T_1^p[0])</th>
<th>(T_1^p[1])</th>
<th>(T_1^p[2])</th>
<th>(T_1^p[3])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substitution</td>
<td>((n_0, 0, n_22))</td>
<td>((n_2, 2, n_3))</td>
<td>((n_1, 1, n_2))</td>
<td>((n_1, 1, n_9))</td>
</tr>
<tr>
<td>Deletion</td>
<td>((n_0, 0, n_22))</td>
<td>((n_2, 2, n_3))</td>
<td>((n_1, 1, n_2))</td>
<td>((n_1, 1, n_9))</td>
</tr>
</tbody>
</table>

(c) Computing \(T_2^p \) based on \(T_1^p \)

<table>
<thead>
<tr>
<th>(T_2^p)</th>
<th>(T_2^p[0])</th>
<th>(T_2^p[1])</th>
<th>(T_2^p[2])</th>
<th>(T_2^p[3])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substitution</td>
<td>((n_0, 0, n_22))</td>
<td>((n_2, 2, n_3))</td>
<td>((n_1, 1, n_2))</td>
<td>((n_1, 1, n_9))</td>
</tr>
<tr>
<td>Insertion</td>
<td>((n_0, 0, n_22))</td>
<td>((n_2, 2, n_3))</td>
<td>((n_1, 1, n_2))</td>
<td>((n_1, 1, n_9))</td>
</tr>
<tr>
<td>Deletion</td>
<td>((n_0, 0, n_22))</td>
<td>((n_2, 2, n_3))</td>
<td>((n_1, 1, n_2))</td>
<td>((n_1, 1, n_9))</td>
</tr>
</tbody>
</table>

\(i \in [1, m - 1] \) and \(n_s \in n_{i-1} - n_{i+1} \) (\(n_i \)'s children except \(n_{i+1} \)).

(ii) If \(j^m \leq j' \), \(n''_s \) must be an ancestor of \(n'_s \). Let \(n_{1, n_2}, \ldots, n_m \) denote the nodes on the path from \(n = n''_m \) to \(n_m = n' \). We have \(\text{ED}(n_1, q[1, j']') = \text{ED}(n_2, q[1, j' + 1]) = \ldots = \text{ED}(n_m, q[1, j']) = x + 1. \) Thus \(\langle n''_s, j', n''_s \rangle \) is not a pivotal triple. As for strings under node \(n'_s \), \(\langle n', j', n'_s \rangle \) is a pivotal entry, we replace triple \(\langle n''_s, j', n''_s \rangle \) with \(\langle n', j', n'_s \rangle \). We also add the following triples into \(T_{x + 1}^p[0]: \langle n_1, j', j + 1, n_s \rangle \) for \(i \in [1, m - 1] \) and \(n_s \in n_{i-1} - n_{i+1} \) (\(n_i \)'s children except \(n_{i+1} \)).

(2) Insertion: For the child \(n_c \) of node \(n \), we can insert character of \(n_c \) after \(q[j] \). Thus for each child \(n_q \) of \(n_c \), \(\langle n_q, j, n_c \rangle \) may be a pivotal entry for strings under node \(n_d \). We call function \(\text{UpdateTriple} \) \((n_c, j, n_q)\) to add triples.

(3) Deletion: We can delete \(q[j + 1] \) from \(q \). Thus \(\langle n, j + 1 \rangle \) may be a pivotal entry for strings under node \(n \). We call function \(\text{UpdateTriple} \) \((n_c, j + 1, n_c)\) to add triples.

Iteratively we can compute the pivotal triple set and Algorithm \(\text{II} \) shows the pseudo-code. The correctness of the algorithm is formalized in Lemma \(\text{II} \).

Lemma 7: \(T_x^p \) computed by our method satisfies (1) completeness: If \(\langle n, j, n_c \rangle \) is a pivotal triple, it is in \(T_x^p \); and (2) correctness: If \(\langle n, j, n_c \rangle \) is in \(T_x^p \), it is a pivotal triple.

Example 6: Consider the trie in Figure \(\text{III} \). Table \(\text{III} \) shows the example to find top-3 answers of query “srajit”. For \(\langle n_1, 1, n_2 \rangle \) in \(T_0^p \), we do substitution and add \(\langle n_2, 2, n_3 \rangle \). For insertion, \(\langle n_2, 1, n_3 \rangle \) is not a pivotal entry as \(n_3 \) matches \(q[2] \). Thus we call \(\text{FindPivotable} \) operation and add \(\langle n_2, 2, n_3 \rangle \). For deletion, we also extend \(\langle n_2, 1, n_3 \rangle \) to \(\langle n_2, 3, n_3 \rangle \). Similarly we compute all pivotal triples in Table \(\text{III} \).

Complexity: Let \(|\mathcal{B}| \) denote the number of trie nodes at the \((|q| + \tau)\)-th level. As we only keep \(T_x^p \) to compute \(T_{x+1}^p \), the space complexity is \(O(\tau|\mathcal{B}|) \). As the update operation (e.g., using a hash table) takes \(O(1) \) time, the worst-case time complexity is \(O(\tau \times |\mathcal{T}|) \). As the method prunes many useless trie nodes, it improves the performance (Section \(\text{IVD} \)).

V. A RANGE-BASED METHOD

As there may be multiple triples with the same entry \(\langle n, j \rangle \), we want to group them to improve the performance. Consider an entry \(\langle n, j \rangle \) in \(\mathcal{E}_p \). Node \(n \) may have multiple children such that \(\langle n, j, n_c \rangle \) is a pivotal triple. It is expensive to keep all such triples. For example, \(\langle n_1, 1 \rangle \) is a pivotal entry for nodes \(n_2, n_6, n_11 \), and we need to keep three triples \(\langle n_1, 1, n_2 \rangle, \langle n_1, 1, n_6 \rangle, \langle n_1, 1, n_11 \rangle \). In addition, it is expensive to enumerate the nodes in \(n - n_c \) (the set of children of \(n \) except \(n_c \)). To address this issue, we propose a range-based method by grouping trie nodes.

We encode the trie structure as follows. For each leaf node, we assign an ID in a pre-order, which is also the ID of its corresponding string. For each internal node \(n \), we maintain an ID range \(\ll b_i, u_i \gg \), where \(b_i \) (\(u_i \)) is the minimum (maximum) ID of strings under the node. In Figure \(\text{IV} \), the ID range of node \(n_1 \) is \(\ll 1, 5 \gg \) which denotes all strings with a prefix of \(n_1 \) (\("s" \)) have IDs in \([1, 5] \) and all IDs in \([1, 5] \) have a prefix “s”.

The basic idea of the range-based method is as follows. Consider node \(n \) and its child node \(n_c \) with label \(q[j+1] \). The previous method needs to enumerate all \(n_c \)'s siblings in \(n - n_c \). Instead the range-based method is to use a range \([l, u] \) to denote the nodes in \(n - n_c \) and use an integer \(d \) to denote \(n \). Suppose the range of node \(n(n_c) \) is \(R_n = [l_n, u_n] \). As \(R_n \subseteq R_{n_c} \), we use \(R_n = R_{n_c} \cap [l_{n_c} + 1, u_n] \) to denote the nodes in \(n - n_c \). To this end, we propose a concept, called pivotal quadruple.

Definition 4 (Pivotal Quadruple): A quadruple \(\langle [l, u], d, j \rangle \) is a pivotal quadruple if it satisfies (1) \(\langle l, u \rangle \) is a sub-range of a \(d \)-th level node's range; (2) for any string \(s \) with ID in \([l, u] \), \(\text{ED}(s[l, d + 1], q[1, j + 1]) \neq \text{ED}(s[l, d], q[1, j]) \); (3) strings with ID \(l - 1 \) or \(u + 1 \) do not satisfy conditions (1) or (2).

The quadruple \(\langle [l, u], d, j \rangle \) means that for each string \(s \) in range \([l, u] \), \(\langle d, j \rangle \) is a pivotal entry for \(s \) and \(q \). Let \(T_x \)

*The quadruple should be \(\langle l, u, d, j \rangle \). For clarity, we use \(\langle l, u, d, j \rangle \).
denote the set of pivotal quadruples \(\{l, u, d, j\}\) such that
\(E_{\text{D}}(s[1, d], q[1, j]) = x\) where \(s\) is a string with ID in \([l, u]\). We use \(T^+\) to denote the subset of \(T^+\) with \(y = d - j\).

For example, consider the trie in Figure 6 and query “raajit”. For any string \(s\) in \([1,5]\), \(D[1][1] \neq D[2][2]\), \(\langle 1, 5, 1, 1 \rangle\) is a pivotal quadruple. As \(D[0][0] = D[1][1]\), \(\langle 1, 5, 0, 0 \rangle\) is not a pivotal quadruple. Similarly \(\langle 6, 6, 0, 0 \rangle\) is also a pivotal quadruple. Thus \(T_0^+ = \{\langle 1, 5, 1, 1 \rangle, \langle 6, 6, 0, 0 \rangle\}\). We will now iteratively compute \(T_x\) from \(x = 0\). If we find \(k\) results from \(T_x\), our algorithm terminates.

Algorithm to Compute \(T^+\): For \(x = 0\), from the root \(r\), for each of its children, \(n_c\), we find pivotal quadruples as follows. Suppose \(n_c\) is the child of \(n = r\) with label \(l[1]\). For any string \(s\) with ID in \([l_n, u_n]\) \(- \{l_n, u_n\}\), \(E_{\text{D}}(s[0], q[0]) \neq E_{\text{D}}(s[1], q[1])\). Thus \(\langle l_n, u_n - 1, 0, 0 \rangle\) and \(\langle l_n, u_n + 1, 0, 0 \rangle\) are pivotal quadruples and added into \(T_0\). Next for node \(n_c\), we repeat the above step to find pivotal quadruples under node \(n_c\). Iteratively we can compute \(T_x\). This is an iterative method and we introduce a function \(\text{FINDQUADRUPLE}(n, j, q)\) to directly compute the pivotal entries (using parameters \((r, 0, q)\)).

\(\text{FINDQUADRUPLE}\) extends \(\text{FINDTRIPLE}\) by grouping nodes (Figure 6a). Algorithm 7 shows the pseudo-code. It first finds the matching nodes \(n_1, n_2, \ldots, n_m\), where \(n_m\) is the last matching node. For each node \(n_i\) for \(1 \leq i \leq m - 1\), its child \(n_{i+1}\) matches the query character \(q[j + i]\). Instead of enumerating each node in \(n_i - n_{i+1}\), we group the siblings of \(n_{i+1}\) into two groups based on \(n_{i+1}\): \([n_{i+1}, n_{i+1} - 1]\) and \([n_{i+1} + 1, u_{n_{i+1}}]\). \(\text{FINDQUADRUPLE}\) adds \(\langle l_i, n_i - 1, 0, 0 \rangle, \langle l_i, j + i \rangle\) and \(\langle u_{n_{i+1}} + 1, u_n, \rangle, \langle n_{i+1}, j + i \rangle\). Similarly for \(n_m\), \(\text{FINDQUADRUPLE}\) adds \(\langle l_m, n_m - 1, 0, 0 \rangle, \langle l_m, j + m \rangle\) and \(\langle u_{n_{i+1}} + 1, u_n, \rangle, \langle n_{i+1}, j + m \rangle\).

Next we discuss how to compute \(T_{x+1}\) based on \(T_x\). We propose a new operation \(\text{QUADRUPLEEXTENSION}\) to support quadruple extensions. For each pivotal quadruple \(\langle l, u, d, j\rangle\) in \(T^+\) with \(y = d - j\), it applies the following extensions.

1. **Substitution:** For any strings with ID in \([l, u]\), we can substitute the \((d+1)\)-th character of these strings with \(q[j+1]\). Thus \(\langle d+1, j + 1 \rangle\) may be a pivotal entry for strings in \([l, u]\), \(\langle l, d+1, j + 1 \rangle\) is a potential pivotal quadruple and we want to add it into \(T_{x+1}\). However, there may be some strings with the \((d+2)\)-th character matching \(q[j+2]\). For such strings, \(d+1, j + 1\) is not a pivotal entry and \((d+2, j + 2)\) may be a pivotal entry. To address this issue, we propose a function \(\text{UPDATEQUADRUPLE}(\langle l, u, d+1, j + 1 \rangle)\) to find quadruples.

2. **Insertion:** For any strings with ID in range \([l, u]\), we can insert the \((d+1)\)-th character after \(q[j]\). Thus \(d+1, j\)
Algorithm 2: TopKRangeSearch(S, q, k)

Input: S: A string set; q: A query; k: No of answers;
Output: R: A set of top-k answers for S and q;
1 $x = 0$;
2 $T_x = \text{FindQuadruple}(r, 0, q)$;
3 if $|R| \geq k$ then return R;
4 while true do
5 $T_{x+1} = \text{QuadrupleExtension}(T_x, x)$;
6 if $|R| \geq k$ then return R;
7 $++ x$;

Function FindQuadruple (n, j, q)

Input: n: A node; j: An integer; q: A query;
Output: T^*: A set of matching ranges;
1 $n_1 = n$ and n_m is the last matching node ;
2 for $i \in \{n_1, n_2, \ldots, n_{m-1}\}$ do
3 $T^* \leftarrow \{(n_i, b_{n,i+1} - 1), |n_i|, j + i - 1\}$;
4 $T^* \leftarrow \{(n_{i+1} + 1, u_{n_i}], |n_i|, j + i - 1\}$;
5 if n_m is a leaf and $|q| = j + m$ then $R \leftarrow n_m$;
6 $T^* \leftarrow \{(n_{m-1}, u_{n_m}], |n_m|, j + m\}$;
7 return T^*;

Function QuadrupleExtension (T_x, x)

Input: T_x: A set of entries; x: An integer;
Output: T_{x+1}: A set of entries;
1 foreach $[(l, u), d, j] \in T_x$ do
2 $T_{x+1} = \text{UpdateQuadruple} ([(l, u], d+1, j+1))$;
3 $T_{x+1} = \text{UpdateQuadruple} ([(l, u), d+1, j])$;
4 $T_{x+1} = \text{UpdateQuadruple} ([(l, u), d, j+1])$;
5 return T_{x+1};

may be a pivotal entry for strings in $[l, u]$. We call function UpdateQuadruple $((l, u), d + 1, j + 1))$ to update quadruples.

(3) Deletion: For any strings with ID in range $[l, u]$, we can delete $q[j + 1]$ from q. Thus $(d, j + 1)$ may be a pivotal entry for strings in $[l, u]$. We call function UpdateQuadruple $((l, u), d, j + 1))$ to update quadruples.

Iteratively we can compute the pivotal quadruple set and Algorithm 2 shows the pseudo-code. The correctness of the algorithm is formalized in Lemma 8.

Lemma 8: T_x computed by our method satisfies (1) completeness: If $((l, u), d, j)$ is a pivotal quadruple, it is in T_x; (2) correctness: If $((l, u), d, j)$ is in T_x, it is a pivotal quadruple.

Example 7: Consider the trie in Figure 2. Table VI shows the example to find top-3 answers of query “srajit”. Consider $\langle 6, 6 \rangle$, $1, 1 \rangle$ in T_1. For substitution, we add $\langle 6, 6 \rangle$, $2, 2 \rangle$. For insertion, $\langle 6, 6 \rangle$, $2, 1 \rangle$ is not a pivotal entry as the third character of string s_0 = “thifty” matches $q[2]$ = “r”. Thus we apply the FindQuadruple operation and add $\langle 6, 6 \rangle$, $3, 2 \rangle$. For deletion, we add $\langle 6, 6 \rangle$, $1, 2 \rangle$. Similarly we compute all pivotal quadruples as illustrated in Table VI.

Complexity: Let $|B|$ denote the number of trie nodes at the $|(q)+\tau−1\rangle$-th level, which is not larger than the number of trie nodes at the $(|q|+\tau)$-th level $|B|$. As we only keep T_x to compute T_{x+1}, the space complexity is $O(\tau \times |B|)$.

As the update operation (e.g., using a hash table) takes $O(1)$ time, the worst-case time complexity is $O(\tau \times |T|)$.

VI. EXPERIMENTAL STUDY

We conducted an extensive set of experimental studies on three real datasets. The first one is the Author dataset which is a set of author names and extracted from the publications in PubMed. The second one is the Word dataset, which is a set of common English words. The third one is a set of Email addresses. We randomly selected 100 queries from the datasets and compared the average elapsed time. Table VII shows the correctness of the three datasets. Figure 5 shows the string length distributions of the three datasets.

We compared our algorithms with state-of-the-art methods, AQ [23], B^d-Tree [24], and Flamingo [14]. The code of B^d-Tree was provided by the authors. The code of Flamingo was downloaded from their website. We extended it to support top-k search by increasing the thresholds (initialized as 0). As it is a famous threshold-based string similarity search algorithm, we selected it as a baseline for comparison. AQ was implemented by ourselves in C++. All the algorithms were implemented in C++ and compiled using GCC 4.2.4 with -O3 flag. All the experiments were run on a Ubuntu machine with an Intel Xeon X5670 2.93GHz CPU and 32 GB memory.

A. Evaluation on Our Techniques

In this section, we compare our proposed techniques, the progressive-based method, the pivotal entry based method, and the range-based method. We first compared the number of entries that were needed to compute of the three methods. Figure 6 shows the results by varying k on the three datasets.

We can see that the pivotal entry based method involved smaller numbers of entries than the progressive-based method on the Email dataset and the Author dataset. This is because the pivotal entry based method only computed pivotal entries and pruned large numbers of useless entries. For example, on the Email dataset, for $k = 50$, the progressive-based method computed 0.8 billion entries, and the pivotal entry based method computed 0.6 billion entries. On the Word dataset, the pivotal entry based method was worse than the progressive-based method. This is because if an entry is a pivotal entry for all children, the pivotal entry based method needed to maintain all such triples which may be expensive. However the range-based method grouped such triples and significantly reduced the number of entries.

In addition, the range-based method computed much smaller numbers of entries than the pivotal entry based method and the progressive-based method on the three datasets. The main

as we only keep T_x to compute T_{x+1}, the space complexity is $O(\tau \times |B|)$. As the update operation (e.g., using a hash table) takes $O(1)$ time, the worst-case time complexity is $O(\tau \times |T|)$. As the method groups many pivotal triples, it improves the performance (Section VI-A).

<table>
<thead>
<tr>
<th>Table VII</th>
<th>Datasets</th>
<th>Cardinality</th>
<th>Avg Len</th>
<th>Max Len</th>
<th>Min Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>146,035</td>
<td>16.01</td>
<td>35</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>10.27 million</td>
<td>22.02</td>
<td>383</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Email</td>
<td>6.4 million</td>
<td>26.58</td>
<td>57</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

http://flamingo.ics.uci.edu/
reason is that the range-based method grouped large numbers of pivotal entries and reduced the number of pivotal entries significantly. For example, on the Email dataset, for \(k = 100 \), the pivotal entry based method and the progressive-based method involved more than 1 billion entries, and the range-based method had only 0.1 billion entries. The experimental results consist with our analysis in Section \(\text{IV} \).

Next we compare the average elapsed time of different methods by varying \(k \). Figure \(\text{A} \) shows the results.

We can see that the range-based method achieved the best performance and outperformed the other two methods. The main reason is that, the range-based method pruned many non-pivotal entries against the progressive-based method and grouped the pivotal entries to avoid unnecessary computations. For example, on the Email dataset, for \(k = 50 \), the progressive-based method took 300 milliseconds, the pivotal entry based method improved the time to 150 milliseconds, and the range-based method further reduced time to 50 milliseconds. This shows that our range-based pruning technique can prune large numbers of unnecessary entries and improve the performance significantly.

B. Comparison with Existing Methods

In this section, we compare our range-based method with state-of-the-art methods, AQ, \(B^{ed}\)-Tree, and Flamingo by varying different \(k \) on the three datasets. As they needed tune some parameters (e.g., gram length), we reported their best results. Figure \(\text{B} \) shows the experimental results.

We can see that for small \(k \) values (\(k < 50 \)), AQ had the worst performance as it is rather time consuming to adaptively select a good gram length. For large \(k \) values, AQ was better than Flamingo as the search time was larger than the time to select a good gram length. For example, on the Word dataset, for \(k = 25 \), AQ took 5 milliseconds and other methods took less than 3 milliseconds. In addition, \(B^{ed}\)-Tree was better than AQ and Flamingo for large \(k \) values, as it dynamically updated the threshold and used the threshold to do pruning. However it had low pruning power for small \(k \) values. This is because for small \(k \) values, it may scan many irrelevant strings and cannot use a tighter bound to do pruning.

Our method achieved the highest performance and outperformed existing methods. This is because \(B^{ed}\)-Tree only used the string level pruning, while our method can utilize the character-level pruning. That is for a string, \(B^{ed}\)-Tree can only take its edit distance to the query as a threshold. Our method can progressively compute edit distance and can use the edit distance of prefixes of a string and the query as a threshold. Thus our method outperformed \(B^{ed}\)-Tree. For example, on the Email dataset, for each \(k \) value, our method achieved the best performance. For \(k = 100 \), Flamingo took more than 400 milliseconds, \(B^{ed}\)-Tree improved the time to 300 milliseconds, and our method only took less than 80 milliseconds. The results show the superiority of our progressive based framework and our pivotal-entry-based and range-based pruning techniques.
In this paper, we have studied the problem of top-k string similarity search. We proposed a progressive framework to support top-k similarity search. We proposed pivotal entries to avoid unnecessary computations which can prune large numbers of useless entries. We extended this technique to support similarity search. We devised a range-based method by grouping the pivotal entries which can further reduce the number of entries. Experimental results show that our method significantly outperforms existing methods.

VII. CONCLUSION

In this paper, we have studied the problem of top-k string similarity search. We proposed a progressive framework to support top-k similarity search. We proposed pivotal entries to avoid unnecessary computations which can prune large numbers of useless entries. We extended this technique to support similarity search. We devised a range-based method by grouping the pivotal entries which can further reduce the number of entries. Experimental results show that our method significantly outperforms existing methods.

REFERENCES