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Abstract
A set containment join operates on two set-valued attributes with a subset (⊆) relationship as the join condition. It has
many real-world applications, such as in publish/subscribe services and inclusion dependency discovery. Existing solutions
can be broadly classified into union-oriented and intersection-oriented methods. Based on several recent studies, union-
oriented methods are not competitive as they involve an expensive subset enumeration step. Intersection-oriented methods
build an inverted index on one attribute and perform inverted list intersection on another attribute. Existing intersection-
oriented methods intersect inverted lists one-by-one. In contrast, in this paper, we propose to intersect all the inverted lists
simultaneously while skippingmany irrelevant entries in the lists. To share computation, we utilize the prefix tree structure and
extend our novel list intersectionmethod to operate on the prefix tree. To further improve the efficiency, we propose to partition
the data and process each partition separately. Each partition will be associated with a much smaller inverted index, and the
set containment join cost can be significantly reduced. Moreover, to support large-scale datasets that are beyond the available
memory space, we develop a novel adaptive data partition method that is designed to fully leverage the available memory
and achieve high I/O efficiency, and thereby exhibiting outstanding performance for external memory set containment join.
We evaluate our methods using both real-world and synthetic datasets. Experimental results demonstrate that our method
outperforms state-of-the-art methods by up to 10× when the dataset is completely resided in memory. Furthermore, our
approach achieves up to two orders of magnitude improvement on I/O efficiency compared with a baseline method when the
dataset size exceeds the main memory space.

Keywords Set containment · Containment join · Query processing · Join algorithm · Similarity join

B Dong Deng
dong.deng@rutgers.edu

B Shuo Shang
jedi.shang@gmail.com

Chengcheng Yang
chengcheng.yang@kaust.edu.sa

Fan Zhu
shuo.shang@inceptioniai.org

Li Liu
shuo.shang@inceptioniai.org

Ling Shao
ling.shao@inceptioniai.org

1 Rutgers University, New Brunswick, USA

2 University of Electronic Science and Technology of China,
Chengdu, China

1 Introduction

Set containment is an important relationship between two
sets, which indicates that one set is a subset of another. It has
numerous real-world applications. For example, if the skills
mastered by aworker and those required for a job aremodeled
as sets, the set containment relationship indicates whether or
not a worker is competent in a job. As another example, if
the keywords subscribed by a user and the words in an article
are modeled as the sets, then the set containment determines
if an article aligns with the users interests and should be sug-
gested to them. Additionally, set containment is also relevant
for inclusion dependency. Specifically, if two columns of val-
ues are modeled as sets, then set containment determines if
there is an inclusion dependency between them. Moreover,
set containment can be used for recommendations. For exam-
ple, in the bookmark web service, if the URLs tagged by two
users are modeled as sets, the set containment relationship
indicates they have similar hobbies or interests and should
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introduce them to each other. In this paper, we study the set
containment join problem, which, given two collections R

and S of sets, finds all the set pairs (R, S) with a set contain-
ment relationship, i.e., R ⊆ S. Since the volume of data is
increasingly large, we focus on improving the efficiency and
scalability of this operation.

There are many existing works that focus on set con-
tainment joins. Based on one recent study [59], existing
methods can be broadly classified into union-oriented meth-
ods [16,27,30,31,35,58,59] and intersection-oriented meth-
ods [5,19,21,27,28].

Union-orientedmethods.Union-orientedmethodsfirst gen-
erate a signature for each set. The signature guarantees that
R ⊆ S only if Sig(R) ⊆ Sig(S), where Sig(R) and Sig(S)
are the signatures of R and S, respectively. Next, all subsets in
Sig(S) are enumerated, and any Sig(R) that is identical to any
of these subsets is retrieved. Based on the guarantee provided
by the signatures, (R, S) is a candidate pair. Finally, the can-
didates are verified, and the join results obtained. Based on
several recent studies [5,58], union-oriented methods cannot
compete with intersection-oriented methods. This is because
a large signature size will lead to an expensive subset enu-
meration cost, which grows exponentially with the increase
in the signature size, while a small signature will result in
many candidates and a high verification cost.

As an example, Helmer et al. [16] use a bitmap of size b as
a signature. To generate the signature bitmap for a set, they
map each element in the set to a number i between 1 and b
and set the i th bit of its signature bitmap to 1. Obviously, for
any two sets R and S, R ⊆ S only if every 1 bit in Sig(R) is
also set to 1 in Sig(S), which we denote as Sig(R) ⊆ Sig(S).
In this case, union-oriented methods need to enumerate 2b

bitmaps for each set from S, which is highly inefficient.

Intersection-orientedmethods. Intersection-orientedmeth-
ods first build an inverted index I for S, where the inverted
list I[e] consists of all the sets in S containing the element e
(the sets are sorted). Then, for each set R in R, they intersect
all the inverted lists corresponding to the elements in R and
obtain a list of sets from S. For each S in the list, R is a subset
of S and (R, S) is a result.

In this paper, we propose an intersection-orientedmethod.
However, we intersect the inverted lists in a new way. All
existing methods intersect the inverted lists one by one in
a “rip-cutting” fashion. For example, consider the set R1 =
{e1, e2, e3, e4} and its four inverted lists as shown on the left
of Fig. 1. Existing methods first intersect I[e1] with I[e2]
and get L1 = {S3, S7}. Then, they intersect L1 with I[e3]
and get L2 = {S3, S7}. Finally, they intersect L2 with I[e4],
get the list L3 = {S3}, and generate a result (R1, S3).

In our case, however, we intersect the inverted list in a
“cross-cutting” fashion as shown on right of Fig. 1 (details
of which will be provided in Sect. 3). A huge advantage of

Fig. 1 Two ways to intersect inverted lists: “cross-cutting” and “rip-
cutting”

cross-cutting-based intersection is that it can use the “gap”
between two consecutive entries in an inverted list to skip
irrelevant entries in the other lists. For example, consider the
two consecutive entries S3 and S7 in I[e1] in Fig. 1. As S4,
S5, and S6 are not in I[e1], e1 does not exist in the three
sets and R1 cannot be a subset of S4, S5, or S6. Thus, we can
skip the three sets in all the other inverted lists, i.e., I[e2],
I[e3], and I[e4]. To share the computation between the sets
in R, we propose to build a prefix tree on R and extend the
cross-cutting-based intersection to operate on the prefix tree.
To further improve the performance and scalability of our
method, we propose to partition the data and process each
partition separately.

In summary, we make the following contributions in this
paper:

– We develop a novel, intersection-oriented approach for
set containment joins. Our approach can skip irrelevant
entries in the inverted lists when intersecting them.

– We design a tree-based method to share the computa-
tion between sets in R. We propose an early termination
technique for the tree-based method.

– We propose to partition the data to further improve the
efficiency and scalability of our method.

– To support large-scale datasets that do not fit into the
available memory, we introduce an adaptive and I/O
efficient data partition method that partitions all sets
according to the memory budget.

– We conduct extensive experiments on both real-world
datasets and synthetic datasets. The experimental results
show that our approach is up to one order of magnitude
faster than current state-of-the-art methods, and up to
two orders of magnitude faster than the baseline method
if the dataset cannot be entirely loaded into the available
memory.

The rest of the paper is organized as follows: Section 2
defines the problem. Our set containment join framework
is presented in Sect. 3. We discuss the tree-based methods
in Sect. 4 and data partition in Sect. 5. Section 6 describes
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our external memory set containment join algorithm. Sec-
tion 7 provides experimental results. We review related work
in Sect. 8 and conclude in Sect. 9.

2 ProblemDefinition

Given two collections of sets, the set containment join prob-
lem aims to find all the set pairs from the two collections in
which one set is a subset of the other. A formal definition is
provided below.

Definition 1 (Set containment join) Given two collections R

and S of sets, the set containment join R ��⊆ S finds all pairs
(R, S) such that R ⊆ S, where R and S are two sets inR and S,
respectively. That is, R ��⊆ S = {(R, S)|R ⊆ S, R ∈ R, S ∈
S}.

Example 1 For example, consider the two collectionsR andS

of sets in Table 1. Each set R ∈ R (or S ∈ S) is associatedwith
an identifier Rid (or Sid). The set containment join R ��⊆ S

will result in two pairs (R1, S3) and (R2, S5), where the first
sets are subsets of the second ones. For all the other 19 pairs,
there is no subset relationship.

3 The framework

In this section, we present our set containment join frame-
work. The framework first builds an inverted index for the
sets in S (Sect. 3.1). Then, it calculates the set containment
join using the inverted index previously built (Sect. 3.2).

Table 1 A running example Rid R

(a) dataset R

R1 {e1, e2, e3, e4}
R2 {e2, e3, e5}
R3 {e1, e2, e5, e6}

Sid S

(b) dataset S

S1 {e1, e3, e4, e5, e6}
S2 {e1, e3, e5}
S3 {e1, e2, e3, e4, e6}
S4 {e2, e4, e5, e6}
S5 {e2, e3, e4, e5, e6}
S6 {e2, e3, e4, e6}
S7 {e1, e2, e3, e6}

Fig. 2 The inverted index I for S in Table 1b

3.1 Inverted index construction

Webuild an inverted indexI forS. Theheaders of the inverted
lists in I are the distinct elements in S. For each distinct ele-
ment e in S, its corresponding inverted list I[e] consists of
the identifiers Sid of the sets S containing e, i.e., e ∈ S. For
ease of presentation, hereinafter, we use the set and its iden-
tifier interchangeably. Note that the identifiers in the inverted
lists are ordered by their subscripts in ascending order. For
example, Fig. 2 shows the inverted index I constructed for
the sets in S in Table 1(b). The inverted index can be con-
structed by sequentially reading the sets in S and, for each
element e in Si , appending Si to I[e].

3.2 Set containment join framework

After the inverted index is constructed, we use it to find all
the set pairs with a subset relationship. At a high level, for
each set R ∈ R, intersection-oriented methods retrieve all the
inverted lists corresponding to the elements in R and intersect
them. The intersection result is a listL of sets in S, which are
all supersets of R. Thus, we produce a result (R, S) for each
set S ∈ L.

For this purpose, all existing approaches intersect the
inverted lists one by one. We call this “rip-cutting”-based
intersection since all entries in a list are processed at the same
time. In contrast, in our framework, we employ a “cross-
cutting”-based intersection. The basic idea is that we first
check each inverted list in R to see whether all of them con-
tain a “candidate set” Si . If so, R ⊆ Si andwe produce a result
(R, Si ). Then, for any inverted list I[e] in R, let S j be the first
entry greater than Si in the list. Obviously, the element emust
not exist in any Sk where i < k < j and R � Sk . Thus, we
can skip all the entries in the “gap” (i.e., Si+1, . . . , S j−1) in
all the other inverted lists. To this end, we use S j as the new
candidate set to check and repeat the above process until we
reach the end of any inverted list.

Note that we can use the first entry S j greater than Si in
any inverted list in R to skip the irrelevant entries. To reach
the end of the inverted lists as soon as possible, we propose
to use the largest entry as the next candidate set to check,
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because it will have the largest gap, enabling us to skip more
entries in the other inverted lists. In addition, we initially use
the smallest set S1 as the first candidate set to check.

Example 2 For example, consider the two datasets R and S

in Table 1. For R1, there are four inverted lists I[e1], I[e2],
I[e3], I[e4], as shown on the right of Fig. 1. Our framework
first initializes the candidate set to check to be S1. Since S1
is not found in I[e2], it cannot be a superset of R1. The first
entries in I[e1], I[e2], I[e3], and I[e4] greater than S1 are
S2, S3, S2, and S3, respectively. We use the largest one, S3,
as the next candidate set to check. Since S3 exists in all the
lists, our framework generates a result (R1, S3). We repeat
this process, with the next candidate set to check being S7.
However, S7 is larger than all the entries in I[e4]. Thus, our
framework reaches the end of I[e4] and terminates.

The pseudo-code of our framework is shown in Algo-
rithm 1. It takes two collections R and S of sets as input,
and outputs their set containment join result A = R ��⊆ S.
To do so, it first builds an inverted index I for the sets in S

(Line 2). Then, for each set R ∈ R, it initializes the candidate
set MaxSid to check to be S1 (Line 4). Next, our framework
binary searches forMaxSid on each inverted list in R (Line 6).
IfMaxSid is found in all the lists, it adds the pair (R, S) to the
resultA (Lines 7–8). Then, the framework identifies the first
entry in each inverted list in R that is greater thanMaxSid and
use the largest one among them as the next candidate set to
check (Lines 9–10). These steps are repeated until the end
of an inverted list is reached (Line 5). Finally, the resultA is
returned (Line 11).

Correctness and soundness. The framework is correct and
sound, i.e., the set pairs found by the framework all have the
set containment relationship and all the set containment pairs
can be found by the framework. The correctness is obvious as
the framework returns a pair only if the candidate set is found
in all the inverted lists of R, which indicates a set containment
relationship. The framework is also sound. For any set pair
(R, S) in R × S where R ⊆ S, all the inverted lists of R must
have the entry S. Since in the framework an entry is skipped
only if it does not exist in at least one of the inverted lists in
R, S cannot be skipped and must be a candidate set to check
in the framework. Once S is checked, the framework must
find it in all the inverted lists of R and return the pair (R, S).

3.3 Early termination

In each round, our framework binary searches for a candidate
set MaxSid in all the inverted lists in R. We observe that we
can terminate the binary searches earlier in each round.More
specifically, wheneverMaxSid is not found in an inverted list
I[e] in R, we do not need to check if MaxSid is in the other

Algorithm 1: The Cross- cutting Framework

Input: S and R: two collections of sets.
Output: A: R ��⊆ S = {(R, S)|R ⊆ S, R ∈ R, S ∈ S};

1 begin
2 Build an inverted index I for S;
3 foreach R ∈ R with identifier Rid do
4 MaxSid = 1;
5 while not reaching the end of any inverted list do
6 binary search for MaxSid on the inverted lists

corresponding to the elements in R;
7 if MaxSid is found on all the lists then
8 add the pair (Rid,MaxSid) to A;

9 find the first entry greater than MaxSid in each
inverted list in R and let NextMax be the largest one
among them;

10 update MaxSid as NextMax;

11 return A;

inverted lists in R. This is because e /∈ MaxSid and MaxSid
cannot be a superset of R.

Instead of using the largest gap (i.e., the first entry greater
thanMaxSid) in all the inverted lists in R as the new candidate
set NextMax to check in the next round, we set NextMax as
the largest gap in all the visited inverted lists in the current
round. This is because the binary searches are skipped on the
unvisited lists and their gaps are unknown. In addition, we
propose to visit the inverted lists in ascending order of length.
This is because the short inverted lists potentially have larger
“gaps” and we can skip more entries in each round.

Example 3 In the previous example, our framework binary
searches for S1, S3, and S7 in the four inverted lists. In total,
our framework performs 12 binary searches. By employing
the early termination technique, we visit the lists in the order
of I[e1], I[e2], I[e4], and I[e3]. As the first candidate set S1
is not found in I[e2], we stop the current round and set the
next candidate set to check to be the larger one between S2
from I[e1] and S3 from I[e2], which is S3. As S3 is found in
all the inverted lists, we produce a result (R1, S3). Then, the
next candidate set to check is S7. We terminate after binary
searching S7 on I[e4] as we reach the end of I[e4]. In total,
the early termination only performs 9 binary searches.

The early termination may not find the largest candidate
set to check in each round. Nevertheless, it can save some
unnecessary binary search operations if the candidate set
MaxSid is not a superset of R, especially when the set size
|R| is large.

4 The tree-basedmethod

This section discusses how to share the computation on the
sets in R. We first introduce the prefix tree index in Sect. 4.1
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Fig. 3 The tree structure for R in Table 1a

and then present the tree-based method in Sect. 4.2. The tree-
based method is essentially traversing the tree in postorder.
Finally, we integrate the early termination technique into the
tree-based method.

4.1 The prefix tree

We build a prefix tree T for the sets in R, where each tree
node n is associated with an element n.e. For this purpose,
we first sort the elements in each set R ∈ R in a global order.
Then, we sequentially insert the elements in R into T . Each
set R ∈ R corresponds to a unique leaf node in T , where
the elements associated with the nodes on the path from the
root node T .root to this leaf node are exactly the elements
in R, sorted in the global order. For example, Fig. 3 shows
the prefix tree for the three sets in R in Table 1(a). Note,
in this paper, as an example, we use an increasing order of
subscripts as the global order for the elements. However,
to share more computation, in our implementation we use
a decreasing order of frequency as the global order of the
elements. In addition, to save memory usage, we can replace
the prefix tree with the Patricia tree (a.k.a. radix trie), where
the inner nodes containing only one child aremerged. All our
techniques proposed in this paper apply to this more compact
tree structure.

For ease of presentation, hereinafter we use the set R and
its corresponding leaf node inT interchangeably.We also use
the node n and its corresponding inverted list I[n.e] inter-
changeably. For instance, a set S exists in a node n really
means S exists in the corresponding inverted list I[n.e] of n.

4.2 Set containment join via postorder tree
traversing

In this section, we discuss how to find all the set containment
pairs using the inverted index I and the prefix tree T . We
first give the high level idea.

As discussed in the framework, for each set R in R, we
maintain a candidate set MaxSid and check whether MaxSid
exists in every inverted list in R. Since each set R ∈ R corre-
sponds to a leaf node in the prefix tree T , for each set R in
R, we propose to keep the candidate set to check in its cor-
responding leaf node n (denoted as n.MaxSid). For the inner
node n, we use n.MaxSid to keep the smallest candidate set
to check among all the leaf nodes in the subtree rooted at n.
As we will see later in this section, this helps us update the
candidate sets in the leaf nodes in a new round.

The next step in the framework is to produce a result if the
candidate set exists in all the inverted lists of R. To achieve
this on the tree, for each node n in the tree, we use n.RidList
to keep the list of leaf nodes where i) the candidate set of the
leaf node is n.MaxSid and ii) n.MaxSid exists in all the nodes
on the path from n to this leaf node (recall that a set S exists
in a node n really means S exists in the inverted list I[n.e]).
Based on this definition, all the sets in T .root.RidList are
subsets of T .root.MaxSid, where T .root is the root node of
T . Thus, for each set R ∈ T .root.RidList, we produce a result
(R, T .root.MaxSid).

The last step is to update the candidate sets to check on
the leaf nodes in next round. Intuitively, for each leaf node n,
we can go through all the ancestor nodes of n and update the
new candidate set of n as the largest gap of its ancestor nodes
and itself (recall the gap of a node v is the first entry greater
than the current candidate set n.MaxSid in the inverted list
I[v.e]).

Example 4 Figure 4 shows a running example based on the
two datasets in Table 1 using the idea above. For each node
ni in the tree, we show its two variables ni .MaxSid and
ni .RidList. At the beginning (as shown in Fig. 4a), the initial
candidate sets for all the leaf nodes n5, n7, and n10 are S1. For
the inner nodes, based on the definition, their candidate sets
are also S1. We also have n4.RidList = {R3}. This is because
i) the corresponding leaf node n5 of R3 has the same candi-
date set as n4 (i.e., n5.MaxSid = n4.MaxSid = S1) and ii) the
candidate set n4.MaxSid = S1 exists in both inverted lists of
n4 and n5, i.e., I[e5] and I[e6], as shown in Fig. 2. Similarly,
we have n5.RidList = {R3}, n6.RidList = {R1}, etc. Note that
n3.RidList = φ as its candidate set n3.MaxSid = S1 does not
exist in the inverted list I[e2] of n3.

In the second round, as shown in Fig. 4b, we update the
candidate sets in the leaf nodes. For the leaf node n5, as
the gaps in itself and its ancestor nodes n4, n3, and n2 are,
respectively, S3, S2, S3, and S2, we update its candidate set
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n5.MaxSid as the largest one S3. Similarly, we can update
the candidate sets in the other nodes, which are all set to S3.
We also have n1.RidList = {R1} as i) the corresponding leaf
node n7 of R1 has the same candidate set as n1 and ii) the
candidate set n1.MaxSid = S3 exists in all the inverted lists
I[e1], I[e2], I[e3], and I[e4] of n2, n3, n6, and n7. Thus,
we produce a result (R1, S3). Similarly, in the next round as
shown in Fig. 4c, we find another result (R2, S5). In the last
round, as shown in Fig. 4d, the candidate set for the root node
isn1.MaxSid = S∞, which indicates thatwehave reached the
ends of the inverted lists for all leaf nodes, and we terminate.

Postorder tree traversing. To implement the above high-
level idea, we design a postorder tree traversing method. In
traversing the tree, n.MaxSid and n.RidList will get updated
for every node n in the tree.

More specifically, consider an inner node n. Suppose for
every child node c of n, c.MaxSid and c.RidList have been
updated in the postorder tree traversing. We first discuss how
to update n.MaxSid based on the child nodes of n. On the
one hand, n.MaxSid (or c.MaxSid) is defined as the smallest
candidate set among all the leaf nodes in the subtree rooted
at n (or c). On the other hand, the leaf nodes in the sub-
tree rooted at n are exactly the leaf nodes in all the subtrees
rooted at the child nodes of n. Thus, we can update n.MaxSid
as the smallest candidate set c.MaxSid among all its child
nodes. For example, consider the node n1 in Fig. 4c. It has
two child nodes n2 and n8, whose candidate sets are, respec-
tively, n2.MaxSid = S7 and n8.MaxSid = S5. Thus, we set
n1.MaxSid as the smaller one S5.

Next we discuss how to calculate n.RidList based on the
child nodes of n. Recall that n.RidList (or c.RidList) is the list
of leaf nodes where (1) their candidate sets are n.MaxSid (or
c.MaxSid) and (2) n.MaxSid (or c.MaxSid) exists in all the
nodes on the paths from n (or c) to these leaf nodes. Thus,
we set n.RidList as φ if n.MaxSid does not exist in the node
n as none of the leaf nodes satisfies condition (2); otherwise,
we update n.RidList as the union of all c.RidList where c is a
child node of n and c.MaxSid = n.MaxSid. This is because,
on the one hand, for any leaf node in these c.RidList, (1) its

candidate set is c.MaxSid = n.MaxSid and (2) c.MaxSid =
n.MaxSid exists in both all the nodes on the path from c
to this leaf node and the parent node n of c. Thus, based
on the definition, this leaf node must also exist in n.RidList.
On the other hand, for any leaf node that is not in the above
c.RidList, either its candidate set is not c.MaxSid or c.MaxSid
does not exist in a certain node on the path from c to this leaf
node, which indicates that this leaf node must also not exist
in n.RidList. For example, consider the node n3 in Fig. 4b.
It has two child nodes n4 and n6 where n4.RidList = φ and
n6.RidList = {R1}. As n3.MaxSid = S3 exists in n3’s inverted
list I[n3.e], we have n3.RidList = n4.RidList ∪ n6.RidList =
{R1}. As another example, consider the node n3 in Fig. 4a.
As n3.MaxSid = S1 does not exist in I[n3.e = e2], we have
n3.RidList = φ. Note that if n is a leaf node, based on the
definition, if n.MaxSid exists in the inverted list I[n.e], we
have n.RidList = {n}.

Lastly, we show how to update the candidate sets on the
leaf nodes. Note that a postorder tree traversing is also a type
of deep first traversing. Thus, a node n must be traversed
through all its ancestor nodes. As such when we traverse to a
node n, we can get the largest gap of n and all its ancestors.
We keep this largest gap in a variableNextMax. This variable
NextMax will be passed through the parent node to all its
child nodes and get updated in the postorder (i.e., deep first)
tree traversing. Then, whenever a leaf node n is reached, we
can update its new candidate set n.MaxSid as NextMax.

Note that when checking whether the candidate set
n.MaxSid exists in the inverted list I[n.e] of a node n, the
gap of n (i.e., the first entry in I[n.e] greater than the can-
didate set n.MaxSid) can be calculated simultaneously. To
reuse this computation later when updating the candidate
sets in next round, we keep the gap in a variable n.NextMax.
More specifically, we can binary search for the first entry Sid
no smaller than n.MaxSid. If Sid is identical to n.MaxSid, it
means n.MaxSid exists in the inverted list I[n.e] and we use
the entry next to Sid in the inverted list as the gap n.NextMax;
otherwise, it means n.MaxSid does not exist in the inverted
list and we use Sid as the gap n.NextMax.

Fig. 4 A running example of the tree-based method based on the datasets in Table 1
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Algorithm 2: Tree- based Method

Input: S and R;
Output: A: R ��⊆ S = {(R, S)|R ⊆ S, R ∈ R, S ∈ S};

1 begin
2 build a prefix tree T on R;
3 build an inverted index I on S;
4 for each node n ∈ T , n.MaxSid = n.NextMax = S1;
5 while T .root.MaxSid �= S∞ do
6 PostOrderTraverse(T .root, 1);
7 foreach R ∈ T .root.RidList do
8 add (R, T .root.MaxSid) to A;

9 return A;

Algorithm 3: PostOrderTraverse(n, NextMax)

Input: n: a tree node; NextMax: the largest gap in all the
ancestor nodes of n.

1 begin
2 NextMax = max(NextMax, n.NextMax);
3 foreach child c of n where c.MaxSid ≤ NextMax do
4 PostOrderTraverse(c, NextMax);

5 if n is a leaf node then
6 set n.MaxSid as NextMax;

7 else
8 set n.MaxSid as the smallest c.MaxSid, where c is a child

node of n;

9 binary search for the first entry Sid no smaller than n.MaxSid
in I[n.e];

10 if Sid == n.MaxSid then
11 set n.NextMax as the entry next to Sid in I[n.e];
12 if n is a leaf node then
13 set n.RidList as the set corresponding to n;

14 else
15 set n.RidList as the union of c.RidList where c is a

child of n and c.MaxSid = n.MaxSid;

16 else
17 set n.NextMax as Sid and n.RidList = φ;

The pseudo-code tree-based method is shown in Algo-
rithm 2. It takes two datasets R and S as input and returns
their set containment join results. The tree-based method
first builds a prefix tree T for R and an inverted index
I for S (Lines 2–3). Then, for each node n in the tree,
it initializes both the candidate set n.MaxSid and the gap
n.NextMax as S1 (Line 4). Next, it repeatedly invokes the
procedure PostOrderTraverse (Line 6). Each invoca-
tion will get T .root.MaxSid updated as the next smallest
candidate set to check in all the leaf nodes. Moreover,
it also gets T .root.RidList updated accordingly. Based on
the definitions, all the sets in T .root.RidList are subsets of
T .root.MaxSid. Thus, we add a pair (R, T .root.MaxSid) to
the result A for each set R ∈ T .root.RidList (Lines 7 to 8).
The algorithm terminates when the smallest candidate set
T .root.MaxSid is identical to the “maximum” set S∞, which

Fig. 5 Status of the prefix tree

indicates the end of an inverted list is reached for every leaf
node (Line 5). Finally, the result A is returned (Line 9).

The pseudo-code of the postorder tree traversing Pos-

tOrderTraverse is shown in Algorithm 3. It takes a tree
node n and the largest gapNextMax in all the ancestors of n as
input. At the end of each invocation, the variables n.MaxSid,
n.RidList, and n.NextMaxwill get updated. At the beginning,
NextMax is the largest gap in all the ancestor nodes of n and
n.NextMax is the gap on n. Thus, for any child node c of
n, the larger one of these two is the largest gap in all the
ancestor nodes of c (Line 2). Then, the postorder travers-
ing recursively invokes itself on the child nodes of n to get
their candidate sets updated (Lines 3 and 4). Note that for
the child node c of n whose candidate set c.MaxSid is larger
than the largest gap NextMax, c.MaxSid does not need to be
updated as this candidate set has not been checked yet. Thus,
the procedure will not be recursively invoked on these child
nodes. After this, all the child nodes of n have their variables
up-to-date. Next, it updates the candidate set n.MaxSid of n.
As discussed before, if n is a leaf node, n.MaxSid is updated
as the largest gap NextMax; otherwise, n.MaxSid is updated
as the smallest c.MaxSid where c is a child of n (Lines 5
to 8). Then, it updates n.RidList and the gap n.NextMax. For
this purpose, it first binary searches for the first entry Sid
in I[n.e] no smaller than n.MaxSid (Line 9). As discussed
before, if Sid == n.MaxSid, we update the gap n.NextMax
as the entry next to Sid in I[n.e] (Line 11); otherwise, we
update the gap n.NextMax as Sid (Line 17). Note that if we
reach the end of the inverted list, we set Sid and the gap as
the “maximum” set S∞, i.e., n.NextMax = Sid = S∞. For
n.RidList, as discussed before, if Sid == n.MaxSid and n
is a leaf node, which indicates the candidate set n.MaxSid
exists in n and its inverted list I[n.e], we set n.RidList as the
set corresponding to n itself, i.e., n.RidList = {n} (Line 13).
However, if Sid == n.MaxSid and n is not a leaf node, we
update n.RidList as the union of c.RidList where c is a child
node of n and c.MaxSid = n.MaxSid (Line 15). In the case
Sid �= n.MaxSid, which indicates the candidate set n.MaxSid
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does not exist in n, we have n.RidList = φ (Line 17). Now all
the variables n.MaxSid, n.RidList, and n.NextMax of n are
up-to-date.

Example 5 Consider the running example in Fig. 4. Figure 5a
shows the status of the prefix tree after the first round of
traversing. We discuss how this then transfers to the second
round (as shown in Fig. 5b). First, the PostOrderTra-

verse algorithm traverses to the leaf node n5, through its
ancestor nodes n4, n3, n2, and n1, and updates the vari-
able NextMax to be the largest one among n5.NextMax,
n4.NextMax, n3.NextMax, n2.NextMax, and n1.NextMax,
which is n3.NextMax = S3. Then, as n5 is a leaf node, it
updates n5.MaxSid to be NextMax = S3. Next, it binary
searches for the first entry in I[n5.e = e6] no smaller than
S3 and obtains Sid = S3. As Sid == n.MaxSid, it sets
n.NextMax to be the next entry after S3 in I[e6], which is
S4. It also sets n5.RidList to be the corresponding set of n,
which is R3, because n5 is a leaf node. Next, it visits the
node n4. As n4 is not a leaf node, it sets n4.MaxSid to be
the smallest candidate sets among all of its child nodes,
which is n5.MaxSid = S3. As the first entry no smaller
than S3 in I[n4.e = e5] is Sid = S4, which is not identi-
cal to n4.MaxSid = S3, it sets n4.NextMax as Sid = S4 and
n4.RidList = φ. Similarly, it traverses and updates all the
nodes in the prefix tree, and Fig. 5b shows the status of the
tree at the end of the postorder tree traversing.

Correctness and soundness. We first show the correct-
ness of the tree-based method. In the algorithm, the leaf
node v is only added to v.RidList if v.MaxSid is found in
v. For the inner node n and its child node c, the sets in
c.RidList are only added ton.RidList if c.MaxSid = n.MaxSid
and n.MaxSid is found in n. Thus, recursively, we have
that for the root node T .root and a leaf node n, the leaf
node n is only added to T .root.RidList if n.MaxSid =
T .root.MaxSid and T .root.MaxSid is found in all the nodes
on the path from T .root to n. This implies a set contain-
ment relationship between n (i.e., its corresponding set R)
and T .root.MaxSid. Thus, for any R ∈ T .root.RidList, the
pair (R, T .root.MaxSid) is a result. Next, we show the sound-
ness of our method. As discussed before, for any set pair
(R, S) in R × S where R ⊆ S, all the inverted lists of R must
have the entry S. Let n be the leaf node corresponding to R.
Then, S exists in all the nodes on the path from T .root to n
and cannot be skipped. That is, the candidate set n.MaxSid
must be updated to be S at some point. At the time when
n.MaxSid = S, R will be added to n.RidList as n.MaxSid
exists in n. In our algorithm, n.MaxSid and n.RidList will be
propagated to n’s ancestor nodes once n.MaxSid becomes the
smallest candidate set in the subtrees rooted at these ancestor
nodes. When n.MaxSid = S and n.RidList = {R} are propa-
gated to the root node T .root, the pair (R, S)will be returned
in our algorithm.

4.3 Early termination for the tree-basedmethod

In the framework, whenever the candidate set is not found in
an inverted list, the early termination stops binary searching
the rest of inverted lists and uses the largest gap in the visited
inverted list as the new candidate set in the next round. Simi-
larly, in the tree-based method, if a candidate set n.MaxSid is
not found in the inverted list I[n.e] of a node n, the candidate
sets of some leaf nodes in the subtree rooted at n need to be
updated. To this end, we recursively invoke the procedure
PostOrderTraverse on node n to update the variables of
n. Only if the candidate set n.MaxSid is found in the inverted
list I[n.e], will this procedure traverse to the parent node of
n.

Algorithm 4: EarlyTermination
1 begin

// add to Algorithm 3 after Line 17
within the if-else condition

2 PostOrderTraverse(n,NextMax);

4.4 Avoiding the leaf nodes propagation

As discussed before, in each round, to update the sets in
T .root.RidList, the postorder tree traversing method needs
to propagate the list of corresponding leaf nodes through
every inner node up to the root node T .root. That is, the list
of leaf nodes is replicated in n.RidList of every inner node
n on the path from T .root to these leaf nodes, which would
result in high propagation cost if the result size is large. To
address this issue,we propose a “lazy” result generation strat-
egy, which can eliminate the cost of leaf nodes propagation.
In each round, instead of generating the join results in the
current round, we postpone this process to the beginning of
next round. When starting a new round, recall that the candi-
date set n.MaxSid of a leaf node n should be updated as the
largest gap of its ancestor nodes and itself. In addition, this
largest gap is kept in a variable NextMax (see Algorithm 3),
which can be passed through the parent node to all its child
nodes in the postorder tree traversing. Similarly, we propose
to keep the returned superset T .root.MaxSid of the last round
in a variable ResSid. Then, in the new round, together with
the variable NextMax, the variable ResSid will be passed to
the leaf nodes whose sets are subsets of ResSid through the
postorder tree traversing. Once a leaf node n is reached, we
first check whether n.MaxSid == ResSid. If so, we produce
a result (R, ResSid), where R ∈ n.RidList. Then, we proceed
to update the variables n.MaxSid, n.RidList, and n.NextMax
of that leaf node. For each inner node n, we drop the vari-
able n.RidList and only update the variables n.MaxSid and
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n.NextMax. In this way, the RidLists are only stored in leaf
nodes and we do not need to propagate them up to the root
node.

5 Data partitioning

In this section, we discuss our data partition methods. Sec-
tion 5.1 shows how to partition the sets in R and constructs
its corresponding inverted index. Section 5.2 proposes to use
two different methods to process the partitions.

5.1 Partitioning the sets

In this section, we further improve the efficiency and scala-
bility of the tree-based method by partitioning the data. The
basic idea is that we can first partition all the sets in R into
disjoint partitions. Then, for each partition, we construct a
“local” inverted index using a small part of the sets in S

such that the rest of sets in S must not be a superset of any
set R in this partition. After that, we can use the previous
tree-based method to process each partition with its corre-
sponding local inverted index to get all the results in this
partition. Together, we can get all the set containment join
result. The local inverted index is much smaller than the orig-
inal inverted index, and thus, the set containment join cost
can be significantly reduced.

For this purpose, in this paper, we propose to partition
the sets in R by their smallest elements in the global order.1

Each partition, denoted by Re, consists of all the sets whose
smallest elements are e. In this way, each set inR is allocated
into one and only one partition. For example, consider the
dataset R in Table 1. The smallest elements in R1, R2, and
R3 are e1, e2, and e1, respectively. Thus, we partition R into
two partitions Re1 and Re2 , where Re1 = {R1, R3} and Re2 =
{R2}. Next, we deal with the sets in S. For a set S to be a
superset of any set R in the partition Re, S must also contain
the element e. Thus, we construct a local inverted index Ie
using only those sets in S containing the element e. The rest
of sets in S do not contain e and must not be a superset of any
set in Re. Then, we use the tree-based method to deal with
the partitionRe and its corresponding local inverted index Ie
to get the results in this partition.

Example 6 Consider the datasets in Table 1. As discussed
above, our data partition schemewill partitionR intoRe1 and
Re2 . For the partition Re1 , we construct an inverted index Ie1
with the four sets S1, S2, S3, and S7 containing e1. For the
partition Re2 , we construct another inverted index Ie2 with
the five sets S3, S4, S5, S6, and S7 containing e2. Take the

1 In our implementation, we use the element frequency order as the
global order and use the most frequent element to partition the data.

left subtree rooted at n2 where n2.e = e1 in Fig. 4 as an
example. As shown in Figs. 2 and 4, the average inverted list
length of the original inverted index I is 5, while the average
length of local inverted index Ie1 is only 2.8 for the left sub-
tree (because the lengths of Ie1[e1], Ie1[e2], Ie1[e3], Ie1[e4],
Ie1[e5], and Ie1[e6] are 4, 2, 4, 2, 2, and 3, respectively) if
the partition method is applied.

Obviously, the prefix tree for the partition Re is a branch
of the prefix tree for the entire dataset R, i.e., the subtree
rooted at the child node of T .root with element e. In addi-
tion, the size of the local inverted index Ie is much smaller
than the original inverted index I. Actually, each inverted list
in the local inverted index Ie is a sub-list of the correspond-
ing inverted list in the original inverted index I. Thus, set
containment join cost using the tree-based method decreases
for each partition. However, for some very small partitions,
the overhead of constructing the local inverted index may be
even larger than the cost of directly applying the tree-based
method on the original inverted index. In next section, we
discuss how to determine which inverted index to use for
each partition.

5.2 Processing the partitions

As all the sets in S containing the element e are within I[e],
we use all the sets in I[e] to construct the local inverted
index Ie, the same as how we construct I using S. Notice
that the local inverted index construction cost may be even
larger than the benefit of replacing the original inverted index
with the local inverted index in the tree based method. Thus,
we need to dynamically determine whether to construct and
use the local inverted index when processing each partition
separately. Next, we give a high-level analysis of the cost and
benefit of constructing and using a local inverted index.

The set containment join cost is proportional to the product
of the sizes of the two input collections of sets. For a partition
Re, using the local inverted index in our tree-based method
is to perform the join over the sets in Re and I[e]. Thus, the
set containment join cost of using the local inverted index
Ie is proportional to |Re| × |I[e]|. In contrary, using the
original inverted index I is to perform the join over the sets
in Re and S and the set containment cost is proportional to
|Re|× |S|. Thus, the benefit of using the local inverted index
is proportional to |Re|×(|S|−|I[e]|). On the other hand, the
cost of constructing the local inverted indexIe is proportional
to the number of sets in S containing e, which is |I[e]|.
Choosing from two indexes.Clearly, it is hard, if not impos-
sible, to accurately estimate the benefit and cost of using the
local inverted index for a partition. However, we can ana-
lyze their trends with the growth of partition sizes, and it
will guide us to choose from the two inverted indexes to
use. Consider a partition Re, as the constant |S| is usually
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far larger than |I[e]|, the benefit, which is proportional to
|Re| × (|S| − |I[e]|), is dominated by the partition size |Re|.
At the same time, as the inverted list length |I[e]| is propor-
tional to the partition size |Re|, the cost is also proportional
to the partition size |Re|. However, with the increase in the
partition size, the benefit grows much faster than the cost
due to the large slope |S| in the benefit and the benefit would
ultimately exceeds the cost. Thus, we tend to construct and
use the local inverted index for large partitions.

For a small partition Re, there is little benefit and the cost
may even be larger than the benefit, in which case we should
directly use the original inverted index I in the tree-based
method instead of constructing and using a local inverted
index Ie. Note that, in many datasets, the element frequency
follows a power-law distribution. There are a few frequent
elements and enormous infrequent elements. Since we par-
tition the sets in R by their smallest elements, we will have
a few large partitions and a huge number of small partitions.
Though, for small partitions, the set containment join cost
using either inverted index is negligible compared to that for
large partitions, there are a huge number of small partitions
and the local inverted index construction cost would add up
and affect the performance to a large extent. Thus, for small
partitions, we propose to use the original inverted index in
the tree-based method instead of constructing and using a
local inverted index.

Dichotomize small and large partitions. To judiciously
dichotomize the small and large partitions, in our implemen-
tation, we use a simple sampling method. We first sort all
the partitions by the ascending order of their sizes and then
randomly sample some partitions based on an empirically
determined sample rate. Next, we sequentially process each
sampled partitions by using the local inverted index and the
original inverted index, respectively. We can afford to do
so because the set containment join cost is negligible using
either inverted index for very small partitions and the num-
ber of sample partitions is small. Once for the first time using
the local inverted index consistently outperforms using the
original inverted index for several times2, we terminate the
sampling process and use the first partition of them as the size
boundary to dichotomize small and large partitions. For small
partitions, we use the original inverted index, and for larger
partitions, we construct and use the local inverted index.

6 External memory set containment join

This section discusses how to deal with large-scale datasets
that are beyond the available memory space. We first intro-
duce the basic idea of our external memory set containment

2 In the experiment, we empirically set it to 3.

join method in Sect. 6.1 and then design an adaptive data
partitioning method that is tailored for high I/O efficiency in
Sect. 6.3.

6.1 Memory-constraint data partitioning

The basic idea. For external memory set containment join,
the I/O cost dominates the CPU cost. Thus, we focus on
improving the I/O efficiency. The basic idea of our external
memory method is to partition the sets in R into partitions
with proper sizes so that each partition can fit in the main
memorywhilemaximizing thememory usage.Note that each
in-memory partition consists of two indispensable compo-
nents for set containment join processing: a local prefix tree
built by all sets in the partition and a local inverted index
constructed by the part of sets in S that might be supersets
of a set R in the partition. To this end, all the sets in R are
partitioned by one or more smallest elements in the global
order. Initially, we partition the sets inR by their smallest ele-
ments. If a partition cannot be entirely loaded into the main
memory, we split it into multiple smaller partitions by their
next smallest elements recursively until each partition can fit
into the memory individually.

Data layout and loading.To efficiently implement the above
idea, we first sort all the sets in R in ascending lexicograph-
ical order and store them continuously on the disk. The sets
in S and the inverted index I are also stored on disk (without
particular order). Before conducting set containment joins on
a partition R f i t that can fit in memory, we need to perform
a few data loading steps. First, to build the local prefix tree,
all the sets in R f i t are loaded into main memory. Since these
sets are stored continuously on disk, this step can be achieved
by several sequential I/O reads. Second, to construct the cor-
responding local inverted index I f i t , we first need to retrieve
all the sets in S that might be a superset of a set in R f i t . By
definition, the elements in the common prefix of the local
prefix tree appear in all sets in R f i t . Thus, for a set S in S

to be a superset of any set in R f i t , S must contain all the
elements in the common prefix. Based on this, in the second
step, we retrieve from disk the inverted lists corresponding to
the elements in the common prefix. The intersection of these
inverted lists is exactly the part of sets in S containing all
the elements in the common prefix, which we denote as the
target-sets of this partition. Finally, the local inverted index
is constructed by loading all the target-sets of this partition
from disk.

The primary I/O cost above is embodied in loading the
target-sets in S. This is because, in the first step, each set in
R is loaded only once and they are read sequentially from the
disk. In the second step, the I/O cost of loading inverted lists is
relatively small since the common prefix is often very short
and only a few inverted lists are loaded for each partition.
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Fig. 6 An example of memory constrained partition

On the contrary, in the third step, the target-sets could be
numerous and induce many random I/Os. Note that loading
a target-set or an inverted list needs a random read.

Union small partitions. To reduce the I/O cost, we propose
to union multiple small partitions into a larger memory-fitted
partition. This is because these small partitions may share
some target-sets. We only need to load the common target-
sets into memory once by union these small partitions. We
will discuss this in detail in Sect. 6.3.

Example 7 Consider the prefix tree for R = {R1, . . . , R8} in
Fig. 6. Assuming that the size of each tree node is 1, the
size of the inverted index Ie1 is 17, and the memory bud-
get is 19. Obviously, the prefix tree and the inverted index
cannot be entirely loaded in memory. Thus, we partition the
sets in R by their two smallest elements and get four par-
titions {R1, R2}, {R3, R4}, {R5, R6}, and {R7, R8}. The sizes of
the four corresponding local prefix trees are all 4. Suppose the
sizes of the four corresponding local inverted index are all 5.
Then, the size of each partition is 9. Tomaximize the usage of
memory and reduce I/O cost, we can union the 4 small par-
titions into 2 memory-fitted partitions {R1, R2, R3, R4} and
{R5, R6, R7, R8}, as shown in Fig. 6 in the dotted lines. The
sizes of the two local prefix trees and the two local inverted
indexes are 7 and 10 at most.

Challenges. Implementing the above ideas imposes two
challenges: First, it requires effective monitoring on the sizes
of a local prefix tree and its corresponding local inverted
index to get partitions that can be fitted into the available
memory; second, how to adaptively partition the prefix tree
and S to efficiently compute the set containment join cor-
rectly and completely. In Sect. 6.3, we devise an adaptive
data partition method that utilizes incremental data loading
and online partition size monitoring to address the two chal-
lenges.

6.2 Size estimation

In this section, we discuss how to estimate the sizes of the
local inverted index and the local prefix tree for a given par-

tition. Before getting into the details, we first formally define
the partition.

Definition 2 ThepartitionRei1∩···∩eim∩{e j1∪···∪e jn } consists of
the sets in R that have ei1 , . . . , eim as the first m smallest
elements and have one of the elements in {e j1 , . . . , e jn } as
the (m + 1)th smallest element.

We denote the local inverted index and local prefix
tree of a partition Rei1∩···∩eim∩{e j1∪···∪e jn }, respectively, as
Iei1∩···∩eim∩{e j1∪···∪e jn } and Tei1∩···∩eim∩{e j1∪···∪e jn }. For a
set S in S to be a superset of any set in the parti-
tion Rei1∩···∩eim∩{e j1∪···∪e jn }, S must contain all elements in
{ei1 , . . . , eim } and at least one element in {e j1 , . . . , e jn }. Thus,
to obtain the target-sets of a partitionRei1∩···∩eim∩{e j1∪···∪e jn },
we can first union all the inverted lists I[e j1], . . . , I[e jn ]
and then intersect the union result with all the inverted lists
I[ei1], . . . , I[eim ]. That is, I[ei1 ] ∩ · · · ∩ I[eim ] ∩ (I[e j1] ∪
· · · ∪ I[e jn ]).
Estimating the local inverted index size. Given a partition,
we estimate its corresponding local inverted index size as the
multiplication of the number of target-sets of this partition
and the average size of sets inS.Next,we estimate the number
of target-sets of a partition.

We first estimate the intersection size of multiple inverted
lists. Let P(e ∈ S) be the probability of a set S in S appearing
in the inverted list I[e]. Assume that each element e is evenly
distributed across all sets inS, then P(e ∈ S) can be estimated
as the proportion of the sets in S that contain the element e,
whose number is |I[e]|. Thus, we have

P(e ∈ S) = |I[e]|
|S|

where |S| is the number of sets in S.
Further, we assume that the appearance of the elements

in the set in S is independent. That is to say, the appearance
of a set S in each of the inverted lists is mutually indepen-
dent. Thus, the probability of S appears in all of the inverted
lists I[ei1 ], . . . , I[eim ] is P(ei1 ∈ S) × · · · × P(eim ∈ S).
Under this, we have the expected intersection size of multi-
ple inverted lists as:

E(|I[ei1] ∩ · · · ∩ I[eim ]|)
=

∑

S∈S
P(ei1 ∈ S) × · · · × P(eim ∈ S)

=
∑

S∈S

|I[ei1]|
|S| × · · · × |I[eim ]|

|S|

=
∏m

k=1 |I[eik ]|
|S|m−1 .

Next, we estimate the union size of multiple inverted
lists I[e j1], . . . , I[e jn ]. Since our goal is to make the local
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inverted index fit in memory, we estimate an upper bound of
the union size, which is achieved when the inverted lists do
not share any set. Thus, the expected union size of multiple
inverted lists is

E(|I[e j1] ∪ · · · ∪ I[e jn ]|) ≤
n∑

k=1

|I[e jk ]|.

As described above, the appearance of a set S in each of
the inverted lists is mutually independent. Similarly, for each
set S in the union I[e j1] ∪ · · · ∪ I[e jn ], the probability of
it appearing in all of the inverted lists I[ei1 ], . . . , I[eim ] is
P(ei1 ∈ S) × · · · × P(eim ∈ S). Thus, we have

E(|I[ei1 ] ∩ · · · ∩ I[eim ] ∩ (I[e j1] ∪ · · · ∪ I[e jn ])|)
=

∑

S∈I[e j1 ]∪···∪I[e jn ]
P(ei1) × · · · × P(eim )

=
∑

S∈I[e j1 ]∪···∪I[e jn ]

∏m
k=1 |I[eik ]|

|S|m

≤
∏m

k=1 |I[eik ]| × ∑n
k=1 |I[e jk ]|

|S|m .

After estimating the number of target-sets for a local
inverted index, the expected size of the local inverted index
can be obtained by multiplying the number with the average
size of the sets in S, which can be calculated as:

|S|avg = ΣS∈S|S|
|S| .

Together, we have the expected size of the local inverted
index Iei1∩···∩eim∩{e j1∪···∪e jn } as:

E(|Iei1∩···∩eim ∩{e j1∪···∪e jn }|)
= E(|I[ei1 ] ∩ · · · ∩ I[eim ] ∩ (I[e j1 ] ∪ · · · ∪ I[e jn ])|) × |S|avg

= ΣS∈S|S| ×
∏m

k=1 |I[eik ]| × ∑n
k=1 |I[e jk ]|

|S|m+1 .

Note that |S| and∑
S∈S |S| are constant for any local inverted

index in the formula above. To estimate the size of a local
inverted index using the formula above, we keep a lookup
table of the sizes of all inverted lists. Then, the size of a
local inverted index can be estimated easily from the common
elements ei1 , . . . , eim and e j1 , . . . e jn . The size of prefix tree
can be easily estimated by the number of nodes in the tree
and the associated sets in the leaf nodes.

6.3 Incremental data partitioning

To implement the basic idea described in Sect. 6.1, we pro-
pose an incremental data partitioningmethod EXLCJoin. This
method incrementally loads data from disk and maintains a
local prefix tree based on the data in memory until the esti-
mated sizes of the local prefix tree and local inverted index
exceed the memory budget, at which point the local inverted
index ismaterialized and a set containment join is conducted.

More specifically, we load the sets in R in lexicograph-
ical order to the main memory, one page at a time. At the
same time, we maintain a local prefix tree Tmem in the main
memory based on loaded sets in R. Let nlca be the lowest
common ancestor (LCA) of all leaf nodes in Tmem . Based on
the discussion in Sect. 6.2, the estimation of the local inverted
index size depends on nlca and its child nodes. Each time we
add the newly loaded sets to Tmem , we re-estimate the local
inverted index size only if nlca changes or its child nodes
changes. If the memory budget is exceeded by the estimated
sizes of the local inverted index and the local prefix tree, we
drop the newly loaded sets and regard the sets in Tmem as a
partition. Then, we load the target-sets from disk, materialize
the local inverted index, and conduct set containment join on
this partition.

Algorithm 5 illustrates the details of our external memory
set containment join algorithm. The algorithm first sorts sets
in R lexicographically (Line 2) and builds an inverted index
I for the sets in S (Line 3). Then, it incrementally loads
the sets in R and continuously monitors the memory usage
(Lines 5–10). If thememory required to process this partition
approaches the memory budget, it loads the target-sets in S

from the disk and build a local inverted index (Line 14).
Then, it processes the partition in memory (Line 15). More
specifically, two steps are included to get the target-sets in
S. At first, it unites the inverted lists corresponding to the
elements of all nlca’s child nodes. Then, it gets the target-
sets in S based on the intersection of the union list with all
the inverted lists corresponding to the elements of nlca and
all its ancestors. Note that there may be no common prefixes
between small partitions, then the union list is directly used
to get the target-sets in S. Additionally, the algorithm loads
target-sets in S in an increasing order of their positions on
the disk, which takes advantage of fast sequential accesses
of disks and further reduce the overall I/O cost. Finally, after
processing the partition, the algorithm removes the partition
and the local prefix tree frommemory (Line16) and continues
loading sets in R incrementally.

Example 8 Consider the prefix tree for R = {R1, . . . , R8}
in Fig. 6, we use the same assumption as Example 7, and
then, we have |Ie1 | = 17 and |Ie1∩ei | = 5 (i = 2, . . . , 5).
After loading R1 and R2, n2 is exactly the lowest common
ancestor nlca . As the memory requirement of processing the
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Algorithm 5: External Memory SCJ

Input: S and R; M : Memory Budget.
Output: A: R ��⊆ S = {(R, S)|R ⊆ S, R ∈ R, S ∈ S};

1 begin
2 sort all sets in R in ascending lexicographical order and write

them to disk;
3 build an inverted index I on S and write it to disk;
4 init an empty in-memory prefix tree Tmem ;
5 foreach set R ∈ R do
6 add R to Tmem ;
7 update the size of prefix tree |Tmem |;
8 if nlca or the set of its child nodes changes then
9 nlca = Tmem ’s lowest common ancestor;

10 re-estimate the size of the local inverted index
|I(Tmem)|;

11 if |Tmem | + |I(Tmem)| ≥ M then
12 remove R from Tmem ;
13 retrieve the inverted lists corresponding to nlca , all its

ancestor nodes, and all its child nodes to calculate the
target-sets;

14 retrieve all the target-sets to construct the local
inverted index for Tmem ;

15 conduct set containment join on Tmem and the local
inverted index and add the results to A;

16 set Tmem as an empty tree and drop the local inverted
index;

17 return A;

in-memory partition is 9 (4 for the prefix tree and 5 for the
local inverted index Ie1∩e2 ), which is smaller than the mem-
ory budget (i.e., 19), then we continue loading the sets in
R. When adding R3, the nlca is updated to n1. Then, we
re-estimate the size of the local inverted index Ie1∩(e2∪e3).
The memory requirement is 16 (6 for the prefix tree and
10 for the local inverted index), which is still smaller than
the memory budget; then, the loading process is continued.
After loading R5, a new child n4 is added to the nlca . Sim-
ilarly, we need to re-estimate the size of the local inverted
index Ie1∩(e2∪e3∪e4). We find that the memory requirement
increases to 24 (9 for the prefix tree and 15 for the local
inverted index) and exceeds the memory budget. Thus, we
remove R5 from the in-memory prefix tree Tmem , and regard
the in-memory sets {R1, R2, R3, R4} as a partition. Thereafter,
we materialize the local inverted index and process the par-
tition. Finally, we clean up the memory by emptying Tmem

and dropping I(Tmem), and then continue loading the set R5.

Correctness and soundness. We first show the correctness
of the incremental data partitioning-based method EXL-
CJoin. The correctness is obvious as EXLCJoin uses the
tree-based method to process each memory-fitted partition,
which returns a pair (R, Tmem .root.MaxSid) only if the can-
didate set Tmem .root.MaxSid is found in all the nodes (recall
that a set S exists in a node nmeans S exists in the inverted list
I[n.e]) on the path fromTmem .root toR’s correspondingnode
nR. This indicates a set containment relationship between

R and Tmem .root.MaxSid. Next, we show the soundness of
EXLCJoin. As discussed in Sect. 4, for any set pair (R, S) in
R × S where R ⊆ S, Smust exist in all the nodes on the path
from Tmem .root to R’s corresponding node nR and will not be
skipped by the tree-basedmethod. That is, the candidate set S
must be put in all the inverted lists of R. Suppose thememory-
fitted partition that contains R is Rei1∩···∩eim∩{e j1∪···∪e jn } and
R has ei1 , . . . , eim as the first m smallest elements and has
e jk (1 ≤ k ≤ n) as the (m + 1)th smallest element. Then,
S must contain ei1 , . . . , eim and e jk since R ⊆ S. On the
other hand, the algorithm loads all the sets in S that con-
tain all elements in {ei1 , . . . , eim } and at least one element in
{e j1, . . . , e jn } from the disk as the target-sets, which are then
used to construct the local inverted index. Clearly, S belongs
to the target-sets. Therefore, Swill be put in the inverted lists
corresponding to each of its distinct elements, which includes
R’s inverted lists as R ⊆ S.

7 Experiment

In this section, we evaluate the efficiency and scalability of
our proposed methods.

7.1 Internal memory evaluations

7.1.1 Experimental setup

We conducted experiments on both real-world and synthetic
datasets. As with the previous studies [5,58], we evalu-
ate all the methods on the self-join case, i.e., R = S.
However, all our proposed techniques can be seamlessly
adapted for the two-relation join case. Particularly, we use
the following eight real-world datasets: FLICKR,3 AOL,4

ORKUT,5 TWITTER,6 DBLP,7 LINKEDIN,8 AMAZON9

and DELICI.10 The FLICKR dataset is a photo-tag dataset.
Each photograph corresponds to a set, and each photo-
graph tag corresponds to an element. The AOL dataset is a
query log dataset. Each query corresponds to a set, and each
whitespace-split query word corresponds to an element. The
ORKUTdataset contains community information from a free
on-line social network. Each community is a set, while each
user in the community is an element. The TWITTER dataset

3 https://www.flickr.com.
4 http://www.cim.mcgill.ca/~dudek/206/Logs/.
5 https://snap.stanford.edu/data/com-Orkut.html.
6 https://snap.stanford.edu/data/twitter-2010.html.
7 https://www.aminer.cn/citation.
8 https://www.aminer.cn/data-sna.
9 http://jmcauley.ucsd.edu/data/amazon/links.html.
10 http://konect.uni-koblenz.de/networks/delicious-ui.
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Table 2 Statistics of the
real-world datasets

Dataset # of sets Min/max/avg size # of Elements z-value # of results

FLICKR 3,546,729 1/1230/5.4 618,971 0.63 6.27 billion

AOL 36,389,577 1/125/2.5 3,849,556 0.68 1341.87 billion

ORKUT 15,301,901 2/9120/7 2,322,299 0.13 240.4 million

TWITTER 28,819,434 2/4998/9 13,096,918 0.3 545.14 million

DBLP 2,423,403 1/1532/10.3 1,985,921 0.44 10.02 million

LINKEDIN 3,099,144 1/869/6.2 6,447,707 0.06 3.97 million

AMAZON 10,270,965 2/44,557/7 9,760,640 0.43 14.87 million

DELICI 7,333,910 2/29,233/10.2 760,414 0.3 22.49 million

is a social network dataset. Each user corresponds to a set.
The followers of a user are the elements of the corresponding
set. Note that in TWITTER dataset, we removed the sets with
more than 5000 elements to keep the number of results rea-
sonable. The DBLP dataset consists of citation relationships
extracted from the DBLP bibliography database. Each paper
corresponds to a set and each reference of the paper cor-
responds to an element. In this case, we create containment
relationships between papers, which could be used for further
studies on paper recommendations. The LINKEDIN dataset
is a professional network dataset. Each user corresponds to
a set. The professional connections of a user are the ele-
ments of the corresponding set. Set containment join on this
dataset can help people find professionals in related area of
their work. TheAMAZONdataset contains user ratings from
the e-commerce site Amazon. Each user is a set, while each
product rated by the user is an element. The DELICI dataset
is a bookmark-tag dataset. Each user corresponds to a set,
and each URL tagged by the user corresponds to an element.
For these two datasets, set containment join can help people
find friends with similar interests and hobbies. Note that in
AMAZON and DELICI datasets, there are a large number of
users with only one product rating or URL tag. We removed
these users from the datasets, because their supersets can be
directly obtained from the inverted lists corresponding to the
element in each user. Table 2 provides some statistics for
these eight datasets.

As with the previous work [59], we make use of Zipf’s
law [33] to generate the synthetic datasets with four param-
eters: (1) data cardinality, i.e., the number of sets in the
dataset, ranges from 2.5 million to 10 million; (2) the aver-
age set size ranges from 4 to 128; (3) the number of distinct
elements ranges from 10 thousands to 10 million; (4) the z-
value, which measures the skewness of the datasets, ranges
from 0.25 to 1.0. The higher the z-value is, the more “skew”
the dataset is. More specifically, a dataset with z-value
1− log(a/100)

log(b/100) means the most frequent b percent of elements
accounts for a percent of the total number of elements in the
dataset. For example, if in a dataset the most frequent 20% of
elements accounts for 80% of the total number of elements,

Table 3 Statistics of the synthetic datasets

Parameter Values

Data cardinality 2.5M, 5M, 10M, 20M

Average set size 4, 8, 16, 32, 64, 128

Number of distinct elements 10K, 100K, 1M, 10M

z-value 0.25, 0.5, 0.75, 1.0

Fig. 7 Frequency distribution of real-world datasets

i.e., a = 80 and b = 20, the z-value is 0.86. Similarly, for
a more even dataset where a = b = 50, the z-value is 0.
Table 3 summarizes the statistics of the synthetic datasets.
On each experiment, we vary one of the parameters and set
the other parameters to their default values (in bold font in
the table). Note that the previous work [59] uses significantly
higher z-values (greater than 1.0). We argue that in the real
world, the z-values of most datasets are within 1.0 based on
the 80/20 law [33].

For the eight real-world datasets, Fig. 7 shows the per-
centage of the total number of elements that the top 150
most frequent elements account for. We can see that the
eight datasets cover a wide range of data skews. Addition-
ally, we can also notice that the most frequent elements in the
FLICKR andAOL datasets account for much higher percent-
age (about 10×–10, 000×) of the total elements than those
of the other datasets, which indicates that the FLICKR and
AOL datasets are more skew than the other datasets.

We compared LCJoin with three state-of-the-art algo-
rithms, PRETTI [19], LIMIT+ [5] and TT-Join [58,59].
PRETTI indexes R with a prefix tree and S with an inverted
index. The prefix tree is traversed in a depth-first manner, and
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the corresponding inverted lists on the nodes are intersected
so that the list intersections on common prefix are shared.
LIMIT+ improves PRETTI by employing a cost model to
decide online whether to stop list intersections as the num-
ber of candidates may be small. In our experiment, we used
the trained cost model provided by the author. TT-Join uses
k least frequent elements as the signature, and a candidate
is generated and verified each time the signature is matched
when traversing the prefix tree built on S. In our experiment,
we set the parameter k as 3, which is the same as in [59].
In addition, when performing samples in LCJoin to deter-
mine the partition size boundary, the sample fraction was set
to 1%. In all implementations, the element frequency order
was used as the global order.

All the methods were implemented in C++ and compiled
using g++ 5.4.0 with -O3 flag. We reimplemented PRETTI
and TT-Join and got the source code of LIMIT+ from its
author. The experiments were ran on a workstation powered
by a 20-core Intel Xeon Gold-6148 CPU on Linux (Ubuntu
16.04) with 64 GB main memory.

7.1.2 Evaluating the tree-based methods

In this section, we evaluate the efficiency of our proposed
framework method and tree-based method, along with the
early termination techniques. We implemented the following
four methods. (1) Framework uses the framework method as
described in Algorithm 1. It intersects the inverted lists in a
cross-cutting way. (2) FrameworkET improves Framework
with the early termination technique as discussed in Sect. 3.3.
(3) TreeBased utilizes a prefix tree index to share the com-
putation on R as described in Algorithm 2. (4) TreeBasedET
integrates the early termination technique into the TreeBased
method as discussed in Sect. 4.3.

We varied the data cardinality (using 20%, 40%, 60%,
80%, and 100% of the sets in the datasets) and reported the
runtime of different methods. Figure 8 shows the experi-
mental results on the eight real-world datasets. We observed
that the two tree-basedmethods TreeBasedET and TreeBased
outperformed the two framework methods Framework and
FrameworkET by up to 20× when the data cardinality was
large (≥ 80%). For example, on the AOL dataset with
100% data cardinality, the time elapsed for TreeBasedET,
TreeBased, FrameworkET, and Framework was 70s, 79s,
1524s, and 1568s, respectively. For small data cardinality,
the framework methods occasionally outperformed the tree-
basedmethods. This is because the treemethods can share the
computation in the common prefixes of the sets. The larger
the data cardinality is, the more computation can be shared.
In contrast, if the data cardinality is too small, the overhead,
such as constructing and initializing the prefix tree, may be
larger than the benefit of shared computation.Note that on the
LINKEDIN dataset, the performance of framework-based

methods was slightly better than the tree methods. This is
because the LINKEDIN dataset has a relatively even data
distribution (z-value = 0.06), which indicates that there are
not much computation can be shared. As a result, the benefit
of shared computation is exceeded by the overhead of prefix
tree. We also observed that the early termination techniques
helped improve the performance. This is because they can
avoid unnecessary binary search operations.

7.1.3 Evaluating the data partition methods

In this section, we evaluate the data partition methods. We
implemented twomethods. (1)AllPartition partitions the sets
inR using their smallest elements in the global order and uses
the local inverted index and the tree-based method to pro-
cess all partitions. (2) LCJoin uses the method as described
in Sect. 5 to determine whether to use the local inverted index
or the original inverted index to process each partition. We
varied the data cardinality and reported the runtime of Tree-
BasedET, AllPartition, and LCJoin. Note that TreeBasedET
does not partition the data. The results on the real-world
datasets are shown in Fig. 9. We can see from the figure that
LCJoin always achieved the best performance. For example,
on the AOL dataset with 100% data cardinality, the runtime
of TreeBasedET, AllPartition, and LCJoin was 79s, 24s, and
19s, respectively. This is because the partition-basedmethods
can reduce the inverted index size for each partition, which
results in less binary search cost and more skipping of irrele-
vant entries in the inverted lists.We also noticed that on some
datasets, the partition-based method AllPartition did not per-
form as well as the non-partition method TreeBasedET. For
example, on the dataset AMAZON in which there exist a
large number of small partitions, AllPartition had 2.8×more
run time than TreeBasedET when the data cardinality was
100%. This is because when the partition size is very small,
the local inverted index construction cost for this partition
may be larger than the cost of directly using the original
inverted index. Furthermore, the cost for the local inverted
index construction would add up when the number of small
partitions is large, which can dramatically affect the over-
all performance. LCJoin alleviates this issue by dynamically
determining whether to use the original inverted index or to
build a local inverted index to process each partition.

7.1.4 Comparing with existing methods on real-world
datasets

In this section, we compared LCJoin with three state-of-
the-art methods, PRETTI, LIMIT+, and TT-Join. We varied
the data cardinality and reported the runtime of different
methods. Figure 10a–h shows the results. Note that on the
TWITTER dataset with data cardinality 100%, PRETTI
failed to return results due to an out-of-memory error. We
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Fig. 8 Evaluation of the tree-based methods

Fig. 9 Evaluation of the data partition methods

observed that LCJoin always achieved the best performance
and improved existing methods by up to 10×. For example,
on the AOL dataset with 100% cardinality, the runtime for
PRETTI,LIMIT+,TT-Join,LCJoinwas344s, 358s, 160s, and
19s, respectively. This is because our cross-cutting-based list
intersection can skip many irrelevant entries in the inverted
lists and the data partition technique can reduce the size of
the inverted index in each partition. We also noticed that
TT-Join outperformed PRETTI and LIMIT+ in most cases.
However, on datasets with large data cardinalities and mod-
erate z-values (such as TWITTER, AMAZON and DELICI),
its superiority is not obvious. This is because there are a huge
number of candidates to check and verify when applying

the fixed-length signature scheme (k least frequent prefix)
on datasets that are not very skew. Additionally, we also
observed that our approach LCJoin scaled very well when
data cardinality was increased. For example, on FLICKR
dataset, when the data cardinality was 20%, 40%, 60%, 80%,
and 100%, the runtime of our approach was, respectively,
0.52 s, 1.11 s, 1.7 s, 2.23 s, and 2.91 s, which suggests an
almost linear growth.This is due to the fact that our tree-based
method can share computation in the common prefixes of the
sets.

In addition, we evaluated the effect of data duplicates
on all the methods. Specifically, we ran all the methods
on the deduplicated FLICKR, AOL, ORKUT, and TWIT-
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Fig. 10 Comparing with existing approaches on real-world datasets

TER datasets and reported the elapsed time. Note that the
other four datasets (i.e., DBLP, LINKEDIN, AMAZON, and
DELICI) have no duplicate sets and were excluded from this
experiment. After deduplication, the data cardinality of the
four datasets FLICKR, AOL, ORKUT, and TWITTER is
1.13 million, 10.05 million, 11.07 million, and 25.11 mil-
lion, respectively. The results are shown in Fig. 10i–l. We
can see that our method still performed significantly bet-
ter than the other state-of-the-art methods. Moreover, our
method was most robust to duplicates. Its runtime almost
remained the same. This is because, to efficiently deal with
duplicates, instead of explicitly indexing the identifiers of
all duplicate sets in the inverted index I, in our implemen-
tation we propose to index the leaf nodes (node ID in the
prefix tree T ). As each leaf node contains all the duplicate
sets sharing the same path from the root to this node, we only
index the leaf node once in the inverted index. The inverted
index I can be efficiently constructed by left-to-right pos-
torder tree traversing. Thus, the computation is on the basis
of leaf nodes, and no redundant computation is performed.
We also observed that the runtime of LIMIT+ reduced a lot.
This is because it indexes a short prefix (usually 2) on the tree
index, which cannot distinguish the duplicate sets and needs

to conduct the same computation for each of the duplicate
sets. Similarly, TT-Join indexes k-length least frequent prefix
in a tree and the entire sets on the other prefix tree. Thus, it
is less robust to duplicates than our method. However, we
noticed that the runtime of TT-Join also almost remained
the same. This is because most of the duplicates are rather
short and they can be fully indexed both by the two prefix
trees. We also observed that the runtime of PRETTI reduced.
This is because it scans shorter inverted lists after deduplica-
tion. Thus, our leaf node-based inverted index construction
method can also help improve the performance of PRETTI
on the datasets with duplicates.

We alsomeasured the peakmemory usage of the four algo-
rithms. Figure 11 shows the results. We observed that LCJoin
had the lowest peak memory usage in nearly all cases. For
example, on the FLICKR dataset, the peakmemory usage for
PRETTI, LIMIT+, TT-Join, and LCJoinwas 2.4GB, 1.21GB,
1.03GB, and 0.83GB, respectively. The main reason for this
is that TT-Join utilizes two sparse tree structures in its algo-
rithm, which consumes more memory than our compact tree
structure. Though PRETTI and LIMIT+ also make use of
compact tree structures, their top-down list intersections gen-
erate a large number of intermediate results, which leads
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Fig. 11 Comparing peak memory usage with existing methods on real-
world datasets

to bad memory fragmentation, and thus have larger peak
memory usage. Although our data partition technique may
require building local inverted indexes for the partitions, all
of these indexes can share the memory through a memory
pre-allocation mechanism.

7.1.5 Comparing with existing methods on synthetic
datasets

In this section, we compared our method LCJoin with exist-
ing methods on the synthetic datasets. We evaluated these
methods on synthetic datasets using different parameters
and reported their runtime. Figure 12 shows the results. We
can see that our approach outperformed existing methods
in all settings by up to 70×. For example, as shown in
Fig. 12c, when the z-value was 0.5, the average set size was
8, the number of distinct elements was 10 thousand, and the
data cardinality was 10 million, the runtimes for PRETTI,
LIMIT+, TT-Join, and LCJoin were 1687s, 1393s, 3604s,
and 52s, respectively.

More specifically, Fig. 12a depicts the results for scal-
ability experiments. We can see that our approach showed
good scalability with the increase in data cardinality, just as
we observed for the real-world datasets. Note that the per-
formance of TT-Join decreased faster than other algorithms
with the increase in the data cardinality, this is because the
fixed-length signature scheme (k least frequent prefix) is not
adaptive to the datasets. Figure 12b shows the results for dif-
ferent average set sizes. PRETTI failed to return results when
the average set size was greater than 32. It also shows good
scalability of our algorithm with the increase in the average
set size. Figure 12c gives the runtime of all algorithms when
varying the number of distinct elements. We observe that the
performance of LCJoin is rather steady. For example, when
the number of distinct element was 10 thousands and 10 mil-
lion, the runtime of our approach was, respectively, 52 s and
16 s, while for TT-join, PRETTI, and LIMIT+ the run time
was 3604 s/1687 s/1393 s and 40 s/124 s/69 s. The main rea-
son is that our data partition method can effectively reduce

the inverted index size, which alleviate the side-effect caused
by long inverted lists, especially when the number of distinct
elements is small. Figure 12d presents the results of vary-
ing the z-value of elements. LCJoin performed well under
different z-value and outperformed PRETTI, LIMIT+, and
TT-Join by up to 9.8×, 5.8×, and 4.7×.

7.2 External memory evaluations

7.2.1 Experimental setup

The datasets and experimental environment are the same as
that used in Sect. 7.1. In addition, a hard disk drive (HDD)
with 15,000 RPM was used in the experiment. All experi-
ments were conducted using the direct I/O mode in Linux
to eliminate influences caused by the data caching of file
systems. Specifically, the page size was set to 4 kB. The
experiments were performed to test the run time and I/O
counts (i.e., physical disk reads) under various experimental
settings.

7.2.2 Baseline method

As there is no existing work to process external memory set
containment joins under a limited memory budget, we adapt
the intersection-oriented PRETTI algorithm as a baseline for
comparison. We denote it as EXPRETTI.

EXPRETTI. A straightforward way to extend PRETTI to the
external memory scenario is amortizing the I/O cost of load-
ing inverted lists among the sets with common prefixes. To
implement this, we first sort sets in R in an lexicographical
increasing order so that the sets sharing common prefixes are
clustered. Next, we build an inverted index I for the sets in
S and persist it to disk. Finally, for each set R ∈ R, we load
all the inverted lists corresponding to the elements in R from
the disk and intersect them. Each time when processing a
set R, we can reuse the intermediate intersection results if it
shares common prefixes with the sets that have already been
processed, which can avoid the I/O cost of loading inverted
lists corresponding to the common prefixes. As all sets in
R are sorted lexicographically, we only need to reserve the
intermediate intersection results of the latest processed set,
including the inverted list of its smallest element.

7.2.3 Evaluation on real-world datasets

In this section,wecompared EXLCJoin (described inSect. 6.3)
with EXPRETTI on real-world datasets by varying thememory
budget (2−3%, 2−2%, 2−1%, 20%, 21%, 22%, 23%, and 24%
of the dataset size). The results are shown in Figs. 13 and
14. We observed that EXLCJoin consistently outperformed
EXPRETTI by a big margin with respect to both I/O cost and
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Fig. 12 Comparing with existing approaches on synthetic datasets

Fig. 13 I/O counts of EXLCJoin and the baseline on real-world datasets

Fig. 14 Run time of EXLCJoin and the baseline on real-world datasets
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run time in all cases. For example, on AOL dataset, when the
memory size was 24%, the I/O counts for EXPRETTI and EXL-
CJoin were 88.7 million and 0.6 million, respectively, while
the run time was 13228s and 124s, respectively. The speedup
of EXLCJoin over EXPRETTI is 100×. The main reason is that
EXLCJoin excludes the “irrelevant” sets inS thatmust not be a
superset of any set in the in-memory partition in advance, and
as a result, the number of target-sets that are required to be
loaded from the disk for local inverted index construction is
effectively reduced. Moreover, with the help of incremental
data loading, which can fully leverage the available memory
by union as many small partitions as possible, the cost of
constructing local inverted index is well amortized among
these small partitions when batch processing them together.
In contrast, EXPRETTI cannot make full use of the available
memory space, and the I/O cost of loading inverted lists
can only be shared among sets with common prefixes. For
the rest suffixes, it has to repeatedly load the corresponding
inverted lists to perform list intersections and therefore lead
to a large number of disk reads. We also observed that EXL-
CJoin scaled much better than EXPRETTI. For example, on
FLICKR dataset, when memory size increased form 2−3 to
24%, the run time for EXPRETTI decreased by 1.3× (from
4273 to 3349 s), while the run time for EXLCJoin decreased
by 23.6× (from 874 to 37 s). This is due to the fact that
the I/O cost of loading a candidate set S can be amortized by
more sets inRwith the increase in memory budget. Note that
the performance of EXPRETTI remains stable when the mem-
ory size exceeds a threshold, where for arbitrary set R, all its
intermediate intersection results can be cached in memory.
Additionally, we also observed that the run time of EXLCJoin
decreased faster than the I/O counts when the memory size
increased. For example, on DBLP dataset, when memory
size increased form 2−3 to 24%, the I/O count for EXLCJoin
decreased by 5.9× (from 7.34 million to 1.24 million), while
the run time decreased by 11.3× (from 1822.8 to 161.5 s).
The reason is that when a larger memory budget is imposed,
we need to load more sets in S to build the local inverted
index for a partition, which would result in smaller average
distances of fetched sets in S on the disk. On the other hand,
the average disk scan cost of each set S is proportional to the
distances between them.

7.2.4 Evaluation on synthetic datasets

In this section, we evaluate the performance of the twometh-
ods on synthetic datasets. In all cases, the memory budget
was set to 2% of the dataset size. Figures 14a and 15a
show the results on different data cardinalities. We observed
that the performance gap between EXLCJoin and EXPRETTI
increased with the dataset size. This is because EXLCJoin
takes advantage of incremental data loading to maximize the
usage of available memory budget that increases with the

data cardinality, and in cooperation with the method of batch
processing sets in memory, it results in low amortized I/O
cost. However, for EXPRETTI, it cannot make good usage
of the increasing memory budget, and has to scan longer
inverted lists to process each set R when the data cardinal-
ity is larger. Figures 14b and 15b depict the total I/O cost
and run time when varying the average set size. Note the
logarithmic vertical scale. We can see that EXLCJoin scaled
well with the increasing set size, while EXPRETTI favored
small set size and its performance decreased sharply with the
increase in set size. This is due to the fact that the I/O cost
of most list intersections cannot be shared under a large set
size. For example, when the average set size was 4, EXPRETTI
had 4.3× more I/O counts than EXLCJoin. However, when
the set size increased to 128, the gap between I/O counts
became 14.6×. Figures 14c and 15c show the results on var-
ious element domain size. As expected, EXPRETTI preferred
a larger element domain size because of the shorter length of
inverted lists, and it needed less I/O cost to load them.We also
observed that EXLCJoin had steady performance regardless
of the number of distinct elements, and was still significantly
superior to the EXPRETTI algorithm. This is because our com-
mon prefix-based data partition can effectively reduce the
target-sets in S that are required to be loaded from disk to
build the local inverted index. Figures 14d and 15d show the
effect of different data skewness. Note that EXPRETTI failed
to return the result in reasonable time when the z-value was
1. The reason is that for many sets inR, the inverted list of the
smallest element of R cannot be cached in memory due to the
high skewness of elements; thus, EXPRETTI had to load these
especially long inverted lists repeatedly. The performance of
EXLCJoin was less affected with the increase in z-value, and
it was up to one order of magnitude faster than EXPRETTI.

8 Related work

Containment joins.Data produced in the form of set-values
are omnipresent [44–46]. Containment joins on set-valued
data have become an important building block for today’s
knowledge and data management due to its wide range of
applications [5]. Several methods have been developed to
address the set containment join problem, some of them
union-oriented and others intersection-oriented. For union-
oriented methods, Helmer and Moerkotte [16] proposed to
use the signature-hash join (SHJ) to address the set contain-
ment join problem. SHJ first uses a signature structure [36]
to compactly represent sets and then performs signature enu-
merations and comparisons to filter unqualified set pairs.
As SHJ involves an expensive signature enumeration cost,
it scales poorly with the dataset cardinality. Ramasamy et
al. [35] proposed the partitioned set join (PSJ) method, while
Melnik et al. [30] developed the divide-and-conquer set join
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Fig. 15 I/O counts of EXLCJoin and the baseline on synthetic datasets

Fig. 16 Run time of EXLCJoin and the baseline on synthetic datasets

(DCJ) method. PSJ and DCJ both employ a hash function
to partition the sets into different buckets such that two sets
have a set containment relationship only if they reside in
the same bucket. The pairs in the same bucket are then fur-
ther verified. Melink et al. [31] improved PSJ and DCJ by
using a comprehensive model to analyze the partitioning
algorithms. They proposed to use more sophisticated par-
titioning strategies to improve the filtering efficiency. Luo
et al. [27] further improved these methods by using a Patri-
cia tree to reduce the signature enumeration cost. Yang et
al. [58,59] proposed the TT-Join, which takes the data skew-
ness into account. For each set in R, TT-Join uses its k
least frequent elements as the signature. However, as shown
in several previous studies [5,58,59], most union-oriented
methods are not competitivewith intersection-orientedmeth-
ods. Mamoulis [28] proposed the block nested loop join
(BNL), which first builds an invert index over S and then
performs list intersections for all the elements in each R ∈ R.
Jampani and Pudi [19] improved BNL by using a prefix
tree to share the computation across the sets in R. Luo et
al. [27] further improved BNL by replacing the prefix tree
with amore compact tree structure, the Patricia tree. To avoid
performing too many inverted list intersections for a large
prefix tree, Bouros et al. [5] proposed the LIMIT+ method
which only uses up to l elements in the sets to construct
the prefix tree. In addition, they also proposed the order and
partition join technique to build the inverted index incre-
mentally, resulting in a lower list intersection cost. Finally,
Kunkel et al. [21] proposed the PIEJoin method, which uses

a tree structure to reduce the size of the inverted index on
S. Note that all these intersection-oriented methods utilize
the “rip-cutting”-based list intersection, while we propose
to use the “cross-cutting”-based list intersection. Addition-
ally, with the broad application of distributed computing
systems [51], Yang et al. [59] extended set containment join
system to a distributed environment to improve the scalabil-
ity. Specifically, they proposed a signature-based distribution
mechanism, which can achieve good load balance as well as
low communication cost.

Containment queries. In addition to the set containment
join problem, the set containment query problem has also
been extensively studied. Given a query set Q and a collec-
tion S of sets, the set containment query asks for all the sets
in S that contain the query set Q. Helmer and Moerkotte [17]
conducted an experimental study on the efficiency of various
index structures for set containment queries. The experimen-
tal results indicate that the inverted index exhibits the best
overall performance. Terrovitis et al. [47] proposed to com-
bine the prefix tree and inverted index to support efficient set
containment queries. The prefix tree indexes the top-k most
frequent elements of the dataset and is placed in main mem-
ory, whereas the inverted index is placed in second storage.
However, the size of some inverted lists might be especially
large when the distribution of elements is skewed. To address
this issue, Terrovitis et al. [43] proposed the ordered inverted
file (OIF), which employs B-trees to order the sets in an
inverted file by their set values. The OIF is capable of reduc-
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ing the number of disk pages that need to be read from
the second storage. Ibrahim and Fletcher [18] extended the
prefix tree-based method for containment queries on nested
sets, which can have both atomic and set-valued objects as
elements. Yang et al. [60] proposed a prefix tree-based sam-
pling approach for selectivity estimation on set containment
queries.

Similarity joins.Another relevant line of research is the sim-
ilarity join. A similarity join takes two collections of objects
(such as sets and sequences) and identifies all the object
pairs that are similar enough with regard to a given similarity
function and threshold. There are a few experimental studies
and survey for this topic [14,20,29,49,61]. More specifically,
Deng et al. [9] proposed a partition-based method for set
similarity joins under Jaccard similarity constraints. A sim-
ilar approach is designed by Li et al. [24] for edit distance
similarity join. Bayardo et al. [4], on the other hand, proposed
to apply the prefix filtering technique for the set similarity
join. For each set, the prefix filter first sorts the elements
using a global order and then uses the first few elements as
the prefix. The prefix filter technique guarantees that two sets
are similar only if their prefixes share at least one element.
Xiao et al. [57] improved the prefix filter with a position fil-
ter and extended the technique to address top-k queries [56]
and for edit-distance constraints [55]. Wang et al. [50] pro-
posed AdaptJoin algorithm, which uses a longer prefix to
filtering more dissimilar pairs. Wang et al. [52] combined
the ideas of token universe partitioning and prefix filtering for
the local similarity search problem, which identifies partially
replicated text among a large number of documents. Further,
Agrawal et al. [1] proposed parallel approaches to speed up
the local similarity search. Wang et al. [53,54] proposed to
group related sets into blocks in the index and explore possi-
ble computational cost sharing within the same block when
processing set similarity joins. Qin et al. [34] proposed a
new pigeonring principle, which organizes the boxes in a
ring and constrains the number of items in multiple adjacent
boxes, thus yielding stronger conditions compared with the
basic pigeonring principle. Further, in cooperation with the
token universe partitioning method, the new principle was
utilized to effectively find the candidate sets whose distances
to the query set might fall below a given threshold. Deng
et al. [10] proposed a size-aware method for the overlap set
similarity join problem, which finds all the set pairs with
a sufficient large overlap size. Deng et al. [7] proposed an
efficient method to find related sets using two-tier similarity
functions. Li et al. [23] proposed a partition-based method
for string similarity joins based on edit distance constraints,
which find every string pair from two large sets of strings
whose edit distance is within a given threshold. To further
improve the scalability, a number of solutions [3,8,11–
13,15,25,26,32,37–42,48] have been proposed to perform the

set similarity join on MapReduce [6] or Spark [62]. Agrawal
et al. [2] proposed to solve the error-tolerant set containment
join problem. Li et al. [22] developed algorithms to solve
the T-occurrence problem. These methods can be adapted to
solve our set containment join problem. However, as shown
in [59], they did not perform well when applied to our prob-
lem.

9 Conclusion

In this paper, we studied the set containment join problem,
which, given two collections R and S of sets, finds all the
set pairs in R × S with a set containment relationship. Exist-
ing methods can be broadly classified into union-oriented
and intersection-orientedmethods. The union-orientedmeth-
ods are not competitive because they involve an expensive
signature enumeration step. The intersection-oriented meth-
ods build an inverted index on S. In contrast to existing
intersection-oriented methods, which use the rip-cutting
fashion to intersect inverted lists, we design a cross-cutting-
based list intersection method. The cross-cutting-based list
intersection can skip many irrelevant entries in the inverted
lists by using the gaps between two consecutive entries in
the inverted lists. To share computation across sets, we built
a prefix tree onR and extend the cross-cutting-based list inter-
section to operate on this prefix tree. To further improve the
efficiency and scalability of our proposed method, we parti-
tioned the sets inR according to their smallest elements in the
global order and apply different approaches to each partition.
Furthermore, we proposed an adaptive and I/O efficient data
partition method to support large-scale datasets that cannot
be kept in memory. The experimental results demonstrated
the superiority of our proposal.
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