
1

A Partition-based Method for String Similarity Joins with
Edit-Distance Constraints

GUOLIANG LI, DONG DENG, and JIANHUA FENG
Tsinghua University

As an essential operation in data cleaning, the similarity join has attracted considerable attention from the
database community. In this paper, we study string similarity joins with edit-distance constraints, which
find similar string pairs from two large sets of strings whose edit distance is within a given threshold.
Existing algorithms are efficient either for short strings or for long strings, and there is no algorithm that can
efficiently and adaptively support both short strings and long strings. To address this problem, we propose
a new filter, called the segment filter. We partition a string into a set of segments and use the segments as
a filter to find similar string pairs. We first create inverted indices for the segments. Then for each string,
we select some of its substrings, identify the selected substrings from the inverted indices, and take strings
on the inverted lists of the found substrings as candidates of this string. Finally, we verify the candidates to
generate the final answer. We devise efficient techniques to select substrings and prove that our method can
minimize the number of selected substrings. We develop novel pruning techniques to efficiently verify the
candidates. We also extend our techniques to support normalized edit distance. Experimental results show
that our algorithms are efficient for both short strings and long strings, and outperform state-of-the-art
methods on real-world datasets.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query Processing

General Terms: Algorithms, Performance, Theory, Design

Additional Key Words and Phrases: String Similarity Join, Edit Distance, Segment Filter

1. INTRODUCTION
A string similarity join between two sets of strings finds all similar string pairs
from the two sets. For example, consider two sets of strings {vldb, sigmod, . . . } and
{pvldb, icde, . . . }. We want to find all similar pairs, e.g., ⟨vldb, pvldb⟩. Many similari-
ty functions have been proposed to quantify the similarity between two strings, such as
Jaccard similarity, Cosine similarity, and edit distance. In this paper, we study string
similarity joins with edit-distance constraints, which, given two large sets of strings,
find all similar string pairs from the two sets, such that the edit distance between each
string pair is within a given threshold. The string similarity join is an essential opera-
tion in many applications, such as data integration and cleaning, near duplicate object
detection and elimination, and collaborative filtering [Xiao et al. 2008a].

Existing methods can be broadly classified into two categories. The first one uses a
filter-and-refine framework, such as Part-Enum [Arasu et al. 2006], All-Pairs-Ed [Ba-
yardo et al. 2007], ED-JOIN [Xiao et al. 2008a]. In the filter step, they generate signa-
tures for each string and use the signatures to generate candidate pairs. In the refine

Author’s address: Department of Computer Science and Technology, Tsinghua National Laboratory for
InformationScience and Technology (TNList), Tsinghua University, Beijing 100084, China; email: liguo-
liang@tsinghua.edu.cn.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ 2012 ACM 0362-5915/2012/06-ART1 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

1:2 G. Li et al.

step, they verify the candidate pairs to generate the final result. However, these ap-
proaches are inefficient for the datasets with short strings (e.g., person names and lo-
cations) [Wang et al. 2010]. The main reason is that they cannot select high-quality sig-
natures for short strings and will generate large numbers of candidates which need to
be further verified. The second one, TRIE-JOIN [Wang et al. 2010], adopts a trie-based
framework, which uses a trie structure to share prefixes and utilizes prefix pruning to
improve the performance. However TRIE-JOIN is inefficient for long strings (e.g., pa-
per titles and abstracts). There are two main reasons. First it is expensive to traverse
the trie with long strings. Second long strings have a small number of shared prefixes
and TRIE-JOIN has limited pruning power.

If a system wants to support both short strings and long strings, we have to imple-
ment and maintain two separate codes, and tune many parameters to select the best
method. To alleviate this problem, it calls for an adaptive method which can efficient-
ly support both short strings and long strings. In this paper we propose a new filter,
called the segment filter, and devise efficient filtering algorithms. We devise a parti-
tion scheme to partition a string into a set of segments and prove that if a string s is
similar to string r, s must have a substring which matches a segment of r. Based on
this observation, we use the segments as a filter and propose a segment-filter based
framework. We first partition strings into segments and create inverted indices for
the segments. Then for each string s, we select some of its substrings and search for
the selected substrings in the inverted indices. If a selected substring appears in the
inverted index, each string r on the inverted list of this substring (i.e., r contains the
substring) may be similar to s, and we take r and s as a candidate pair. Finally we ver-
ify the candidate pairs to generate the final answer. We develop effective techniques
to select high-quality substrings and prove that our method can minimize the number
of selected substrings. We also devise novel pruning techniques to efficiently verify the
candidate pairs. To summarize, we make the following contributions.

• We propose a segment-filter-based framework. We first partition strings into a set of
segments. Then given a string, we select some of its substrings and take those strings
whose segments match one of the selected substrings as the candidates of this string.
We call this pruning technique the segment filter. Finally we verify the candidates to
generate the final answer.

• To improve the segment-filter step, we discuss how to effectively select substrings
and prove that our method can minimize the number of selected substrings.

• To improve the verification step, we propose a length-aware method, an extension-
based method, and an iterative-based method to efficiently verify a candidate.

• We extend our techniques to support normalized edit distance and R-S join.

• We have conducted an extensive set of experiments. Experimental results show that
our algorithms are very efficient for both short strings and long strings, and outper-
form state-of-the-art methods on real-world datasets.

The rest of this paper is organized as follows. We formalize our problem in Section 2.
Section 3 introduces our segment-filter-based framework. We propose to effectively
select substrings in Section 4 and develop novel techniques to efficiently verify candi-
dates in Section 5. We discuss how to support normalized edit distance and R-S join in
Section 6. Experimental results are provided in Section 7. We review related work in
Section 8 and make a conclusion in Section 9.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints 1:3

2. PROBLEM FORMULATION
Given two collections of strings, a similarity join finds all similar string pairs from
the two collections. In this paper, we use edit distance to quantify the similarity be-
tween two strings. Formally, the edit distance between two strings r and s, denoted
by ED(r, s), is the minimum number of single-character edit operations (i.e., inser-
tion, deletion, and substitution) needed to transform r to s. For example, ED(“kausic
chakduri”, “kaushuk chadhui ”) = 6.

Here two strings are similar if their edit distance is not larger than a specified edit-
distance threshold τ . We formalize the problem of string similarity joins with edit-
distance constraints as follows.

Definition 2.1 (String Similarity Joins). Given two sets of strings R and S and an
edit-distance threshold τ , a similarity join finds all similar string pairs ⟨r, s⟩ ∈ R × S
such that ED(r, s) ≤ τ .

In the paper we first focus on self join (R = S). We will discuss how to support R-S
join (R ̸= S) in Section 6. For example, consider the strings in Table I(a). Suppose the
edit-distance threshold τ = 3. ⟨“kaushik chakrab”, “caushik chakrabar”⟩ is a similar
pair as their edit distance is not larger than τ .

Table I.
A set of strings

(a) Strings (b) Sorted by Length (Ascending) (c) Sorted by Length (Descending)
Strings
avataresha
caushik chakrabar
kaushik chakrab
kaushuk chadhui
kausic chakduri
vankatesh

ID Strings Len
s1 vankatesh 9
s2 avataresha 10
s3 kaushik chakrab 15
s4 kaushuk chadhui 15
s5 kausic chakduri 15
s6 caushik chakrabar 17

ID Strings Len
s6 caushik chakrabar 17
s5 kausic chakduri 15
s4 kaushuk chadhui 15
s3 kaushik chakrab 15
s2 avataresha 10
s1 vankatesh 9

3. THE SEGMENT FILTER BASED FRAMEWORK
We first introduce a partition scheme to partition a string into several disjoint seg-
ments (Section 3.1), and then propose a segment filter based framework (Section 3.2).

3.1. Partition Scheme
Given a string s, we partition it into τ+1 disjoint segments, and the length of each seg-
ment is not smaller than one∗. For example, consider string s1=“vankatesh”. Suppose
τ = 3. We can partition s1 into τ + 1 = 4 segments, e.g., {“va”,“nk”,“at”, “esh”}.

Consider two strings r and s. If s has no substring that matches a segment of r, then
s cannot be similar to r based on the pigeonhole principle as stated in Lemma 3.1.

LEMMA 3.1. Given a string r with τ + 1 segments and a string s, if s is similar to r
within threshold τ , s must contain a substring which matches a segment of r.

PROOF. We prove it by contradiction. Suppose string s contains no substring which
matches a segment of string r. In other words, any segment of r will not match any
substring of s. Thus for any transformation T from r to s, in each segment of r there at
least exists one edit operation. That is in any transformation T there are at least τ +1
edit operations. This contradicts that s is similar to r. Thus s must contain a substring
which matches a segment of r.

∗The length of string s(|s|) should be larger than τ , i.e., |s| ≥ τ + 1.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

1:4 G. Li et al.

In other words, if s is similar to r, then s must contain a substring matching a seg-
ment of r. For example, consider the strings in Table I. Suppose τ = 3. s1 = “vankatesh”
has four segments {“va”, “nk”, “at”, “esh”}. As strings s3, s4, s5, s6 have no substring
which matches segments of s1, they are not similar to s1.

Given a string, there could be many strategies to partition the string into τ + 1
segments. A good partition strategy can reduce the number of candidate pairs and im-
prove the performance. Intuitively, the shorter a segment of r is, the higher probability
the segment appears in other strings, and the more strings will be taken as r’s candi-
dates, thus the pruning power is lower. Based on this observation, we do not want to
keep short segments in the partition. In other words, each segment should have nearly
the same length. Accordingly we propose an even-partition scheme as follows.

Consider a string s with length |s|. In even partition scheme, each segment has a
length of ⌊ |s|

τ+1⌋ or ⌈ |s|
τ+1⌉, thus the maximal length difference between two segments is

1. Let k = |s|−⌊ |s|
τ+1⌋∗ (τ +1). In even partition, the last k segments have length ⌈ |s|

τ+1⌉,
and the first τ + 1 − k ones have length ⌊ |s|

τ+1⌋. For example, consider s1=“vankatesh”
and τ = 3. Then length of s1 (|s1|) is 9. k = 1. s1 has four segments {“va”,“nk”,“at”,
“esh”}.

Although we can devise other partition schemes, it is time consuming to select a
good partition strategy. Note that the time for selecting a partition strategy should
be included in the similarity-join time. In this paper we focus on the even-partition
scheme and leave how to select a good partition scheme as a future work.

3.2. The Segment-Filter-based Framework
We have an observation that if a strings s does not have a substring that matches a
segment of r, we can prune the pair ⟨s, r⟩. We use this feature to prune large numbers
of dissimilar pairs. To this end, we propose a segment-filter-based framework, called
SEGFILTER. Figure 1 illustrates our framework.

…

…

…

Sl

S|s|

S|s|-

s

Visited

Unvisited

Current

Ll
1

st

…

Ll
i

…i

…

Ll
…

…

Add segments to L|s|
1
, ..., L|s|

Substring Selection

Verification

Indexes

Remove Lk
1
, ..., Lk k s

…

…

…

…

Fig. 1. SEGFILTER framework

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints 1:5

For ease of presentation, we first introduce some notations. Let Sl denote the set of
strings with length l and Si

l denote the set of the i-th segments of strings in Sl. We
build an inverted index for each Si

l , denoted by Li
l. Given an i-th segment w, let Li

l(w)
denote the inverted list of segment w, i.e., the set of strings whose i-th segments are
w. We use the inverted indices to do similarity joins as follows.

We first sort strings based on their lengths in ascending order. For the strings with
the same length, we sort them in alphabetical order. Then we visit strings in order.
Consider the current string s with length |s|. We find s’s similar strings among the
visited strings using the inverted indices. To efficiently find such strings, we create
indices only for visited strings to avoid enumerating a string pair twice. Based on
length filtering [Gravano et al. 2001], we check whether the strings in Li

l (|s| − τ ≤ l ≤
|s|, 1 ≤ i ≤ τ + 1) are similar to s. Without loss of generality, consider inverted index
Li
l. We find s’s similar strings in Li

l as follows.

• SUBSTRING SELECTION: If s is similar to a string in Li
l, then s should contain a

substring which matches a segment in Li
l. A straightforward method enumerates all

of s’s substrings, and for each substring checks whether it appears in Li
l. Actually

we do not need to consider all substrings of s. Instead we only select some substrings
(denoted by W(s,Li

l)) and use the selected substrings to find similar pairs. We discuss
how to generate W(s,Li

l) in Section 4. For each selected substring w ∈ W(s,Li
l), we

check whether it appears in Li
l. If so, for each r ∈ Li

l(w), ⟨r, s⟩ is a candidate pair.
• VERIFICATION: To verify whether a candidate pair ⟨r, s⟩ is an answer, a straight-

forward method computes their real edit distance. However this method is rather
expensive. To address this issue, we develop effective techniques to do efficient veri-
fication in Section 5.

After finding similar strings for s, we partition s into τ + 1 segments and insert
the segments into inverted index Li

|s|(1≤i≤τ+1). Then we visit strings after s and
iteratively we can find all similar pairs. Note that we can remove the inverted index Li

k

for k < |s|−τ . Thus we maintain at most (τ +1)2 inverted indices Li
l for |s| − τ ≤ l ≤ |s|

and 1 ≤ i ≤ τ + 1. In this paper we focus on the case that the index can be fit in the
memory. We leave dealing with a very large dataset as a future work.

For example, consider the strings in Table I. Suppose τ = 3. We find similar pairs as
follows (see Figure 2). For the first string s1 = “vankatesh”, we partition it into τ + 1
segments and insert the segments into the inverted indices for strings with length 9,
i.e., L1

9, L2
9, L3

9, and L4
9. Next for s2 = “avataresha”, we enumerate its substrings and

check whether each substring appears in Li
|s2|−τ , · · · ,L

i
|s2|(1 ≤ i ≤ τ + 1). Here we

find “va” in L1
9, “at” in L3

9, and “esh” in L4
9. For segment “va”, as L1

9(va) = {s1}. The
pair ⟨s2, s1⟩ is a candidate pair. We verify the pair and it is not an answer as the edit
distance is larger than τ . Next we partition s2 into four segments and insert them into
L1
|s2|,L

2
|s2|,L

3
|s2|,L

4
|s2|. Similarly we repeat the above steps and find all similar pairs.

We give the pseudo-code of our algorithm in Figure 3. We sort strings first by length
and then in alphabetical order (line 2). Then, we visit each string in the sorted or-
der (line 3). For each inverted index Li

l(|s| − τ ≤ l ≤ |s|, 1 ≤ i ≤ τ + 1), we select
the substrings of s (line 4-line 4) and check whether each selected substring w is in Li

l

(line 8-line 7). If yes, for any string r in the inverted list of w in Li
l, i.e., Li

l(w), the string
pair ⟨r, s⟩ is a candidate pair. We verify the pair (line 7). Finally, we partition s into τ+1
segments, and inserts the segments into the inverted index Li

|s|(1 ≤ i ≤ τ + 1) (line 8).
Here function SUBSTRINGSELECTION selects all substrings and function VERIFICA-
TION computes the real edit distance of two strings to verify the candidates using

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

1:6 G. Li et al.

L9 L10

s5=kausic chakduris2=avataresha

L15 L15

s4=kaushuk chadhui s6=caushik chakrabars1=vankatesh s3=kaushik chakrab

1

nk atva

1 1 1

1 2 3 4

esh

2

at are shaav

2 2 2

1 2 3 4

3

shik _cha krabkau

3 3 3

1 2 3 4

shik _cha krabkau

3 3

4

3

1 2 3 4

3

4

shuk

4

dhui

4

L15

shic _cha durikau

3 3

4

5

1 2 3 4

3

4

5

shik

4 3

sic_

5

krabdhui

4

Candidate:

<1, 2>

Answer: φφφφ

Candidate:

<3, 4>

Answer: φφφφ

Candidates:

<3, 5>; <4, 5>

Answer: φφφφ

Candidates:

<3, 6>; <4, 6>;<5, 6>

Answer: <3, 6>

chak

5

Fig. 2. An example of our segment filter based framework

ALGORITHM 1: SEGFILTER (S, τ)
Input: S: A collection of strings

τ : A given edit-distance threshold
Output: A = {(s ∈ S, r ∈ S) | ED (s, r) ≤ τ}

1 begin
2 Sort S first by string length and second in alphabetical order;
3 for s ∈ S do
4 for Li

l (|s| − τ ≤ l ≤ |s|, 1 ≤ i ≤ τ + 1) do
5 W(s,Li

l) = SUBSTRINGSELECTION(s, Li
l);

6 for w ∈ W(s,Li
l) do

7 if w is in Li
l then VERIFICATION(s,Li

l(w), τ);

8 Partition s and add its segments into Li
|s|;

Function SubstringSelection(s, Li
l)

Input: s: A string; Li
l : Inverted index

Output:W(s,Li
l): Selected substrings

1 begin
2 W(s,Li

l) = {w | w is a substring of s};

Function Verification(s, Li
l(w), τ)

Input: s: A string; Li
l(w): Inverted list; τ : Threshold

Output: A = {(s, r ∈ Li
l(w))|ED(s, r) ≤ τ}

1 begin
2 for r ∈ Lil(w) do
3 if ED(s, r) ≤ τ then A ← ⟨s, r⟩;

Fig. 3. SEGFILTER algorithm

dynamic-programming algorithm. To improve the performance, we propose effective
techniques to improve the substring-selection step (the SUBSTRINGSELECTION func-
tion) in Section 4 and the verification step (the VERIFICATION function) in Section 5.
Complexity: We first analyze the space complexity. Our indexing structure includes
segments and inverted lists of segments. We first give the space complexity of seg-
ments. For each string in Sl we generate τ +1 segments. Thus the number of segments
is at most (τ + 1) × |Sl|, where |Sl| is the number of strings in Sl. As we can use an

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints 1:7

integer to encode a segment, the space complexity of segments is

O
(

max
lmin≤j≤lmax

j∑
l=j−τ

(τ + 1)× |Sl|
)
,

where lmin and lmax respectively denote the minimal and the maximal string length.
Next we give the complexity of inverted lists. For each string in Sl, as the i-th seg-

ment of the string corresponds to an element in Li
l, |Sl| = |Li

l|. The space complexity of
inverted lists(i.e., the sum of the lengths of inverted lists) is

O
(

max
lmin≤j≤lmax

j∑
l=j−τ

τ+1∑
i=1

|Li
l| = max

lmin≤j≤lmax

j∑
l=j−τ

(τ + 1)× |Sl|
)
.

Then we give the time complexity. To sort the strings, we can first group the
strings based on lengths and then sort strings in each group. Thus the sort com-
plexity is O

(∑
lmin≤l≤lmax

|Sl|log(|Sl|)
)
. For each string s, we select its substring

set W(s,Li
l) for |s| − τ ≤ l ≤ |s|, 1 ≤ i ≤ τ + 1. The selection complexity is

O
(∑

s∈S
∑|s|

l=|s|−τ

∑τ+1
i=1 X (s,Li

l)
)

, where X (s,Li
l) is the selection time complexity for

W(s,Li
l), which is O(τ) (see Section 4). The selection complexity is O

(
τ3|S|

)
. For each

substring w∈W(s,Li
l), we verify whether strings in Li

l(w) are similar to s. The verifi-
cation complexity is

O
(∑
s∈S

|s|∑
l=|s|−τ

τ+1∑
i=1

∑
w∈W(s,Li

l)

∑
r∈Li

l(w)

V(s, r)
)
,

where V(s, r) is the complexity for verifying ⟨s, r⟩, which is O(τ ∗min(|s|, |r|))(see Sec-
tion 5). In the paper we propose to reduce the size of W(s,Li

l) and improve the verifi-
cation cost V(s, r).

4. IMPROVING THE FILTER STEP BY SELECTING EFFECTIVE SUBSTRINGS
For any string s ∈ S and a length l (|s| − τ ≤ l ≤ |s|), we select a substring set
W(s, l) = ∪τ+1

i=1 W(s,Li
l) of s and use substrings in W(s, l) to find the candidates of s. We

need to guarantee completeness of the method using W(s, l) to find candidate pairs.
That is any similar pair must be found as a candidate pair. Next we give the formal
definition.

Definition 4.1 (Completeness). A substring selection method satisfies complete-
ness, if for any string s and a length l(|s| − τ ≤ l ≤ |s|), ∀ r with length l which is
similar to s and visited before s, r must have an i-th segment rm which matches a
substring sm ∈ W(s,Li

l) where 1 ≤ i ≤ τ + 1.

A straightforward method is to add all substrings of s into W(s, l). As s has |s|− i+1

substrings with length i, the total number of s’s substrings is
∑|s|

i=1(|s|−i+1)= |s|∗(|s|+1)
2 .

For long strings, there are large numbers of substrings and it is rather expensive to
enumerate all substrings.

Intuitively, the smaller size of W(s, l), the higher performance. Thus we want to find
substring sets with smaller sizes. In this section, we propose several methods to select
the substring set W(s, l). As W(s, l) = ∪τ+1

i=1 W(s,Li
l) and we want to use inverted index

Li
l to do efficient filtering, next we focus on how to generate W(s,Li

l) for Li
l. Table II

shows the notations used in this paper.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

1:8 G. Li et al.

Table II. Notations

Notation Description
τ edit distance threshold
Wℓ(s, l) substring set selected by length-based selection method
Wf (s, l) substring set selected by shift-based selection method
Wp(s, l) substring set selected by position-aware selection method
Wm(s, l) substring set selected by multi-match-aware selection method
pmin minimal start position of position-aware substring selection
pmax maximal start position of position-aware substring selection
⊥l

i minimal start position of multi-match-aware from left-side perspective
⊥r

i minimal start position of multi-match-aware from right-side perspective
⊥i minimal start position of multi-match-aware substring selection

Length-based Method: As segments in Li
l have the same length, denoted by li, the

length-based method selects all substrings of s with length li, denoted by Wℓ(s,Li
l).

Let Wℓ(s, l) = ∪τ+1
i=1 Wℓ(s,Li

l). The length-based method satisfies completeness, as it
selects all substrings with length li. The size of Wℓ(s,Li

l) is |Wℓ(s,Li
l)|=|s|−li+1, and

the number of selected substrings is |Wℓ(s, l)|=(τ+1)(|s|+1)−l.
Shift-based Method: However the length-based method does not consider the posi-
tions of segments. To address this problem, Wang et al. [Wang et al. 2009] proposed a
shift-based method to address the entity identification problem. We can extend their
method to support our problem as follows. As segments in Li

l have the same length,
they have the same start position, denoted by pi, where p1 = 1 and pi=p1+

∑i−1
k=1 lk

for i > 1. The shift-based method selects s’s substrings with start positions in
[pi−τ, pi+τ] and with length li, denoted by Wf (s,Li

l). Let Wf (s, l) = ∪τ+1
i=1 Wf (s,Li

l).
The size of Wf (s,Li

l) is |Wf (s,Li
l)|=2τ + 1. The number of selected substrings is

|Wf (s, l)|=(τ+1)(2τ+1).
The basic idea behind the method is as follows. Suppose a substring sm of s with start

position smaller than pi − τ or larger than pi + τ matches a segment in Li
l. Consider

a string r ∈ Li
l(sm). We can partition s(r) into three parts: the matching part sm(rm),

the left part before the matching part sl(rl), and the right part after the matching part
sr(rr). As the start position of rm is pi and the start position of sm is smaller than pi−τ
or larger than pi + τ , the length difference between sl and rl must be larger than τ . If
we align the two strings by matching sm and rm (i.e., transforming rl to sl, matching
rm with sm, and transforming rr to sr), they will not be similar, thus we can prune
substring sm. Hence the shift-based method satisfies completeness.

However, the shift-based method still involves many unnecessary substrings. For
example, consider two strings s1 = “vankatesh” and s2 = “avataresha”. Suppose τ = 3
and “vankatesh” is partitioned into four segments {va, nk, at, esh}. s2 = “avataresha”
contains a substring “at” which matches the third segment in “vankatesh”, the shift-
based method will select it as a substring. However we can prune it and the reason is
as follows. Suppose we partition the two strings into three parts based on the match-
ing segment. For instance, we partition “vankatesh” into {“vank” , “at”, “esh”}, and
“avataresha” into {“av”, “at”, “aresha”}. Obviously the minimal edit distance (length
difference) between the left parts (“vank” and “av”) is 2 and the minimal edit distance
(length difference) between the right parts (“esh” and “aresha”) is 3. Thus if we align
the two strings using the matching segment “at”, they will not be similar. In this way,
we can prune the substring “at”.

4.1. Position-aware Substring Selection
Notice that all the segments in Li

l have the same length li and the same start position
pi. Without loss of generality, we consider a segment rm ∈ Li

l. Moreover, all the strings

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints 1:9

s

r
pi l

|s|

=|s|-|r|

Sl
1

l

Sl
2

Sl
i

Sl Sl

pmin

dl=ed(rl, sl)

pi

rl

sl

l

sr

rr

l

dr=ed(rr, sr) l +

p1=1

p1=1

match

sm

rm

(a) pmin = max(1, pi − ⌊ τ−△
2
⌋)

s

r
pi l

|s| r
pmax

dl=ed(rl, sl)

rl

sl

r

sr

rr

dr=ed(rr, sr) r-

-

Sl
1

Sl
2

Sl
i

Sl Sl

r

match

r
pip1=1

p1=1
rm

sm

(b) pmax = min(|s| − li + 1, pi + ⌊ τ+△
2
⌋)

Fig. 4. Position-aware substring selection

in inverted list Li
l(rm) have the same length l (l ≤ |s|), and we consider a string r that

contains segment rm. Suppose s has a substring sm which matches rm. Next we give the
possible start positions of sm. We still partition s(r) into three parts: the matching part
sm(rm), the left part sl(rl), and the right part sr(rr). If we align r and s by matching
rm = sm, that is we transform r to s by first transforming rl to sl with dl = ED(rl, sl)
edit operations, then matching rm with sm, and finally transforming rr to sr with dr =
ED(rr, sr) edit operations, the total transformation distance is dl + dr. If s is similar to
r, dl+dr ≤ τ . Based on this observation, we give sm’s minimal start position (pmin) and
the maximal start position (pmax) as illustrated in Figure 4.
Minimal Start Position: Suppose the start position of sm, denoted by p, is not larger
than pi. Let △ = |s| − |r| and △l = pi − p. We have dl = ED(rl, sl) ≥ △l and dr =
ED(rr, sr) ≥ △l +△, as illustrated in Figure 4(a). If s is similar to r (or any string in
Li
l(rm)), we have △l + (△l +△) ≤ dl + dr ≤ τ. That is △l ≤ ⌊ τ−△

2 ⌋ and p = pi −△l ≥
pi − ⌊ τ−△

2 ⌋. Thus pmin≥pi − ⌊ τ−△
2 ⌋. As pmin≥1, pmin=max(1, pi − ⌊ τ−△

2 ⌋).
Maximal Start Position: Suppose the start position of sm, p, is larger than pi. Let
△ = |s| − |r| and △r = p − pi. We have dl = ED(rl, sl) ≥ △r and dr = ED(rr, sr) ≥
|△r−△| as illustrated in Figure 4(b). If △r ≤ △, dr ≥ △−△r. Thus △ = △r+(△−△r) ≤
dl + dr ≤ τ , and in this case, the maximal value of △r is △; otherwise if △r>△, dr ≥
△r−△. If s is similar to r (or any string in Li

l(rm)), we have

△r + (△r −△) ≤ dl + dr ≤ τ.

That is △r ≤ ⌊ τ+△
2 ⌋, and p = pi + △r ≤ pi + ⌊ τ+△

2 ⌋. Thus pmax≤pi + ⌊ τ+△
2 ⌋. As

the segment length is li, based on the boundary, we have pmax ≤ |s| − li + 1. Thus
pmax=min(|s| − li + 1, pi + ⌊ τ+△

2 ⌋).
For example, consider string r = “vankatesh”. Suppose τ = 3 and “vankatesh” is

partitioned into four segments, {va, nk, at, esh}. For string s = “avataresha”, we have
△ = |s| − |r| = 1. ⌊ τ−△

2 ⌋ = 1 and ⌊ τ+△
2 ⌋ = 2. For the first segment “va”, p1 = 1.

pmin = max(1, p1 − ⌊ τ−△
2 ⌋) = 1 and pmax = 1 + ⌊ τ+△

2 ⌋ = 3. Thus we only need to
enumerate the following substrings “av”, “va”, “at” for the first segment. Similarly, we
need to enumerate substrings “va”, “at”, “ta”, “ar” for the second segment, “ta”, “ar”,
“re”, “es” for the third segment, and “res”, “esh”, “sha” for the fourth segment. We
see that the position-aware method can reduce many substrings over the shift-based
method (reducing the number from 28 to 14).

For Li
l, the position-aware method selects substrings with start positions in

[pmin, pmax] and length li, denoted by Wp(s,Li
l). Let Wp(s, l)=∪τ+1

i=1 Wp(s,Li
l). The size of

Wp(s,Li
l) is |Wp(s,Li

l)|=τ+1 and the number of selected substrings is |Wp(s, l)|=(τ+1)2.
The position-aware method satisfies completeness as formalized in Theorem 4.2.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

1:10 G. Li et al.

THEOREM 4.2. The position-aware substring selection method satisfies the com-
pleteness.

PROOF. See Section A in Appendix.

4.2. Multi-match-aware Substring Selection
We have an observation that string s may have multiple substrings that match some
segments of string r. In this case we can discard some of these substrings. For example,
consider r = “vankatesh” with four segments, {va, nk, at, esh}. s = “avataresha” has
three substrings va, at, esh matching the segments of r. We can discard some of these
substrings to reduce the verification cost. To this end, we propose a multi-match-aware
substring selection method.

Consider Li
l. Suppose string s has a substring sm that matches a segment in Li

l. If we
know that s must have a substring after sm which will match a segment in Lj

l (j > i), we
can discard substring sm. For example, s = “avataresha” has a substring “va” matching
a segment in r = “vankatesh”. Consider the three parts rm = sm = “va”, rl = ϕ and
sl = “a”, and rr = “nkatesh” and sr = “taresha”. As dl ≥ 1, if s and r are similar,
dr ≤ τ − dl ≤ τ − 1 = 2. As there are still 3 segments in rr, thus sr must have a
substring matching a segment in rr based on the pigeon-hole principle. Thus we can
discard the substring “va” and use the next matching substring to find similar pairs.
Next we generalize our idea.

Suppose s has a substring sm with start position p matching a segment rm ∈ Li
l. We

still consider the three parts of the two strings: sl, sm, sr and rl, rm, rr as illustrated
in Figure 5. Let △l = |pi − p|. dl = ED(rl, sl) ≥ △l. As there are i − 1 segments in
sl, if each segment only has less than 1 edit operation when transforming rl to sl, we
have △l ≤ i − 1. If △l ≥ i, dl = ED(rl, sl) ≥ △l ≥ i, dr = ED(rr, sr) ≤ τ − dl ≤ τ − i
(if s is similar to r). As rr contains τ + 1 − i segments, sr must contain a substring
matching a segment in rr based on the pigeon-hole principle, which can be proved
similar to Lemma 3.1. In this way, we can discard sm, since for any string r ∈ Li

l(rm),
s must have a substring that matches a segment in the right part rr, and thus we
can identify strings similar to s using the next matching segment. In summary, if
△l = |p − pi| ≤ i − 1, we keep the substring with start position p for Li

l. That is the
minimal start position is ⊥l

i = max
(
1, pi − (i − 1)

)
and the maximal start position is

⊤l
i = min

(
|s| − li + 1, pi + (i− 1)

)
.

For example, suppose τ = 3. Consider r=“vankatesh” with four segments, {va, nk,
at, esh}, and s=“avataresha”. For the first segment, we have ⊥l

i=1-0=1 and ⊤l
i=1+0=1.

Thus the selected substring is only “av” for the first segment. For the second segmen-
t, we have ⊥l

i=3-1=2 and ⊤l
i=3+1=4. Thus the selected substrings are “va”, “at”, and

“ta” for the second segment. Similarly for the third segment, we have ⊥l
i=5-2=3 and

⊤l
i=5+2=7, and for the fourth segment, we have ⊥l

i=7-3=4 and ⊤l
i = min(8,7+3)=8.

Right-side Perspective: The above observation is made from the left-side perspec-
tive. Similarly, we can use the same idea from the right-side perspective. As there are
τ +1− i segments on the right part rr, there are at most τ +1− i edit operations on rr.
If we transform r to s from the right-side perspective, position pi on r should be aligned
with position pi+△ on s as shown in Figure 5(b). Suppose the position p on s matching
position pi on r. Let △r = |p − (pi + △)|. We have dr = ED(sr, rr) ≥ △r. As there are
τ +1− i segments on the right part rr, we have △r ≤ τ +1− i. Thus the minimal start
position for Li

l is ⊥r
i = max

(
1, pi + △ − (τ + 1 − i)

)
and the maximal start position is

⊤r
i = min

(
|s| − li + 1, pi +△+ (τ + 1− i)

)
.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints 1:11

s

r
pi l

|s|

=|s|-l

Sl
1

Sl
2

Sl
i

Sl Sl

dl=ed(rl, sl)

pi

rl

sl sr

rr

dr=ed(rr, sr)

i

p1=1

p1=1

match

sm

rm

i-1 segments

l as there are i-1 segments in rl

l

(a) Left-side perspective

s

r
pi l

|s|

dl=ed(rl, sl)

rl

sl sr

rr
dr=ed(rr, sr)

Sl
1

Sl
2

Sl
i

Sl Sl

match

r

pi+p1=1

p1=1 rm

sm

i segments

as there are i segments in rri

r

(b) Right-side perspective

Fig. 5. Multi-match-aware substring selection

Consider the above example. We have △ = 1. For the fourth segment, we have ⊥r
i =

7+1−(3+1−4) = 8 and ⊤r
i = 7+1+(3+1−4) = 8. The selected substring is only “sha”

for the fourth segment. Similarly for the third segment, we have ⊥r
i = 5 and ⊤r

i = 7.
The selected substrings are “ar”, “re”, and “es” for the third segment.
Combine Left-side Perspective and Right-side Perspective: More interestingly,
we can use the two techniques simultaneously. That is for Li

l, we only select the sub-
strings with start positions between ⊥i = max(⊥l

i,⊥r
i) and ⊤i = min(⊤l

i,⊤r
i) and with

length li, denoted by Wm(s,Li
l). Let Wm(s, l)=∪τ+1

i=1 Wm(s,Li
l). The number of selected

substrings is |Wm(s, l)|=⌊ τ2−△2

2 ⌋+τ+1 as stated in Lemma 4.3.

LEMMA 4.3. |Wm(s, l)| = ⌊ τ2−△2

2 ⌋+ τ + 1.

PROOF. See Section B in Appendix.

The multi-match-aware method satisfies completeness as stated in Theorem 4.4.

THEOREM 4.4. The multi-match-aware substring selection method satisfies the
completeness.

PROOF. See Section C in Appendix.

Consider the above example. For the first segment, we have ⊥i = 1 − 0 = 1 and
⊤i = 1 + 0 = 1. We select “av” for the first segment. For the second segment, we have
⊥i = 3 − 1 = 2 and ⊤i = 3 + 1 = 4. We select substrings “va”, “at”, and “ta” for
the second segment. For the third segment, we have ⊥i = 5 + 1 − (3 + 1 − 3) = 5
and ⊤i = 5 + 1 + (3 + 1 − 3) = 7. We select substrings “ar”, “re”, and “es” for the
third segment. For the fourth segment, we have ⊥i = 7 + 1 − (3 + 1 − 4) = 8 and
⊤i = 7+ 1+ (3 + 1− 4) = 8. Thus we select the substring “sha” for the fourth segment.
The multi-match-aware method only selects 8 substrings.

4.3. Comparison of Selection Methods
We compare the selected substring sets of different methods. Let Wℓ(s, l), Wf (s, l),
Wp(s, l), and Wm(s, l) respectively denote the sets of selected substrings that use the
length-based selection method, the shift-based selection method, the position-aware s-
election method, and the multi-match-aware selection method. Based on the size anal-
ysis of each set, we have |Wm(s, l)| ≤ |Wp(s, l)| ≤ |Wf (s, l)| ≤ |Wℓ(s, l)|. Next we prove
Wm(s, l) ⊆ Wp(s, l) ⊆ Wf (s, l) ⊆ Wℓ(s, l) as formalized in Lemma 4.5.

LEMMA 4.5. For any string s and a length l, we have

Wm(s, l) ⊆ Wp(s, l) ⊆ Wf (s, l) ⊆ Wℓ(s, l).

PROOF. See Section D in Appendix.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

1:12 G. Li et al.

ALGORITHM 2: SUBSTRINGSELECTION(s,Li
l)

Input: s: A string; Li
l : Inverted index

Output:W(s,Li
l): Selected substrings

1 begin
2 for p ∈ [⊥i,⊤i] do
3 Add the substring of s with start position p and with length li (s[p, li]) intoW(s,Li

l);

Fig. 6. SUBSTRINGSELECTION algorithm

Moreover, we can prove that Wm(s, l) has the minimum size among all substring sets
generated by the methods that satisfy completeness as formalized in Theorem 4.6.

THEOREM 4.6. The substring set Wm(s, l) generated by the multi-match-aware s-
election method has the minimum size among all the substring sets generated by the
substring selection methods that satisfy completeness.

PROOF. See Section E in Appendix.

Theorem 4.6 proves that the substring set Wm(s, l) has the minimum size. Next we
introduce another concept to show the superiority of our multi-match-aware method.

Definition 4.7 (Minimality). A substring set W(s, l) generated by a method with
the completeness property satisfies minimality, if for any substring set W ′(s, l) gener-
ated by a method with the completeness property, W(s, l)⊆W ′(s, l).

Next we prove that if l ≥ 2(τ +1) and |s| ≥ l, the substring set Wm(s, l) generated by
our multi-match-aware selection method satisfies minimality as stated in Theorem 4.8.
The condition l ≥ 2(τ + 1) makes sense where each segment is needed to have at least
two characters. For example, if 10 ≤ l < 12, we can tolerate τ = 4 edit operations. If
12 ≤ l < 14, we can tolerate τ = 5 edit operations.

THEOREM 4.8. If l ≥ 2(τ + 1) and |s| ≥ l, Wm(s, l) satisfies minimality.

PROOF. See Section F in Appendix.

4.4. Substring-selection Algorithm
Based on above discussions, we improve SUBSTRINGSELECTION algorithm by remov-
ing unnecessary substrings. For Li

l, we use the multi-match-aware selection method to
select substrings, and the selection complexity is O(τ). Figure 6 gives the pseudo-code
of the substring selection algorithm.

For example, consider the strings in Table I. We create inverted indices as illustrated
in Figure 2. Consider string s1 = “vankatesh” with four segments, we build four invert-
ed lists for its segments {va, nk, at, esh}. Then for s2 = “avataresha”. We use multi-
match-aware selection method to select its substrings. Here we only select 8 substrings
for s2 and use the 8 substrings to find similar strings of s2 from the inverted indices.
Similarly, we can select substrings for other strings.

5. IMPROVING THE VERIFICATION STEP
In our framework, for string s and inverted index Li

l, we generate a set of its substrings
W(s,Li

l). For each substring w ∈ W(s,Li
l), we need to check whether it appears in Li

l.
If w ∈ Li

l, for each string r ∈ Li
l(w), ⟨r, s⟩ is a candidate pair and we need to verify the

candidate pair to check whether they are similar. In this section we propose effective
techniques to do efficient verification.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints 1:13

…

…

…

..

.

…

…

…

..

.
… ... … …

0 1 2

1 1 22 4

2 2 21 3

3 2 12 2

4 2 2

34 3

4

3

3

a uc

s

r

2

2

2

1

2

2

1

k

3

33

2 3

3

2

s h i

a

u

s

h

4

3

3

3

2

4 3 33 2u 2

3

3

3

4

3

3

k

34

4

_

..
.

5

c

h 4 4

3

13

6

5

4

3

2

1

1 2 3 4 5 6 8 9

14

17

1 2

1

0

22

2 2 3

2

1

1 2

2 3

3

a uc
s

r

2

2

1 2

1

k

3

s h i

a

u

s

h

3

32

u 2

3

3

3

k

3

3

4

_

...

...

6

5

4

3

2

1

1 2 3 4 5 6 7 8

2 2

3

3

3

3

3

4

3

3

3

3

3

4

2
2

3
3

3

3
3

3
3

3
3

4

=|s|-|r|=2

u

i 15

r

3

3

…
 .
..

0

0

2 2

70

0

...

_

4 5

(a) Traditional method (b) Length-aware method

Fig. 7. An example for verification

Traditional Method: Given a candidate pair ⟨r, s⟩, a straightforward method to ver-
ify the pair is to use a dynamic-programming algorithm to compute their real edit
distance. If the edit distance is not larger than τ , the pair is an answer. We can use a
matrix M with |r|+1 rows and |s|+1 columns to compute their edit distance, in which
M(0, j) = j for 0 ≤ j ≤ |s|, and M(i, 0) = i for 1 ≤ i ≤ |r|,

M(i, j) = min
(
M(i− 1, j) + 1,M(i, j − 1) + 1,M(i− 1, j − 1) + δ

)
where δ = 0 if the i-th character of r is the same as the j-th character of s; otherwise
δ = 1. The time complexity of the dynamic-programming algorithm is O(|r| ∗ |s|).

Actually, we do not need to compute their real edit distance and only need to check
whether their edit distance is not larger than τ . An improvement based on length
pruning [Ukkonen 1985] is proposed which only computes the values M(i, j) for |i−j| ≤
τ , as shown in the shaded cells of Figure 7(a). The basic idea is that if |i − j| > τ ,
M(i, j) > τ , and we do not need to compute such values. This method improves the
time complexity V(s, r) to O

(
(2 ∗ τ + 1) ∗min(|r|, |s|)

)
. Next, we propose a technique to

further improve the performance by considering the length difference between r and s.

5.1. Length-aware Verification
In this section, we propose a length-aware verification method. We first use an example
to illustrate our idea. Consider string r = “kaushuk chadhui” and string s = “caushik
chakrabar”. Suppose τ = 3. Existing methods need to compute all the shaded values in
Figure 7(a). We have an observation that we do not need to compute M(2, 1), which is
the edit distance between “ka” and “c”. This is because if there is a transformation from
r to s by first transforming “ka” to “c” with at least 1 edit operation (length difference)
and then transforming “ushuk chadhui” to “aushik chakrabar” with at least 3 edit
operations (length difference), the transformation distance is at least 4 which is larger
than τ = 3. In other words, even if we do not compute M(2, 1), we know that there
is no transformation including M(2, 1) (the transformation from “ka” to “c”) whose
distance is not larger than τ . Actually we only need to compute the highlighted values
as illustrated in Figure 7(b). Next we formally introduce our length-aware method.
Length-aware Method: Without loss of generality, let |s| ≥ |r| and △ = |s| − |r| ≤ τ
(otherwise their edit distance must be larger than τ). We call a transformation from r
to s including M(i, j), if the transformation first transforms the first i characters of r

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

1:14 G. Li et al.

to the first j characters of s with d1 edit operations and then transforming the other
characters in r to the other characters in s with d2 edit operations. Based on length
difference, we have d1 ≥ |i− j| and d2 ≥ |(|s|− j)− (|r|− i)| = |△+(i− j)|. If d1+d2 > τ ,
we do not need to compute M(i, j), since the distance of any transformation including
M(i, j) is larger than τ . To check whether d1 + d2 > τ , we consider the following cases.

• If i ≥ j, d1+d2 ≥ i− j+△+ i− j. If i− j+△+ i− j > τ , that is j < i− τ−△
2 , we do not

compute M(i, j). In other words, we only need to compute M(i, j) with j ≥ i− τ−△
2 .

• If i < j, d1 = j − i. If j − i ≤ △, d1 + d2 ≥ j − i + △ − (j − i) = △. As △ ≤ τ , there
is no position constraint. We need to compute M(i, j); otherwise if j − i > △, we have
d1+d2 ≥ j− i+ j− i−△. If j− i+ j− i−△ > τ , that is j > i+ τ+△

2 , we do not need to
compute M(i, j). In other words, we only need to compute M(i, j) with j ≤ i+ τ+△

2 .

Based on this observation, for each row M(i, ∗), we only compute M(i, j) for
i − ⌊ τ−△

2 ⌋ ≤ j ≤ i + ⌊ τ+△
2 ⌋. For example, in Figure 8, we only need to compute

the values in black circles. Thus we can improve the time complexity V(s, r) from
O
(
(2τ+1)∗min(|r|, |s|)

)
to O

(
(τ+1) ∗min(|r|, |s|)

)
.

2

2

2 2 3

2 2

2 2

3

3

3 4

4

1 2 |s|0

1

2

|r|

0

s

r

4 4

|r|

=|s|-|r|

i

j

i=j

2 2

Fig. 8. Length-aware verification

Early Termination: We can further improve the performance by doing an early ter-
mination. Consider the values in row M(i, ∗). A straightforward early-termination
method is to check each value in M(i, ∗), and if all the values are larger than τ , we can
do an early termination. This is because the values in the following rows M(k > i, ∗)
must be larger than τ based on the dynamic-programming algorithm. This pruning
technique is called prefix pruning. For example in Figure 7(a), if τ = 3, after we have
computed M(13, ∗), we can do an early termination as all the values in M(13, ∗) are
larger than τ . But in our method, after we have computed the values in M(6, ∗), we
can conclude that the edit distance between the two strings is at least 4 (larger than
τ = 3). Thus we do not need to compute M(i > 6, ∗) and can terminate the computation
as shown in Figure 7(b). To this end, we propose a novel early-termination method.

For ease of presentation, we first introduce several notations. Given a string s, let s[i]
denote the i-th character and s[i : j] denote the substring of s from the i-th character
to the j-th character. Notice that M(i, j) denotes the edit distance between r[1 : i] and
s[1 : j]. We can estimate the lower bound of the edit distance between r[i : |r|] and
s[j : |s|] using their length difference

∣∣(|s| − j) − (|r| − i)
∣∣. We use E(i, j) = M(i, j) +

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints 1:15

ALGORITHM 3: LENGTHAWAREVERIFICATION (r, s, τ)
Input: r: A string; s: Another string; τ : Threshold;
Output: d = min(τ + 1, ED(s, r))

1 begin
2 △ = |s| − |r| ;
3 for i = 1 to |r| do
4 st = i− ⌊ τ−△

2
⌋; en = i+ ⌊ τ+△

2
⌋ ;

5 for j = st to en do
6 M(i, j) = min

(
M(i− 1, j) + 1,M(i, j − 1) + 1,M(i− 1, j − 1) + δ

)
;

7 E(i, j) = M(i, j) +
∣∣(|s| − j)− (|r| − i)

∣∣ ;
8 if E(i, j) > τ for st ≤ j ≤ en then return τ + 1 ;
9 return M [|r|][|s|] ;

Fig. 9. Length-aware verification algorithm∣∣(|s|−j)−(|r|−i)
∣∣ to estimate the edit distance between s and r, which is called expected

edit distance of s and r with respect to M(i, j). If each expected edit distance for M(i, j)
in M(i, ∗) is larger than τ , the edit distance between r and s must be larger than τ ,
thus we can do an early termination. To achieve our goal, for each value M(i, j), we
maintain the expected edit distance E(i, j). If each value in E(i, ∗) is larger than τ , we
can do an early termination as formalized in Lemma 5.1.

LEMMA 5.1. Given strings s and r, if each value in E(i, ∗) is larger than τ , the edit
distance of r and s is larger than τ .

PROOF. We prove that any transformation from r to s will involve more than τ edit
operations if each value in E(i, ∗) is larger than τ . For any transformation T from
r to s, T must include one of M(i, ∗). Without loss of generality, suppose T includes
M(i, j). Then we have d1 = M(i, j) and d2 ≥

∣∣(|s| − j)− (|r| − i)
∣∣. Thus |T | = d1 + d2 ≥

M(i, j) +
∣∣(|s| − j) − (|r| − i)

∣∣ = E(i, j) > τ . Thus transformation T will involve more
than τ edit operations. Therefor the edit distance of r and s is larger that τ .

Figure 9 shows the pseudo-code of the length-aware algorithm. Different from tradi-
tional methods, for each row M [i][∗], we only compute the columns between i− ⌊ τ−△

2 ⌋
and i + ⌊ τ+△

2 ⌋ (lines 4-6). We also use the expected matrix to do early termination
(lines 7-8). Next we use an example to walk through our algorithm. In Figure 7(b), the
expected edit distances are shown in the left-bottom corner of each cell. When we have
computed M(6, ∗) and E(6, ∗), all values in E(6, ∗) are larger than 3, thus we can do an
early termination and avoid many unnecessary computations.

We use the length-aware verification algorithm to improve the Verification function
in Figure 3 (by replacing line 3). Our technique can be applied to any other algorithms
which need to verify a candidate in terms of edit distance (e.g., ED-JOIN and NGPP).

5.2. Extension-based Verification
Consider a selected substring w of string s. If w appears in the inverted index Li

l, for
each string r in the inverted list Li

l(w), we need to verify the pair ⟨s, r⟩. As s and r
share a common segment w, we can use the shared segment to efficiently verify the
pair. To achieve our goal, we propose an extension-based verification algorithm.

As r and s share a common segment w, we partition them into three parts based on
the common segment. We partition r into three parts, the left part rl, the matching
part rm = w, and the right part rr. Similarly, we get three parts for string s: sl, sm = w,

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

1:16 G. Li et al.

and sr. Here we align s and r based on the matching substring rm and sm, and we only
need to verify whether r and s are similar in this alignment. Thus we first compute
the edit distance dl = ED(rl, sl) between rl and sl using the above-mentioned method.
If dl is larger than τ , we terminate the computation; otherwise, we compute the edit
distance dr = ED(sr, rr) between sr and rr. If dl + dr is larger than τ , we discard the
pair; otherwise we take it as an answer.

Note that this method can correctly verify a candidate pair. Here we present the
basic idea and will formally prove it in Theorem 5.3. Recall Lemma 3.1. If s and r
are similar, s must have a substring that matches a segment of r. In addition, based
on dynamic-programming algorithm, there must exist a transformation by aligning
rm with sm and ED(s, r) = dl + dr. As our method selects all possible substrings and
considers all such common segments, our method will not miss any results. On the
other hand, the results found in our algorithm satisfy dl + dr ≤ τ . Since ED(s, r) ≤
dl + dr ≤ τ , the results found in our algorithm must be true answers.

2

2

2 2

3

3

3 4

2

2 2

3 3

4

rl m

m

3

4

m

rl

rmr
i

r
1

r
rr

l = min rr |sr| i

r = min dl i

Fig. 10. Extension-based verification

Improve the Verification Algorithm Using Tighter Bounds: Actually, we can fur-
ther improve the verification algorithm. For the left parts, we can give a tighter thresh-
old τl ≤ τ . The basic idea is as follows. As the minimal edit distance between the right
parts rr and sr is

∣∣|rr| − |sr|
∣∣. Thus we can set τl = τ −

∣∣|rr| − |sr|
∣∣. If the edit distance

between rl and sl is larger than threshold τl, we can terminate the verification; other-
wise we continue to compute dr = ED(rr, sr). Similarly for the right parts, we can also
give a tighter threshold τr ≤ τ . As dl has been computed, we can use τr = τ − dl as a
threshold to verify whether rr and sr are similar. If dr is larger than threshold τr, we
can terminate the verification.

For example, suppose τ = 3 and we want to verify s5 = “kausic chakduri” and s6 =
“caushik chakrabar”. s5 and s6 share a segment “chak”. We have s5l = “kausic ” and
s6l = “caushik ”, and s5r = “duri” and s6r = “rabar”. As

∣∣∣|s5r | − |s6r |
∣∣∣ = 1, τl = τ − 1 = 2.

We only need to verify whether the edit distance between s5l and s6l is not larger than
τl = 2. After we have computed M(6, ∗), we can do an early termination as each value
in E(6, ∗) is larger than 2.

Actually we can deduce two much tighter thresholds for τl and τr respectively. Con-
sider the i-th segment, we can terminate the verification based on the multi-match-
aware method. Thus we have dl ≤ τl = i − 1. Combining with the above prun-
ing condition, we have τl=min(τ −

∣∣|rr| − |sr|
∣∣, i − 1). As

∣∣|rr| − |sr|
∣∣=∣∣(|r|−pi−li) −

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints 1:17

ALGORITHM 4: EXTENSIONBASEDVERIFICATION(s,Li
l(w), τ)

Input: s: A string; Li
l(w): Inverted list; τ : Threshold

Output: A = {(s, r ∈ Li
l(w))|ED(s, r) ≤ τ}

1 begin
2 τl = i− 1, τr = τ + 1− i ;
3 for r ∈ Li

l(w) do
4 if ⟨r, s⟩ is in A then continue;
5 dl = LENGTHAWAREVERIFICATION(rl, sl, τl) ;
6 if dl ≤ τl then
7 dr = LENGTHAWAREVERIFICATION(rr, sr, τr) ;
8 if dr ≤ τr then A ← ⟨r, s⟩;

Fig. 11. Extension-based verification algorithm

(|s|−p−li)
∣∣=|p−pi−△| ≤ τ+1−i (based on the multi-match-aware method), τ −

∣∣|rr| −
|sr|

∣∣ ≥ i− 1. we set τl=i−1.
We can get similar conclusion from the right-side perspective. If dr ≥ τ + 1 − i, we

can terminate the verification based on the multi-match-aware method from the right-
side perspective. Thus we have τr=min(τ−dl, τ+1−i). As dl ≤ τl ≤ i−1, τ−dl≥τ−(i−1).
Thus we set τr = τ+1−i.

Also we can use these two tighter thresholds simultaneously. That is for any sub-
string sm ∈ Wm(s, l) of s which matches the i-th segment rm of r, we only need to check
whether ED(rl, sl) ≤ i− 1 and ED(rr, sr) ≤ τ + 1− i using the length-aware method. If
so, we can say that r and s are similar and output ⟨r, s⟩ as an answer.

Based on our proposed techniques, we improve the Verification function. Figure 11 il-
lustrates the pseudo-code. Consider a string s, a selected substring w, and an inverted
list Li

l(w). For each r ∈ Li
l(w), we use the extension-based method to verify the candi-

date pair ⟨s, r⟩ as follows. We first compute τl = i − 1 and τr = τ + 1 − i (line 2). Then
for each r ∈ Li

l(w), we compute the edit distance (dl) between rl and sl with the tighter
bound τl using the length-aware verification method (line 5). If dl > τl, we terminate
the verification; otherwise we verify whether sr and rr are similar with threshold τr
using the length-aware verification method (line 7).

To guarantee correctness of our extension-based method, we first give a formal defi-
nition of correctness.

Definition 5.2 (Correctness). Given a candidate pair ⟨s, r⟩, a verification algorithm
is correct, if it satisfies (1) If ⟨s, r⟩ passes the algorithm, ⟨s, r⟩ must be a similar pair;
and (2) If ⟨s, r⟩ is a similar pair, it must pass the algorithm.

Our extension-based method satisfies correctness as stated in Theorem 5.3.

THEOREM 5.3. Our extension-based verification method satisfies correctness.

PROOF. See Section G in Appendix.

5.3. Iterative-based Verification
In this section, we introduce an iterative-based verification method to further improve
the verification step. Instead of verifying a candidate pair with a matching segmen-
t/substring using the extension-based verification method, we can iteratively apply
our multi-match-aware technique on the left and right part of the matching segmen-
t/substring to filter this candidate pair. We first present the basic idea, then give the
pseudo-code, and finally discuss the technical details.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

1:18 G. Li et al.

ALGORITHM 5: ITERATIVEVERIFICATION (r, s, w, τ)
Input: r: A string; s: Another string; w: Common segment; τ : Threshold;
Output: d = min((τ + 1), ED(s, r))

1 begin
2 Compute rl/sl and rr/sr based on w ; τl = i− 1, τr = τ + i− 1;
3 if ITERATIVEVERIFY(rl, sl, τl, i, left)==pass then
4 dl = LENGTHAWAREVERIFICATION (rl, sl, τl) ;
5 if ITERATIVEVERIFY(rr, sr, τr, i, right)==pass then
6 dr = LENGTHAWAREVERIFICATION (rr, sr, τr);
7 return dl + dr ;

8 return τ + 1 ;

Function IterativeVerify(r′, s′, τ ′, i, f)
Input: r′: A string; s′: Another string; τ ′: A threshold; i: An integer; f : left or right;
Output: pass or fail

1 begin
2 if the i-th segment is the first matching segment then
3 Partition r′ into τ ′ + 1 segments (c1c2 · · · cx, cx+1 · · · cy and the last τ − i segments of r′

if f is right; the first i− 2 segments of r′, c1c2 · · · cx−1, and cx · · · cy if f is left) ;
4 j = 2 if f is right; j = i− 2 if f is left ;
5 if the j-th segment of r′ is not empty then
6 Select substrings of s′ on the j-th segment of r′ ;
7 if s′ has no substring matching the j-th segment of r′ then return fail ;
8 else
9 Suppose s′ has a substring w′ matching the j-th segment of r′. Partition r′/s′

based on w′ and suppose the left parts are r′l/s
′
l and the right parts are r′r/s

′
r;

10 if f is left then return ITERATIVEVERIFY(r′l, s′l, τ ′ − 1, i− 1, left) ;
11 else return ITERATIVEVERIFY(r′r, s′r, τ ′ − 1, i+ 1, right) ;

12 return pass;

Fig. 12. Iterative-based verification algorithm

Basic Idea: Consider two strings r and s where s has a selected substring which
matches r’s i-th segment w. We still partition r/s into three parts, the left part rl/sl,
the matching part rm/sm = w and the right part rr/sr. Instead of checking whether
ED(rl, sl) ≤ τl = i − 1 and ED(rr, sr) ≤ τr = τ + i − 1 using the length-aware verifica-
tion technique, we iteratively use the multi-match-aware technique to check whether
rl(rr) and sl(sr) are similar. Without loss of generality, consider the left parts rl and sl.
We partition rl into τl + 1 segments. If sl has no selected substring which matches a
segment of rl, r and s cannot be similar and we can prune the pair.

For example consider a string r = “kausic chakduri” with four segments “kau”,
“sic ”, “chak”, and “duri” and another string s = “caushik chakrabar”. String s has
a substring “chak” matching with the third segment of string r. Thus rl = “kausic ”
and sl = “caushik ”. The extension-based verification will compute their edit distance
using the tighter bound τl = i−1 = 2. Actually we need not compute their real edit dis-
tance using the dynamic-programming method. Instead, we partition rl into τl + 1 = 3
segments “kau”, “si”, and “c ”. Based on the multi-match-aware substring selection
method, we only select four substrings of sl, “cau”, “sh”, “hi” and “k ”. As none of the
four substrings matches any segment of rl, we deduce that the edit distance between
sl and rl is larger than τl = 2. Thus we can prune the pair of s and r.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints 1:19

Pseudo-code: Figure 12 shows the pseudo-code of our iterative-based method. It first
verifies the left parts by calling subroutine ITERATIVEVERIFY (line 3). If the left-part
verification passes, it verifies the right parts by calling subroutine ITERATIVEVERIFY
(line 5) again. If the verifications on the both parts passes, it returns the real edit dis-
tance (line 8). ITERATIVEVERIFY first partitions the input strings into τ ′+1 segments
(line 3). It employs different partition strategies for the leaf part and the right part,
which will be discussed later. Then it selects substrings based on the left part or the
right part (line 6). If there is no selected substring matching the segment, it returns
fail (line 7); otherwise it iteratively calls itself to verify the candidate pair (line 11).

To use the iterative-based method in the verification step, we only need to replace
lines 5-8 in Figure 9 with the ITERATIVEVERIFICATION algorithm.
Technical Details of The Iterative-based Method: We formally introduce how to
use the iterative-based method to verify r and s, i.e., how to implement the ITERA-
TIVEVERIFY function. Suppose s has a selected substring sm which matches the i-th
segment (rm) of string r, and the left parts are rl/sl and right parts are rr/sr. We re-
spectively discuss how to iteratively verify the left parts (rl/sl) and right parts (rr/sr).
Left Parts: We consider rl/sl and check whether ED(rl, sl) ≤ τl = i − 1. If sm is not
the first selected substring of s (with the minimum start position) which matches a
segment of r, we still use the length-aware method; otherwise we use our iterative-
based method. (Notice that the matching substring sm has a very large probability
(larger than 90% in our experiments) to be the first substring). The iterative-based
method first partitions rl into τl +1 = i segments. Then it uses the multi-match-aware
method to select substrings from sl. If sl has a selected substring matching a segment
of rl, we iteratively call the iterative-based method; otherwise we prune ⟨r, s⟩.

Next we discuss how to partition rl into τl+1 = i segments. As rm is the i-th segment
of r, rl contains the first i−1 segments of r. Since sm is the first selected substring which
matches the i-th segment of r, s has no selected substring which matches the first
i − 1 segments. More interestingly we find that sl also has no selected substring that
matches the first i−1 segments (which will be proved in Theorem 5.4). † Thus we keep
the first i− 2 segments of r as the first i− 2 segments of rl. In this way, we know that
sl has no substring which matches the first i− 2 segments of rl. Then we partition the
(i− 1)-th segment of r into two segments and take them as the last 2 segments of rl as
follows. Let c1c2 · · · cx · · · cy denote the (i− 1)-th segment of r and sl = c′1c

′
2 · · · c′x′ · · · c′y′ .

We compute the longest common suffix of c1c2 · · · cx · · · cy and sl. Suppose cx+1 · · · cy =
c′x′+1 · · · c′y′ is the longest common suffix. If x > 1, we partition the (i − 1)-th segment
into two segments c1c2 · · · cx−1 and cx · · · cy. Thus we can partition rl into i segments.
Based on the multi-match-aware method, sl has no selected substring which matches
the i-th segments of rl as cx ̸= c′x′ . Thus we only need to select substrings from sl for
the (i− 1)-th segment of rl (e.g., c1 · · · cx−1). We check whether the selected substrings
match the (i− 1)-th segment of rl. If yes, we iteratively call the iterative-based method
on the left parts of the matching segments/substrings; otherwise we prune the pair of r
and s. Notice that if x = 1, we cannot partition the (i−1)-th segment into two segments
and we still use the length-aware verification method to verify rl and sl.
Right Parts: If ED(rl, sl) ≤ τl = i − 1, we continue to verify the right parts rr/sr
similarly. The differences are as follows. First we partition rr into τr + 1 = τ + 2 − i
segments. Second the partition strategy is different. Next we discuss how to partition
rr into τ + 2 − i segments. Notice that if s has another substring which matches a

†As |sl| − |rl| may be unequal to |s| − |r|, the selected substrings of sl for segments of rl may be different
from those selected substrings of sl (as a part of s) for segments of r. Thus we need to prove the statement.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

1:20 G. Li et al.

segment among the last τ − i+ 1 segments of r, we can discard rm and sm and verify r
and s using the next matching pair based on the multi-match-aware technique. Thus
we keep the last τ − i segments of r as the last τ − i segments of rr and we do not need
to select substrings from sr to match such segments. Then we repartition the (i+1)-th
segment of r into the first two segments of rr as follows. We find the longest common
prefix of the (i + 1)-th segment of r and sr and then partition (i + 1)-th segment of r
into two segments similarly. Let c1c2 · · · cx · · · cy denote the (i + 1)-th segment of r and
sr = c′1c

′
2 · · · c′x′ · · · c′y′ . We compute the longest common prefix of c1c2 · · · cx · · · cy and sr.

Suppose c1 · · · cx−1 = c′1 · · · c′x′−1 is the longest common prefix. If x < y, we partition
the (i + 1)-th segment into two segments c1c2 · · · cx and cx+1 · · · cy and take them as
the first two segments of rr. Thus we can partition rr into τ + 2 − i segments. Based
on the multi-match-aware method, we only need to select substrings from sr for the
second segment of rr (e.g., cx+1 · · · cy) and check whether the selected substrings match
the second segment. If yes, we iteratively call the iterative-based method on the right
parts of the matching segments/substrings; otherwise we prune the pair of r and s.
Notice that if x = y, we cannot partition the (i+ 1)-th segment into two segments and
we still use the length-aware verification method to verify rr and sr.

As verifying the left parts is similar to verifying right parts, we combine them and
use the ITERATIVEVERIFY function to verify them. In the function, r′/s′ refer to rl/sl or
rr/rs as show in Figure 12. We use a flag to distinguish the left parts or the right parts.
For the left parts we keep the first i−2 segments and split the i−1-th segment into two
new segments and for the right parts we split the first segment into two new segment
and keep the last τ − i segments. We select the substrings based on the left parts or
right parts. Then we can use the segments and selected substrings to do pruning.

The iterative-based verification method satisfies the correctness as stated in Theo-
rem 5.4.

THEOREM 5.4. Our iterative-based verification method satisfies the correctness.

PROOF. See Section H in Appendix.

5.4. Correctness and Completeness
We prove correctness and completeness of our algorithm as formalized in Theorem 5.5.

THEOREM 5.5. Our algorithm satisfies the (1) completeness: Given any similar pair
⟨s, r⟩, our algorithm must find it as an answer; and (2) correctness: A pair ⟨s, r⟩ found
in our algorithm must be a similar pair.

PROOF. See Section I in Appendix.

6. DISCUSSIONS
In this section we first discuss how to support normalized edit distance (Section 6.1)
and then extend our techniques to support R-S join (Section 6.2).

6.1. Supporting Normalized Edit Distance
Normalized edit distance, a.k.a, edit similarity, is also a widely used similarity function
to quantify the similarity of two strings. The normalized edit distance of two strings
r and s is defined as NED(r, s) = 1 − ED(r,s)

max(|r|,|s|) . For example, NED(“kausic chakduri”,
“kaushuk chadhui ”) = 11

17 . Given a normalized edit distance threshold δ, we say two
strings are similar if their normalized edit distance is not smaller than δ. Then we
formalize the problem of string similarity join with normalized edit distance constraint
as follows.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints 1:21

ALGORITHM 6: SEGFILTER-NED (S, δ)
Input: S: A collection of strings

δ: A given normalized edit-distance threshold
Output: A = {(s ∈ S, r ∈ S) | NED (s, r) ≥ δ}

1 begin
2 Sort S by string length in descending order;
3 for s ∈ S do
4 for |s| ≤ l ≤ ⌊|s|/δ⌋ do
5 τ = ⌊(1− δ) · l⌋ ;
6 for Li

l(1 ≤ i ≤ τ + 1) do
7 W(s,Li

l) = SUBSTRINGSELECTION(s, Li
l);

8 for w ∈ W(s,Li
l) do

9 if w is in Li
l then VERIFICATION(s,Li

l(w), τ);

10 Partition s into ⌊(1− δ) · |s|⌋+ 1 segments and add them into Li
|s|;

Fig. 13. SEGFILTER-NED algorithm

Definition 6.1 (String Similarity Joins With Normalized Edit Distance Constraint).
Given two sets of strings R and S and an normalized edit-distance threshold δ, it finds
all similar string pairs ⟨r, s⟩ ∈ R × S such that NED(r, s) ≥ δ.

Next we discuss how to support normalize edit distance. For two strings r and s,
as NED(r, s) = 1 − ED(r,s)

max(|r|,|s|) , ED(r, s) = max(|r|, |s|) · (1 − NED(r, s)). If NED(r, s) ≥ δ,
ED(r, s) = max(|r|, |s|) · (1 − NED(r, s)) ≤ max(|r|, |s|) · (1 − δ). Notice that in the index
phase we need to partition string r into τ+1 segments. If |s| > |r|, we cannot determine
the number of segments. To address this issue, we first index the long strings (r) and
then visit the short strings (s). That is we index segments of the long strings and
select substrings from the short strings. In this case, we always have |s| ≤ |r|. Thus
ED(r, s) ≤ |r| · (1− δ). Let τ = |r| · (1− δ), we can partition r to τ + 1 = ⌊|r| · (1− δ)⌋+ 1
segments using the even partition scheme. In addition, as |r|−|s| ≤ ED(r, s) ≤ |r|·(1−δ),
we have |r| ≤ ⌊ |s|

δ ⌋. Thus for string s, we only need to find candidates for strings with
length between |s| and ⌊ |s|

δ ⌋. The substring selection phase and verification phase are
still the same as the original method.

Figure 13 gives the pseudo-code SEGFILTER-NED to support normalized edit dis-
tance. We first sort strings in S by string length in descending order (line 2) and then
visit each string s in sorted order (line 3). For each possible length ([|s|, ⌊ |s|

δ ⌋]) of strings
which may be similar to s (line 4), we transform the normalized edit distance threshold
δ to edit distance threshold τ (line 5). Then for each inverted index Li

l(1 ≤ i ≤ τ + 1)
(line 6), we select the substrings of s (line 7) and check whether each selected substring
w is in Li

l (line 8). If yes, for any string r in the inverted list Li
l(w), the string pair ⟨r, s⟩

is a candidate pair. We verify the pair (line 9). Finally, we partition s into ⌊(1−δ)·|s|⌋+1
segments, and insert the segments into the inverted index Li

|s|(1 ≤ i ≤ ⌊(1− δ) · |s|⌋+1)

(line 10). Here algorithms SUBSTRINGSELECTION and VERIFICATION are the same as
the algorithms in Figure 3.

Next we give a running example of our SEGFILTER-NED algorithm. Consider the
string set in Table I and suppose the normalized edit distance threshold δ = 0.82. We
sort the strings in descending order as show in Table I(c). For the first string s6, we
partition it to ⌊(1− δ) · |s6|⌋+ 1 = 4 segments and insert the segments into L|s6|. Next
for s5 we select substrings for L|s6| using the multi-match-aware method and check

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

1:22 G. Li et al.

L10

s5=kausic chakduri s2=avataresha

L15 L15

s4=kaushuk chadhuis6=caushik chakrabar s1=vankateshs3=kaushik chakrab

6

hik_ chakcaus

6 6 6

1 2 3 4

rabar

5

reshaavata

5

1 2

5

c_cha kdurikausi

5 5

1 2 3

Candidate:

<5, 6>

Answer: φφφφ

Candidate:

φφφφ
Answer: φφφφ

Candidates:

<3,4>, <3,6>

Answer:<3,6>

L17

5

c_cha kdurikausi

5 5

1 2 3

uk_ch

4

adhui

4

L15

Candidates:

φφφφ
Answer: φφφφ

. . .

Candidates:

φφφφ
Answer: φφφφ

4

kaush

Fig. 14. An example of SEGFILTER-NED algorithm

ALGORITHM 7: SEGFILTER-RSJOIN (R,S, τ)
Input: R: A collection of strings

S: Another collection of strings
τ : A given edit-distance threshold

Output: A = {(r ∈ R, s ∈ S) | ED (r, s) ≤ τ}
1 begin
2 Sort R and S by string length in ascending order;
3 for r ∈ R do
4 Partition r and add its segments into Li

|r|;

5 for s ∈ S do
6 for Li

l (|s| − τ ≤ l ≤ |s|+ τ, 1 ≤ i ≤ τ + 1) do
7 W(s,Li

l) = SUBSTRINGSELECTION(s, Li
l);

8 for w ∈ W(s,Li
l) do

9 if w is in Li
l then VERIFICATION(s,Li

l(w), τ);

Fig. 15. SEGFILTER-RSJOIN algorithm

if there is any selected substring matching with its corresponding segment. Here we
find “chak” and the pair ⟨s6, s5⟩ is a candidate. Then we verify this pair using the
iterative-based method based on the matching part “chak” and it is not a result. Next
we partition s5 into ⌊(1−δ) · |s5|⌋+1 = 3 segments. Similarly we repeat the above steps
and we find another two candidate pairs ⟨s3, s4⟩ and ⟨s3, s6⟩. We verify them using the
iterative-based method and get a final result ⟨s3, s6⟩.

6.2. Supporting R-S Join
To support R-S join on two sets R and S, we first sort the strings in the two sets
respectively. Then we index the segments of strings in a set, e.g., R. Next we visit
strings of S in order. For each string s ∈ S with length |s|, we use the inverted indices of
strings in R with lengths between [|s|−τ, |s|+τ] to find similar pairs. We can remove the
indices for strings with lengths smaller than |s| − τ . Finally we verify the candidates.
Notice that in Section 4, for two strings r and s, we only consider the case that |r| ≥ |s|
where we partition r to segments and select substrings from s. Actually, Theorem 4.4
still holds for |r| < |s|.

The pseudo code of SEGFILTER-RSJOIN algorithm is illustrated in Figure 15. It
first sorts the strings in the two sets (line 2), and then builds indices for strings in R
(lines 3-4). Next it visits strings in S in sorted order. For each string s, it selects sub-

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints 1:23

strings of s by calling algorithm SUBSTRINGSELECTION (line 7) and finds candidates
using the indices. Finally it verifies the candidates by calling algorithm VERIFICATION
(line 9). Here algorithms SUBSTRINGSELECTION and VERIFICATION are the same as
the algorithms in Figure 3.

7. EXPERIMENTAL STUDY
We have implemented our method and conducted an extensive set of experimental
studies. We used six real-world datasets. To evaluate self-join, we used three datasets,
DBLP Author‡, DBLP Author+Title, and AOL Query Log 1§. DBLP Author is a dataset
with short strings, DBLP Author+Title is a dataset with long strings, and the Query
Log 1 is a set of query logs. Note that the DBLP Author+Title dataset is the same
as that used in ED-JOIN and the DBLP Author dataset is the same as that used in
TRIE-JOIN. To evaluate R-S join, we used other three datasets: CITESEERX Author¶,
CITESEERX Author+Title, and AOL Query Log 2. AOL Query Log 2 is another set
of query logs which is different from AOL Query Log 1. We joined DBLP Author and
CITESEERX author, DBLP Author+Title and CITESEERX Author+Title, and AOL
Query Log 1 and AOL Query Log 2. Table III shows the detailed information of the
datasets and Figure 16 shows the string length distributions of different datasets.

Table III. Datasets

Datasets Cardinality Avg Len Max Len Min Len
DBLP Author 612,781 14.83 46 6
Query Log 1 464,189 44.75 522 30
DBLP Author+Title 863,073 105.82 886 21
Citeseer Author 1,000,000 20.35 54 5
Query Log 2 1,000,000 39.76 501 29
Citeseer Author+Title 1,000,000 107.45 808 22

We compared our algorithms with state-of-the-art methods, ED-JOIN [Xiao et al.
2008a], QCHUNK-JOIN [Qin et al. 2011] and TRIE-JOIN [Wang et al. 2010]. As ED-
JOIN, QCHUNK-JOIN and TRIE-JOIN outperform other methods, e.g., Part-Enum [Ara-
su et al. 2006] and All-Pairs-Ed [Bayardo et al. 2007] (also experimentally shown in [X-
iao et al. 2008a; Wang et al. 2010; Qin et al. 2011]), in the paper we only compared
our method with them. We downloaded their binary codes from their homepages, ED-
JOIN ∥, QCHUNK-JOIN ∗∗ and TRIE-JOIN ††.

All the algorithms were implemented in C++ and compiled using GCC 4.2.4 with -O3
flag. All the experiments were run on a Ubuntu machine with an Intel Core 2 Quad
X5450 3.00GHz processor and 4 GB memory.

7.1. Evaluating Substring Selection
In this section, we evaluate substring selection techniques. We implemented the fol-
lowing four methods. (1) The length-based selection method, denoted by Length, which
selects the substrings with the same lengths as the segments. (2) The shift-based
method, denoted by Shift, which selects the substring by shifting [−τ, τ] positions as
discussed in Section 4. (3) Our position-aware selection method, denoted by Position.

‡http://www.informatik.uni-trier.de/∼ley/db
§http://www.gregsadetsky.com/aol-data/
¶http://asterix.ics.uci.edu/fuzzyjoin/
∥http://www.cse.unsw.edu.au/∼weiw/project/simjoin.html
∗∗http://www.cse.unsw.edu.au/∼jqin/
††http://dbgroup.cs.tsinghua.edu.cn/wangjn/

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

1:24 G. Li et al.

 0

 20000

 40000

 60000

 80000

 0 5 10 15 20 25 30 35 40 45

N
um

be
rs

 o
f s

tr
in

gs

String Lengths

(a) DBLP Author(AvgLen=15)

 0

 10000

 20000

 30000

 40000

 0 100 200 300 400 500

N
um

be
rs

 o
f s

tr
in

gs

String Lengths

(b) Query Log 1(AvgLen=45)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 200 400 600 800

N
um

be
rs

 o
f s

tr
in

gs

String Lengths

(c) DBLP Author+Title(AvgLen=105)

 0

 20000

 40000

 60000

 80000

 0 5 10 15 20 25 30 35 40 45 50 55

N
um

be
rs

 o
f s

tr
in

gs

String Lengths

(d) CITESEERX Author(AvgLen=20)

 0

 20000

 40000

 60000

 80000

 100000

 0 100 200 300 400 500

N
um

be
rs

 o
f s

tr
in

gs

String Lengths

(e) Query Log 2(AvgLen=40)

 0

 2000

 4000

 6000

 8000

 10000

 0 200 400 600 800

N
um

be
rs

 o
f s

tr
in

gs

String Lengths

(f) CITESEERX Author+Title (Av-
gLen=107)

Fig. 16. String length distribution

(4) Our multi-match-aware selection method, denoted by Multi-match. We first com-
pared the total number of selected substrings. Figure 17 shows the results.

We can see that the Length-based method selected large numbers of substrings. The
number of selected substring of the Position-based method was about a tenth to a
fourth of that of the Length-based method and a half of the Shift-based method. The
Multi-match-based method further reduced the number of selected substrings to about
a half of that of the Position-based method. For example, on DBLP Author dataset, for
τ = 1, the Length-based method selected 19 million substrings, the Shift-based method
selected 5.5 million substrings, the Position-based method reduced the number to 3.7
million, and the Multi-match-based method further deceased the number to 2.4 million.
Based on our analysis in Section 4, for strings with l, the length-based method selected
(τ +1)(|s|+1)− l substrings, the shift-based method selected (τ +1)(2τ +1) substrings,
the position-based method selected (τ + 1)2 substrings, and the multi-match-aware
method selected ⌊ τ2−△2

2 ⌋ + τ + 1 substrings. If |s|=l=15 and τ = 1, the number of s-
elected substrings of the four methods are respectively 17, 6, 4, and 2. Obviously the
experimental results consisted with our theoretical analysis.

We also compared the elapsed time to generate substrings. Figure 18 shows the
results. We see that the Multi-match-based method outperformed the Position-based
method which in turns was better than the Shift-based method and the Length-based
method. This is because the elapsed time depended on the number of selected sub-
strings and the Multi-match-based selected the smallest number of substrings.

7.2. Evaluating Verification
In this section, we evaluate our verification techniques. We implemented four methods.
(1) The naive method, denoted by 2τ + 1, which computed 2τ + 1 values in each row
and used the naive early-termination technique (if all values in a row are larger than
τ , we terminate). (2) Our length-aware method, denoted by τ +1, which computed τ +1

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints 1:25

 1e+006

 1e+007

 1e+008

 1e+009

 1 2 3 4

of

 s
el

ec
te

d
su

bs
tr

in
gs

Threshold τ

Length
Shift

Positon
Multi-Match

(a) DBLP Author(AvgLen=15)

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 4 5 6 7 8

of

 s
el

ec
te

d
su

bs
tr

in
gs

Threshold τ

Length
Shift

Positon
Multi-Match

(b) Query Log 1(AvgLen=45)

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 5 6 7 8 9 10

of

 s
el

ec
te

d
su

bs
tr

in
gs

Threshold τ

Length
Shift

Positon
Multi-Match

(c) DBLP Author+Title(AvgLen=105)

Fig. 17. Numbers of selected substrings

 0.1

 1

 10

 100

 1 2 3 4

S
el

ec
tio

n
T

im
e

(s
)

Threshold τ

Length
Shift

Positon
Multi-Match

(a) DBLP Author(AvgLen=15)

 1

 10

 100

 1000

 4 5 6 7 8

S
el

ec
tio

n
T

im
e

(s
)

Threshold τ

Length
Shift

Positon
Multi-Match

(b) Query Log 1(AvgLen=45)

 1

 10

 100

 1000

 10000

 5 6 7 8 9 10

S
el

ec
tio

n
T

im
e

(s
)

Threshold τ

Length
Shift

Positon
Multi-Match

(c) DBLP Author+Title(AvgLen=105)

Fig. 18. Elapsed time for generating substrings

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4

E
la

ps
ed

 T
im

e
(s

)

Threshold τ

2τ+1
τ+1

Extension
Iterative

(a) DBLP Author(AvgLen=15)

 10

 100

 1000

 10000

 4 5 6 7 8

E
la

ps
ed

 T
im

e
(s

)

Threshold τ

2τ+1
τ+1

Extension
Iterative

(b) Query Log 1(AvgLen=45)

 10

 100

 1000

 10000

 5 6 7 8 9 10

E
la

ps
ed

 T
im

e
(s

)

Threshold τ

2τ+1
τ+1

Extension
Iterative

(c) DBLP Author+Title(AvgLen=105)

Fig. 19. Elapsed time for verification

values in each row and used the expected edit distance to do early termination. (3)
Our extension-based method, denoted by Extension, which used the extension-based
framework. It also computed τ+1 rows and used the expected edit distance with tighter
threshold to do early termination. (4) Our iterative-based method, denoted by Iterative,
which used the iterative-based verification algorithm. Figure 19 shows the results.

We see that the naive method had the worst performance, as it needed to compute
many unnecessary values in the matrix. Our length-aware method was 2-5 times faster
than the naive method. This is because our length-aware method can decrease the
complexity from 2τ + 1 to τ + 1 and used expected edit distances to do early termi-
nation. The extension-based method achieved higher performance and was 2-4 times
faster than the length-aware method. The reason is that the extension-based method
can avoid the duplicated computations on the common segments and it also used a
tighter bound to verify the left parts and the right parts. The Iterative method achieved
the best performance, as it can prune dissimilar candidate pairs quickly and avoid
many unnecessary computations. For example, on the Query Log 1 dataset, for τ = 8

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

1:26 G. Li et al.

the naive method took 3, 500 seconds, the length-aware method decreased the time to
1500 seconds, the extension-based method reduced it to 600 seconds, and the Iterative
method further improved the time to about 250 seconds. On the DBLP Author+Title
dataset, for τ = 10, the elapsed time of the four methods were respectively 1800 sec-
onds, 700 seconds, 475 seconds, and 100 seconds.

7.3. Comparison with Existing Methods
In this section, we compare our method with state-of-the-art methods ED-JOIN [Xi-
ao et al. 2008a], QCHUNK-JOIN [Qin et al. 2011] and TRIE-JOIN [Wang et al. 2010].
As TRIE-JOIN had multiple algorithms, we reported the best results. For ED-JOIN
and QCHUNK-JOIN, we tuned its parameter q and reported the best results. Notice
that to avoid involving false negatives, it requires to select a small q for a large edit-
distance threshold. As TRIE-JOIN was efficient for short strings, we downloaded the
same dataset from TRIE-JOIN homepage (i.e., Author with short strings) and used it
to compare with TRIE-JOIN. As ED-JOIN was efficient for long strings, we downloaded
the same dataset from ED-JOIN homepage (i.e., Author+Title with long strings) and
used it to compare with ED-JOIN.
Candidate Sizes: We first compare the candidate sizes of various methods. Figure 20
shows the results. Notice that TRIE-JOIN directly computed the answers and thus it
involved the smallest number of candidates. SEGFILTER generated smaller number-
s of candidates than ED-JOIN and QCHUNK-JOIN. This is attributed to our effective
substring selection techniques which can prune large numbers of dissimilar pairs. ED-
JOIN and QCHUNK-JOIN pruned dissimilar pairs based on the gram-based count filter.
SEGFILTER utilized the shared segments to prune dissimilar pairs. Since we can min-
imize the number of selected substrings and achieve high pruning power, SEGFILTER
generates smaller numbers of candidates. For example, on the DBLP Author+Title
dataset, SEGFILTER had 1 billion candidates while ED-JOIN and QCHUNK-JOIN had
about 10 billion candidates.
Running Time of Different Steps: ED-JOIN and QCHUNK-JOIN includes three
steps: preprocessing step, filter step and verification step. The preprocessing step in-
cludes tokenizing records into q-grams, generating binary data, and sorting the binary
data. SEGFILTER contains two steps: filter step and verification step. TRIE-JOIN di-
rectly computes the answers. We compared the running time of each step and Figure 21
shows the results (In the Figure, we use different colors to distinguish different step-
s). For different thresholds, the preprocessing time in ED-JOIN and QCHUNK-JOIN
was stable since it only depended on the dataset size. With the increase of the thresh-
olds, the filtering time and the verification time also increased since large thresholds
will lead to more results. SEGFILTER involved less filtering time than ED-JOIN and
QCHUNK-JOIN, because we only needed to consider smaller numbers of segments and
selected substrings while they required to enumerate larger numbers of grams/chunks.
SEGFILTER also involved less verification time since it has smaller numbers of candi-
dates and used effective extension-based and iterative-based techniques. Notice that
our extension-based and iterative-based verification methods are designed for SEG-
FILTER which are not applicable for ED-JOIN and QCHUNK-JOIN.
Overall Join Time: We compare the overall time, including preprocessing time, fil-
tering time and verification time. Figure 22 shows the results. On the DBLP Author
dataset with short strings, TRIE-JOIN outperformed ED-JOIN and QCHUNK-JOIN,
and our method was much better than them, especially for τ ≥ 2. The main reason
is as follows. ED-JOIN and QCHUNK-JOIN must use a smaller q for a larger thresh-
old. In this way ED-JOIN and QCHUNK-JOIN will involve large numbers of candidate
pairs, since a smaller q has rather lower pruning power [Xiao et al. 2008a]. TRIE-JOIN

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints 1:27

 1e+006
 1e+007
 1e+008
 1e+009
 1e+010
 1e+011
 1e+012

 1 2 3 4

C
an

di
da

te
 S

iz
e

Threshold τ

EdJoin
Qchunk
TrieJoin

SegFilter

(a) DBLP Author(AvgLen=15)

 100000
 1e+006
 1e+007
 1e+008
 1e+009
 1e+010
 1e+011

 1 2 3 4 5 6 7 8

C
an

di
da

te
 S

iz
e

Threshold τ

EdJoin
Qchunk
TrieJoin

SegFilter

(b) Query Log 1(AvgLen=45)

 10000
 100000
 1e+006
 1e+007
 1e+008
 1e+009
 1e+010
 1e+011
 1e+012

 1 2 3 4 5 6 7 8 9 10

C
an

di
da

te
 S

iz
e

Threshold τ

EdJoin
Qchunk
TrieJoin

SegFilter

(c) DBLP Author+Title(AvgLen=105)

Fig. 20. Comparison of candidate sizes with state-of-the-art methods

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4

E
la

ps
ed

 T
im

e(
s)

Threshold τ

Pre

Filter

Verify

EdJoin
Qchunk
TrieJoin

SegFilter

(a) DBLP Author(AvgLen=15)

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8

E
la

ps
ed

 T
im

e(
s)

Threshold τ

Pre

Filter

Verify

EdJoin
Qchunk
TrieJoin

SegFilter

(b) Query Log 1(AvgLen=45)

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10

E
la

ps
ed

 T
im

e(
s)

Threshold τ

Pre

Filter
Verify

EdJoin
Qchunk
TrieJoin

SegFilter

(c) DBLP Author+Title(AvgLen=105)

Fig. 21. Comparison of running time of preprocessing, filtering, verification with state-of-the-art methods

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4

E
la

ps
ed

 T
im

e
(s

)

Threshold τ

EdJoin
TrieJoin
Qchunk

SegFilter

(a) DBLP Author(AvgLen=15)

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8

E
la

ps
ed

 T
im

e
(s

)

Threshold τ

EdJoin
TrieJoin
Qchunk

SegFilter

(b) Query Log 1(AvgLen=45)

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10

E
la

ps
ed

 T
im

e
(s

)

Threshold τ

EdJoin
TrieJoin
Qchunk

SegFilter

(c) DBLP Author+Title(AvgLen=105)

Fig. 22. Comparison of the overall time with state-of-the-art methods

used the prefix filtering to find similar pairs using a trie structure. If a small number
of strings shared prefixes, TRIE-JOIN had low pruning power and was expensive to
traverse the trie structure. Instead our framework utilized segments to prune large
numbers of dissimilar pairs. The segments were selected across the strings and not
restricted to prefix filtering. For instance, for τ=4, TRIE-JOIN took 2500 seconds. SEG-
FILTER improved it to 700 seconds. ED-JOIN and QCHUNK-JOIN were rather slow
and even larger than 10,000 seconds.

On the DBLP Author+Title dataset with long strings, our method significantly out-
performed ED-JOIN, QCHUNK-JOIN and TRIE-JOIN, even in 2-3 orders of magnitude.
This is because TRIE-JOIN was rather expensive to traverse the trie structures with
long strings, especially for large thresholds. ED-JOIN needed to use a mismatch tech-
nique and QCHUNK-JOIN needed to use a error estimation-based filtering in verifica-

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

1:28 G. Li et al.

tion phase which were inefficient while our verification method was more efficient than
existing ones. For instance, for τ = 8, TRIE-JOIN needed 15,000 seconds, QCHUNK-
JOIN took 9500 seconds, ED-JOIN decreased it to 5000 seconds, and SEGFILTER im-
proved the time to 70 seconds.
Index Size: We compared index sizes on three datasets, as shown in Table IV. We can
observe that existing methods involve larger indices than our method. For example,
on the DBLP Author+Title dataset, ED-JOIN had 335 MB index, TRIE-JOIN used 90
MB, and our method only took 2.1 MB. There are two main reasons. Firstly for each
string with length l, ED-JOIN generated l − q + 1 grams where q is the gram length,
and our method only generated τ + 1 segments. Secondly for a string with length l,
we only maintained the indices for strings with lengths between l − τ and l, and ED-
JOIN kept indices for all strings. TRIE-JOIN needed to use a trie structure to maintain
strings, which had overhead to store the strings (e.g., pointers to children and indices
for searching children with a given character).

Table IV. Index sizes (MB)

Data Sets Data ED-JOIN TRIE-JOIN QCHUNK-JOIN SEGFILTER
Sizes q = 4 q = 4 τ = 2 τ = 4 τ = 6 τ = 8

DBLP Author 8.7 25.34 16.32 8.06 1.15 1.92 3.49 4.58
Query Log 1 20 72.17 69.65 18.69 2.98 4.96 6.94 8.93
DBLP Author+Title 88 335.24 90.17 23.21 1.26 2.1 2.94 3.78

7.4. Scalability
In this section, we evaluate the scalability of our method. We varied the number of
strings in the dataset and tested the elapsed time.

7.4.1. Evaluating Edit Distance. Figure 23 shows the results using edit-distance function.
We can see that our method achieved nearly linear scalability as the number of strings
increases. For example, for τ = 4, on the DBLP Author dataset, the elapsed time for
400,000 strings, 500,000 strings, and 600, 000 strings were respectively 360 seconds,
530 seconds, and 700 seconds. This is attributed to our effective segment filter.

7.4.2. Evaluating Normalized Edit Distance. To support normalized edit distance, TRIE-
JOIN and ED-JOIN needed to use the maximal length of strings to deduce the edit-
distance thresholds. If the length difference between strings is large, these two meth-
ods are rather expensive and lead to low performance. ‡‡ We also compared with these
two state-of-the-art methods. However they are rather inefficient and cannot report
the results in 24 hours. Thus we do not show the results in our experiments. Figure 24
shows the results of our SEGFILTER-NED algorithm. We can see that our method s-
cales very well for the normalized edit distance and it achieves as high efficiency as on
the edit-distance function.

7.4.3. Evaluating R-S Join. We evaluate our similarity join algorithm to support R-S
join. We compared with TRIE-JOIN. As ED-JOIN and QCHUNK-JOIN focused on self-
join and the authors did not implement the R-S join algorithms, we did not show their
results. We increased the number of strings in CITESEERX Author, Query Log 2, and
CITESEERX Author+Title by 200,000 each time and respectively joined them with
DBLP Author, Query Log 1, and DBLP Author+Title. We evaluated the elapsed time.

‡‡Notice that we cannot extend ED-JOIN to support normalized edit distance efficiently. This is because they
did not group the strings based on lengths. They used prefix filter and thus we cannot use our techniques to
deduce tighter bounds.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints 1:29

 0

 200

 400

 600

 800

 1 2 3 4 5 6

E
la

ps
ed

 T
im

e
(s

)

Numbers of Strings (*100, 000)

τ=4
τ=3
τ=2
τ=1

(a) DBLP Author(AvgLen=15)

 0

 100

 200

 300

 400

 1 2 3 4

E
la

ps
ed

 T
im

e
(s

)

Numbers of Strings (*100, 000)

τ=8
τ=7
τ=6
τ=5
τ=4

(b) Query Log 1(AvgLen=45)

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7 8

E
la

ps
ed

 T
im

e
(s

)

Numbers of Strings (*100, 000)

τ=10
τ=9
τ=8
τ=7
τ=6
τ=5

(c) DBLP Author+Title(AvgLen=105)

Fig. 23. Scalability (Edit Distance)

 1

 10

 100

 1000

 1 2 3 4 5 6

E
la

ps
ed

 T
im

e
(s

)

Numbers of Strings (*100, 000)

δ=0.80
δ=0.85
δ=0.90
δ=0.95

(a) DBLP Author(AvgLen=15)

 1

 10

 100

 1000

 1 2 3 4

E
la

ps
ed

 T
im

e
(s

)

Numbers of Strings (*100, 000)

δ=0.80
δ=0.85
δ=0.90
δ=0.95

(b) Query Log 1(AvgLen=45)

 10

 100

 1000

 10000

 100000

 1e+006

 1 2 3 4 5 6 7 8

E
la

ps
ed

 T
im

e
(s

)

Numbers of Strings (*100, 000)

δ=0.80
δ=0.85
δ=0.90
δ=0.95

(c) DBLP Author+Title(AvgLen=105)

Fig. 24. Scalability (Normalized Edit Distance)

 0

 100

 200

 300

 400

 500

 2 4 6 8 10

E
la

ps
ed

 T
im

e
(s

)

Numbers of Strings (*100, 000)

τ=4
τ=3
τ=2
τ=1

(a) CITESEERX Author(AvgLen=20)

 0

 800

 1600

 2400

 3200

 4000

 2 4 6 8 10

E
la

ps
ed

 T
im

e
(s

)

Numbers of Strings (*100, 000)

τ=8
τ=7
τ=6
τ=5
τ=4

(b) Query Log 2 (AvgLen=40)

 0

 100

 200

 300

 400

 500

 2 4 6 8 10

E
la

ps
ed

 T
im

e
(s

)

Numbers of Strings (*100, 000)

τ=10
τ=9
τ=8
τ=7
τ=6
τ=5

(c) CITESEERX Au-
thor+Title(AvgLen=107)

Fig. 25. R-S Join

 1

 10

 100

 1000

 10000

 1 2 3 4

E
la

ps
ed

 T
im

e
(s

)

Threshold τ

TrieJoin
SegFilter

(a) CITESEERX Author(AvgLen=20)

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8

E
la

ps
ed

 T
im

e
(s

)

Threshold τ

TrieJoin
SegFilter

(b) Query Log 2 (AvgLen=40)

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10

E
la

ps
ed

 T
im

e
(s

)

Threshold τ

TrieJoin
SegFilter

(c) CITESEERX Au-
thor+Title(AvgLen=107)

Fig. 26. Comparison of state-of-the-art R-S Join algorithms

Figure 26 shows the results. We can see that our method still scales well for R-S join
and outperformed TRIE-JOIN. For example, on the CITESEERX Author+Title dataset.
For τ = 8, the elapsed time for 0.2 million strings was about 33 seconds, while for 1 mil-

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

1:30 G. Li et al.

lion strings, the time was about 170 seconds. This is because our filtering algorithms
and verification algorithms can improve the performance.

8. RELATED WORK
String Similarity Join: There have been many studies on string similarity join-
s [Gravano et al. 2001; Arasu et al. 2006; Bayardo et al. 2007; Chaudhuri et al. 2006;
Sarawagi and Kirpal 2004; Xiao et al. 2008a; Xiao et al. 2009; Qin et al. 2011; Vernica
et al. 2010]. The approaches most related to ours are TRIE-JOIN [Wang et al. 2010],
All-Pairs-Ed [Bayardo et al. 2007], ED-JOIN [Xiao et al. 2008a], QCHUNK-JOIN [Qin
et al. 2011] and Part-Enum [Arasu et al. 2006]. All-Pairs-Ed is a q-gram-based method.
It first generates q-grams for each string and then selects the first qτ + 1 grams as
a gram prefix based on a pre-defined order. It prunes the string pairs with no com-
mon grams and verifies the survived string pairs. ED-JOIN improves All-Pairs-Ed
by using location-based and content-based mismatch filters. It has been shown that
ED-JOIN outperforms All-Pairs-Ed [Bayardo et al. 2007]. QCHUNK-JOIN is a variant
of All-Pairs-Ed which utilizes an asymmetric signature scheme to index the q-gram
and search the q-chunks, and adopts an error estimation-based filtering. Although
our techniques utilize length difference to do pruning, they are different from the er-
ror estimation-based filtering as follows. First, our position-aware substring selection
technique is in the filtering step which can prune large numbers of dissimilar string
pairs. However the error estimation-based filtering method is in the verification step
which only prunes the candidate pairs one by one. Second, our length-aware verifi-
cation technique can improve the verification time for both similar string pairs and
dissimilar strings pairs while the error estimation-based filtering can only prune dis-
similar pairs. Third, our early termination technique can get much better estimation
on edit distance than the error estimation-based method. For example, consider a ma-
trix entry M(i, j) for string r and string s. They use two estimated values |i − j| and
|(|r| − i|) − (|s| − j)| to estimate the edit distance while we can get the accurate value
of M(i, j) and only use |(|r| − i|) − (|s| − j)| to estimate the edit distance. Fourth, our
extension-based verification technique only considers a matching segment while the
error estimation-based method requires to consider all matching grams. Thus the error
estimation-based method considers many more candidate pairs than our method. Also
our extension-based verification technique uses much tighter bounds to accelerate the
verification step. TRIE-JOIN uses a trie structure to do similarity joins based on pre-
fix filtering. Part-Enum proposed an effective signature scheme called Part-Enum to
do similar joins for hamming distance. It has been proved that All-Pairs-Ed and Part-
Enum are worse than ED-JOIN, QCHUNK-JOIN and TRIE-JOIN [Wang et al. 2010;
Feng et al. 2012]. Thus we only compared with state-of-the-art methods ED-JOIN and
TRIE-JOIN.

Gravano et al. [Gravano et al. 2001] proposed gram-based methods and used SQL
statements for similarity joins inside relational databases. Sarawagi et al. [Sarawagi
and Kirpal 2004] proposed inverted index-based algorithms to solve similarity-join
problem. Chaudhuri et al. [Chaudhuri et al. 2006] proposed a primitive operator for
effective similarity joins. Arasu et al. [Arasu et al. 2006] developed a signature scheme
which can be used as a filter for effective similarity joins. Xiao et al. [Xiao et al. 2008b]
proposed ppjoin to improve all-pair algorithm by introducing positional filtering and
suffix filtering. Xiao et al. [Xiao et al. 2009] studied top-k similarity joins, which can
directly find the top-k similar string pairs without a given threshold.

In addition, Jacox et al. [Jacox and Samet 2008] studied the metric-space similarity
join. As this method is not as efficient as ED-JOIN and TRIE-JOIN [Wang et al. 2010],
we did not compare with it in the paper. Chaudhuri et al. [Chaudhuri et al. 2006] pro-
posed the prefix-filtering signature scheme for effective similarity join. Recently, Wang

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints 1:31

et al. [Wang et al. 2011] devised a new similarity function by tolerating token errors in
token-based similarity and developed effective algorithms to support similarity join on
such functions. Jestes et al. [Jestes et al. 2010] studied the problem of efficient string
joins in probabilistic string databases, by using lower bound filters based on proba-
bilistic q-grams to effectively prune string pairs. Silva et al. [Silva et al. 2010] focused
on similarity joins as first-class database operators. They proposed several similarity
join operators to support similarity joins in databases. Recently Vernica et al. [Vernica
et al. 2010] studied how to support similarity joins in map-reduce environments.

Difference from Our Conference Version[Li et al. 2011b]: The significant addi-
tions in this extended manuscript are summarized as follows.

• We proposed new optimization techniques to improve our verification method. Sec-
tion 5.3 was newly added. We also conducted a new experiment to evaluate our new
optimization techniques and show their superiority on real datasets. Figures 19-22
were newly added based on our new method.

• We discussed how to support normalized edit distance and how to support R-S join.
Section 6 was newly added. We also conducted experiments to evaluate our new tech-
niques and Sections 7.4.2 and 7.4.3 were newly added.

• We formally proved all the theorem and lemmas and the appendix was newly added.
We refined the paper to make it easy to follow and added some new references.

Approximate String Search: The other related studies are approximate string
searching [Chaudhuri et al. 2003; Li et al. 2008; Hadjieleftheriou et al. 2008a; Li et al.
2011c; Hadjieleftheriou et al. 2009; Zhang et al. 2010; Behm et al. 2011; Behm et al.
2009; Yang et al. 2008; Wang et al. 2012; Li et al. 2013; Deng et al. 2013], which given
a query string and a set of strings, finds all similar strings of the query string in the
string set. Hadjieleftheriou and Li [Hadjieleftheriou and Li 2009] gave a tutorial to
the approximate string searching problem. Existing methods usually adopted a gram
based indexing structure to do efficient filtering. They first generated grams of each
string and built gram based inverted lists. Then they merged the inverted lists to find
answers. Navarro studied the approximate string matching problem [Navarro 2001],
which given a query string and a text string, finds all substrings of the text string that
are similar to the query string. Notice that these two problems are different from our
similarity-join problem, which given two sets of strings, finds all similar string pairs.

Approximate Entity Extraction: There are some studied on approximate entity
extraction [Agrawal et al. 2008; Chakrabarti et al. 2008; Wang et al. 2009; Li et al.
2011a; Sun and Naughton 2011; Deng et al. 2012], which, given a dictionary of entities
and a document, finds all substrings of the document that are similar to some entities.
Existing methods adopted inverted indices and used different filters (e.g., length filter,
count filter, position filter, and token order filter) to facilitate the extraction.

Estimation: There are some studies on selectivity estimation for approximate string
queries and similarity joins [Hadjieleftheriou et al. 2008b; Lee et al. 2007; Lee et al.
2009; Lee et al. 2011; Jin et al. 2008].

9. CONCLUSION
In this paper, we have studied the problem of string similarity joins with edit-distance
constraints. We proposed a new filter, the segment filter, to facilitate the similarity
join. We devised a partition scheme to partition a string into several segments. We
sorted and visited strings in order. We built inverted indices on top of the segments of

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

1:32 G. Li et al.

the visited strings. For the current string, we selected some of its substrings and uti-
lized the selected substrings to find similar string pairs using the inverted indices and
then inserted segments of the current string into the inverted indices. We develope-
d a position-aware method and a multi-match-aware method to select substrings. We
proved that the multi-match-aware selection method can minimize the number of se-
lected substrings. We also developed efficient techniques to verify candidate pairs. We
proposed a length-aware method, an extension-based method, and an iterative-based
method to further improve the verification performance. We extended our techniques
to support normalized edit distance and R-S join. Experiments show that our method
outperforms state-of-the-art studies on both short strings and long strings.

Acknowledgement
This work was partly supported by the National Natural Science Foundation of China
under Grant No. 61003004 and 61272090, National Grand Fundamental Research 973
Program of China under Grant No. 2011CB302206, and a project of Tsinghua Univer-
sity under Grant No. 20111081073, and the “NExT Research Center” funded by MDA,
Singapore, under Grant No. WBS:R-252-300-001-490.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.

REFERENCES
AGRAWAL, S., CHAKRABARTI, K., CHAUDHURI, S., AND GANTI, V. 2008. Scalable ad-hoc entity extraction

from text collections. PVLDB 1, 1, 945–957.
ARASU, A., GANTI, V., AND KAUSHIK, R. 2006. Efficient exact set-similarity joins. In VLDB. 918–929.
BAYARDO, R. J., MA, Y., AND SRIKANT, R. 2007. Scaling up all pairs similarity search. In WWW. 131–140.
BEHM, A., JI, S., LI, C., AND LU, J. 2009. Space-constrained gram-based indexing for efficient approximate

string search. In ICDE. 604–615.
BEHM, A., LI, C., AND CAREY, M. J. 2011. Answering approximate string queries on large data sets using

external memory. In ICDE. 888–899.
CHAKRABARTI, K., CHAUDHURI, S., GANTI, V., AND XIN, D. 2008. An efficient filter for approximate mem-

bership checking. In SIGMOD Conference. 805–818.
CHAUDHURI, S., GANJAM, K., GANTI, V., AND MOTWANI, R. 2003. Robust and efficient fuzzy match for

online data cleaning. In SIGMOD Conference. 313–324.
CHAUDHURI, S., GANTI, V., AND KAUSHIK, R. 2006. A primitive operator for similarity joins in data clean-

ing. In ICDE. 5–16.
DENG, D., LI, G., AND FENG, J. 2012. An efficient trie-based method for approximate entity extraction with

edit-distance constraints. In ICDE. 141–152.
DENG, D., LI, G., FENG, J., AND LI, W.-S. 2013. Top-k string similarity search with edit-distance con-

straints. In ICDE.
FENG, J., WANG, J., AND LI, G. 2012. Trie-join: a trie-based method for efficient string similarity joins.

VLDB J. 21, 4, 437–461.
GRAVANO, L., IPEIROTIS, P. G., JAGADISH, H. V., KOUDAS, N., MUTHUKRISHNAN, S., AND SRIVASTAVA,

D. 2001. Approximate string joins in a database (almost) for free. In VLDB. 491–500.
HADJIELEFTHERIOU, M., CHANDEL, A., KOUDAS, N., AND SRIVASTAVA, D. 2008a. Fast indexes and algo-

rithms for set similarity selection queries. In ICDE. 267–276.
HADJIELEFTHERIOU, M., KOUDAS, N., AND SRIVASTAVA, D. 2009. Incremental maintenance of length nor-

malized indexes for approximate string matching. In SIGMOD Conference. 429–440.
HADJIELEFTHERIOU, M. AND LI, C. 2009. Efficient approximate search on string collections. PVLDB 2, 2,

1660–1661.
HADJIELEFTHERIOU, M., YU, X., KOUDAS, N., AND SRIVASTAVA, D. 2008b. Hashed samples: selectivity

estimators for set similarity selection queries. PVLDB 1, 1, 201–212.
JACOX, E. H. AND SAMET, H. 2008. Metric space similarity joins. ACM Trans. Database Syst. 33, 2.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints 1:33

JESTES, J., LI, F., YAN, Z., AND YI, K. 2010. Probabilistic string similarity joins. In SIGMOD Conference.
327–338.

JIN, L., LI, C., AND VERNICA, R. 2008. Sepia: estimating selectivities of approximate string predicates in
large databases. VLDB J. 17, 5, 1213–1229.

LEE, H., NG, R. T., AND SHIM, K. 2007. Extending q-grams to estimate selectivity of string matching with
low edit distance. In VLDB. 195–206.

LEE, H., NG, R. T., AND SHIM, K. 2009. Power-law based estimation of set similarity join size. PVLDB 2, 1,
658–669.

LEE, H., NG, R. T., AND SHIM, K. 2011. Similarity join size estimation using locality sensitive hashing.
PVLDB 4, 6, 338–349.

LI, C., LU, J., AND LU, Y. 2008. Efficient merging and filtering algorithms for approximate string searches.
In ICDE. 257–266.

LI, G., DENG, D., AND FENG, J. 2011a. Faerie: efficient filtering algorithms for approximate dictionary-
based entity extraction. In SIGMOD Conference. 529–540.

LI, G., DENG, D., WANG, J., AND FENG, J. 2011b. Pass-join: A partition-based method for similarity joins.
PVLDB 5, 3, 253–264.

LI, G., FENG, J., AND LI, C. 2013. Supporting search-as-you-type using sql in databases. IEEE Trans.
Knowl. Data Eng. 25, 2, 461–475.

LI, G., JI, S., LI, C., AND FENG, J. 2011c. Efficient fuzzy full-text type-ahead search. VLDB J. 20, 4, 617–
640.

NAVARRO, G. 2001. A guided tour to approximate string matching. ACM Comput. Surv. 33, 1, 31–88.
QIN, J., WANG, W., LU, Y., XIAO, C., AND LIN, X. 2011. Efficient exact edit similarity query processing with

the asymmetric signature scheme. In SIGMOD Conference. 1033–1044.
SARAWAGI, S. AND KIRPAL, A. 2004. Efficient set joins on similarity predicates. In SIGMOD Conference.

743–754.
SILVA, Y. N., AREF, W. G., AND ALI, M. H. 2010. The similarity join database operator. In ICDE. 892–903.
SUN, C. AND NAUGHTON, J. F. 2011. The token distribution filter for approximate string membership. In

WebDB.
UKKONEN, E. 1985. Algorithms for approximate string matching. Information and Control 64, 1-3, 100–118.
VERNICA, R., CAREY, M. J., AND LI, C. 2010. Efficient parallel set-similarity joins using mapreduce. In

SIGMOD. 495–506.
WANG, J., LI, G., AND FENG, J. 2010. Trie-join: Efficient trie-based string similarity joins with edit-distance

constraints. PVLDB 3, 1, 1219–1230.
WANG, J., LI, G., AND FENG, J. 2011. Fast-join: An efficient method for fuzzy token matching based string

similarity join. In ICDE. 458–469.
WANG, J., LI, G., AND FENG, J. 2012. Can we beat the prefix filtering?: an adaptive framework for similarity

join and search. In SIGMOD Conference. 85–96.
WANG, W., XIAO, C., LIN, X., AND ZHANG, C. 2009. Efficient approximate entity extraction with edit dis-

tance constraints. In SIGMOD Conference. 759–770.
XIAO, C., WANG, W., AND LIN, X. 2008a. Ed-join: an efficient algorithm for similarity joins with edit distance

constraints. PVLDB 1, 1, 933–944.
XIAO, C., WANG, W., LIN, X., AND SHANG, H. 2009. Top-k set similarity joins. In ICDE. 916–927.
XIAO, C., WANG, W., LIN, X., AND YU, J. X. 2008b. Efficient similarity joins for near duplicate detection. In

WWW. 131–140.
YANG, X., WANG, B., AND LI, C. 2008. Cost-based variable-length-gram selection for string collections to

support approximate queries efficiently. In SIGMOD Conference. 353–364.
ZHANG, Z., HADJIELEFTHERIOU, M., OOI, B. C., AND SRIVASTAVA, D. 2010. Bed-tree: an all-purpose index

structure for string similarity search based on edit distance. In SIGMOD. 915–926.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

Online Appendix to:
A Partition-based Method for String Similarity Joins with
Edit-Distance Constraints

GUOLIANG LI, DONG DENG, and JIANHUA FENG
Tsinghua University

A. PROOF OF THEOREM 4.2
THEOREM 4.2. The position-aware substring selection method satisfies the com-

pleteness.

PROOF. For any string s, consider a string r with length l(|s| − τ ≤ l ≤ |s|) which is
similar to s and visited before s. Consider any transformation T from s to r with |T | ≤ τ
edit operations. Based on Lemma 3.1, s must have a substring sm matching a segment
rm of r in the transformation T . We split r (s) into three parts: the left part before the
matching segment rl (sl), the matching segment rm (sm), and the right part after the
matching segment rr (sr). Suppose rm is the i-th segment of r. Thus r ∈ Li

l(rm). Next
we prove that sm ∈ Wp(s,Li

l) ⊆ Wp(s, l).
Firstly as sm = rm, |sm| = |rm| = li. Suppose the start position of sm in s is p. Next we

only need to prove that p ∈ [pmin, pmax]. As [pmin, pmax] = [1, |s|−li+1]∩ [pi−⌊ τ−△
2 ⌋, pi+

⌊ τ+△
2 ⌋], we only need to prove that p ∈ [1, |s| − li + 1] and p ∈ [pi − ⌊ τ−△

2 ⌋, pi + ⌊ τ+△
2 ⌋].

Case 1: p ∈ [1, |s| − li + 1]. Obviously, based on the boundary, for any substring, the
minimal start position is 1. As the length of sm is li, the maximal start position is
|s| − li + 1. Thus p must be in [1, |s| − li + 1].
Case 2: p ∈ [pi − ⌊ τ−△

2 ⌋, pi + ⌊ τ+△
2 ⌋]. We prove it by contradiction. Suppose p ̸∈ [pi −

⌊ τ−△
2 ⌋, pi + ⌊ τ+△

2 ⌋]. As T transforms sl to rl, matches sm with rm, and transforms sr to
rr. We have τ ≥ |T | ≥ ED(sl, rl)+ED(sm, rm)+ED(sr, rr) ≥ |pi−p|+0+

∣∣∣(|r|−pi)−(|s|−p)
∣∣∣.

If p < pi − ⌊ τ−△
2 ⌋, we have

|T | ≥ |pi − p|+
∣∣(|r| − pi)− (|s| − p)

∣∣ ≥ (⌊τ −△
2

⌋+ 1) + (△+ ⌊τ −△
2

⌋+ 1)

≥ (2⌊τ −△
2

⌋+ 1) + (△+ 1) ≥ τ −△+ (△+ 1) ≥ τ + 1 > τ

If p > pi + ⌊ τ+△
2 ⌋, we have

|T | ≥ |pi − p|+
∣∣(|r| − pi)− (|s| − p)

∣∣ ≥ (⌊τ +△
2

⌋+ 1) + (⌊τ +△
2

⌋+ 1−△)

≥ (2⌊τ +△
2

⌋+ 1) + (1−△) ≥ τ +△+ (1−△) ≥ τ + 1 > τ

In both cases, we have |T | > τ which contradicts with |T | ≤ τ . Thus p ∈ [pi −
⌊ τ−△

2 ⌋, pi + ⌊ τ+△
2 ⌋].

Based on Case 1 and Case 2, p ∈ [pmin, pmax]. Thus for any string r with length
l(|s| − τ ≤ l ≤ |s|) which is similar to s and visited before s, r must have an i-th
segment rm that matches a substring sm ∈ Wp(s,Li

l).

c⃝ 2012 ACM 0362-5915/2012/06-ART1 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

App–2 G. Li et al.

B. PROOF OF LEMMA 4.3
LEMMA 4.3. |Wm(s, l)| = ⌊ τ2−△2

2 ⌋+ τ + 1.

PROOF. As Wm(s, l) = ∪τ+1
i=1 Wm(s,Li

l), |Wm(s, l)| =
∑τ+1

i=1 |Wm(s,Li
l)| =

∑τ+1
i=1 (⊤i −

⊥i+1) =
∑τ+1

i=1

(
min

(
|s|−li+1,pi+(i−1), pi+△+(τ+1−i)

)
−max

(
1,pi−(i−1),pi+△−(τ+1−i)

)
+1

)
.

As (pi+1 − (i + 1)) − (pi − i) = pi+1 − pi − 1 ≥ 0, pi − i is a monotonically increasing
function. Thus for any i ∈ [1, τ + 1], we have pi − (i − 1) ≥ p1 − (1 − 1) = 1 and
pi + △ + (τ + 1 − i) = pi − i + △ + τ + 1 ≤ pτ+1 − (τ + 1) + △ + τ + 1 = pτ+1 + △ =
pτ+1 + |s| − |r| = pτ+1 + |s| − (pτ+1 + lτ+1) = |s| − lτ+1 ≤ |s| − li < |s| − li + 1, thus

|Wm(s, l)| =
∑τ+1

i=1 (⊤i −⊥i + 1) =∑τ+1
i=1

(
min

(
pi+(i− 1), pi+△+(τ +1− i)

)
−max

(
pi− (i− 1), pi+△− (τ +1− i)

)
+1

)
Consider ⊥i = max

(
pi− (i−1), pi+△− (τ +1− i)

)
. If pi− (i−1) ≥ pi+△− (τ +1− i),

we have ⊥i = pi − (i − 1). In this case i ≤ ⌊ τ−△
2 ⌋ + 1. On the contrary, if pi − (i − 1) <

pi +△− (τ + 1− i), we have ⊥i = pi +△− (τ + 1− i) for i > ⌊ τ−△
2 ⌋+ 1.

Similarly, for ⊤i = min
(
pi+(i−1), pi+△+(τ+1−i)

)
, if pi+(i−1) ≤ pi+△+(τ+1−i),

we have ⊤i = pi + (i − 1). In this case i ≤ ⌊ τ+△
2 ⌋ + 1. On the contrary if pi + (i − 1) >

pi +△+ (τ + 1− i), we have ⊤i = pi +△+ (τ + 1− i) for i > ⌊ τ+△
2 ⌋+ 1.

In this way, to compute ⊥i-⊤i+1, we split i ∈ [1, τ + 1] into i ≤ ⌊ τ−△
2 ⌋ + 1,

⌊ τ−△
2 ⌋+2≤i≤⌊ τ+△

2 ⌋+1, and ⌊ τ+△
2 ⌋+2≤i≤τ+1.

|Wm(s, l)| =
∑τ+1

i=1 (⊤i −⊥i + 1) =
∑⌊ τ−△

2 ⌋+1
i=1

((
pi + (i− 1)− (pi − (i− 1)

)
+ 1

)
+∑⌊ τ+△

2 ⌋+1

i=⌊ τ−△
2 ⌋+2

((
pi + (i− 1))− (pi +△− (τ + 1− i)

)
+ 1

)
+∑τ+1

i=⌊ τ+△
2 ⌋+2

((
pi +△+ (τ + 1− i))− (pi +△− (τ + 1− i)

)
+ 1

)
=
∑⌊ τ−△

2 ⌋+1
i=1 (2i− 1)+

∑⌊ τ+△
2 ⌋+1

i=⌊ τ−△
2 ⌋+2

(τ −△+ 1)+
∑τ+1

i=⌊ τ+△
2 ⌋+2

(2τ−2i+3)

= τ2 +△τ −△2 +△+ 1 + ⌊ τ+△
2 ⌋

2
+ ⌊ τ−△

2 ⌋
2
+ 2⌊ τ−△

2 ⌋ − 2τ⌊ τ+△
2 ⌋

If τ +△ is even, τ −△ must be even. Thus ⌊ τ−△
2 ⌋ = τ−△

2 and ⌊ τ+△
2 ⌋ = τ+△

2 , and

|Wm(s, l)| = τ2 −△2

2
+ τ + 1 = ⌊τ

2 −△2

2
⌋+ τ + 1

If τ +△ is odd, τ −△ must be odd. Thus ⌊ τ−△
2 ⌋ = τ−△−1

2 and ⌊ τ+△
2 ⌋ = τ+△−1

2 , and

|Wm(s, l)| = τ2 −△2 + 1

2
+ τ = ⌊τ

2 −△2

2
⌋+ τ + 1

Thus the lemma is proved.

C. PROOF OF THEOREM 4.4
To prove Theorem 4.4, we first give a lemma to prove that the multi-match-aware
selection method from the left-side perspective satisfies completeness.

LEMMA 4.4.1. The multi-match-aware selection method from the left-side perspec-
tive satisfies the completeness.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints App–3

PROOF. For any string s, consider a string r with length l(|s| − τ ≤ l ≤ |s|) which is
similar to s and visited before s. Consider any transformation T from r to s with |T | ≤ τ
edit operations. Based on Lemma 3.1, s must have a substring sm matching a segment
rm of r in the transformation T . We assume that rm is the last segment of r which
matches a substring sm of s in transformation T . Without loss of generality, suppose
the start position of sm in s is p and rm is the i-th segment of r. Thus r ∈ Li

l(rm). Based
on Theorem 4.2, we have |sm| = li and p ∈ [1, |s| − li + 1].

As [⊥l
i,⊤l

i] = [1, |s| − li + 1] ∩ [pi − (i − 1), pi + (i − 1)], we only need to prove that
p ∈ [pi − (i− 1), pi + (i− 1)].

We prove it by contradiction. Suppose p ̸∈ [pi−(i−1), pi+(i−1)], we have ED(sl, rl) ≥
|p − pi| ≥ i. As T transforms sl to rl, matches sm with rm, and transforms sr to rr, we
have τ ≥ |T | ≥ ED(sl, rl) + ED(sr, rr) ≥ i + ED(sr, rr), thus ED(sr, rr) ≤ τ − i. On
the other hand, as there are τ + 1 − i segments in rr, there must exist a segment in
rr which matches a substring of sr based on Lemma 3.1. This contradicts with the
assumption that rm is the last segment of r which matches a substring of s. Thus
p ∈ [pi − (i− 1), pi + (i− 1)].

Therefore for any string r with length l(|s|− τ ≤ l ≤ |s|) which is similar to s and vis-
ited before s, r must have an i-th segment rm matching a substring sm ∈ Wr(s,Li

l).

Similarly, we can prove that the multi-match-aware selection method from the right-
side perspective also satisfies the completeness based on Lemma 4.4.1. Next we prove
that the multi-match-aware selection method satisfies the completeness. For each in-
verted index Li

l, this method selects a set Wm(s,Li
l) which is composed of the sub-

strings of s with start positions in [⊥i,⊤i] and with length li, where ⊥i = max(⊥l
i,⊥r

i)
and ⊤i = min(⊤l

i,⊤r
i), ⊥l

i = max
(
1, pi− (i−1)

)
and ⊤l

i = min
(
|s|− li+1, pi+(i−1)

)
, and

⊥r
i = max

(
1, pi+△− (τ +1− i)

)
and ⊤r

i = min
(
|s|− li+1, pi+△+(τ +1− i)

)
. Then the

method unions the sets to generate Wm(s, l). That is Wm(s, l)=∪τ+1
i=1 Wm(s,Li

l). Next we
prove Theorem 4.4.

THEOREM 4.4. The multi-match-aware substring selection method satisfies the
completeness.

PROOF. For any string s, consider a string r with length l(|s| − τ ≤ l ≤ |s|) which
is similar to s and visited before s. Consider any transformation T from r to s with
|T | ≤ τ edit operations. For any substring sm of s matching a segment rm of r in T ,
based on Theorem 4.2, sm’s start position p must be in [1, |s| − li + 1], and |sm| = li
(suppose rm is the i-th segment of r).

Next, we only need to prove that in the transformation T , there exists an i-th seg-
ment rm for r matching a substring of s such that p ∈ [max

(
pi − (i − 1), pi + △ −

(τ + 1 − i)
)
,min

(
pi + (i − 1), pi + △ + (τ + 1 − i)

)
]. That is we only need to prove that

p ∈ [pi − (i− 1), pi + (i− 1)] and p ∈ [pi +△− (τ + 1− i), pi +△+ (τ + 1− i)].
Based on Lemma 3.1, there must exist at least one substring of s that matches a

segment of r in transformation T . Consider the first segment rm of r that matches a
substring sm of s in transformation T . Without loss of generality, suppose the start
position of sm in s is p and rm is the k-th segment of r. Thus r ∈ Lk

l (rm). We split s (r)
into three parts: the part before the matching segment sl (rl), the matching segment
sm (rm), and the part after the matching segment sr (rr). Based on Lemma 4.4.1 (from
the right-side perspective), p ∈ [pk + △ − (τ + 1 − k), pk + △ + (τ + 1 − k)]. If p ∈
[pk − (k − 1), pk + (k − 1)], we set i = k and the theorem is proved; otherwise suppose
p ̸∈ [pk − (k − 1), pk + (k − 1)], we have ED(sl, rl) ≥ |p − pk| ≥ k. As T transforms sl to
rl, matches sm with rm, and transforms sr to rr, τ ≥ |T | ≥ ED(sl, rl) + ED(sr, rr) ≥ k +

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

App–4 G. Li et al.

ED(sr, rr), thus ED(sr, rr) ≤ τ −k. On the other hand, as there are τ +1−k segments in
rr, there must exist a segment in rr which matches a substring of sr in transformation
T based on Lemma 3.1.

Suppose r′m is the first segment in rr that matches a substring s′m of sr in transforma-
tion T . Without loss of generality, suppose the start position of s′m in s is p′ and r′m is the
j-th(j > k) segment of r. Thus r ∈ Lj

l (r
′
m). We split sr (rr) into three parts: the part be-

fore the matching segment s′l (r
′
l), the matching segment s′m (r′m), and the part after the

matching segment s′r (r′r). Next we prove that p′ ∈ [pj+△−(τ+1−j), pj+△+(τ+1−j)].
We prove it by contradiction. Suppose p′ ̸∈ [pj +△− (τ +1− j), pj +△+(τ +1− j)]. We
have ED(r′r, s

′
r) ≥ |(|s|−p′)−(|r|−pj)| = |pj+(|s|− l)−p′| = |(pj+△)−p′| ≥ τ+1−j+1.

As T transforms sl to rl, matches sm with rm, transforms s′l to r′l, matches s′m with
r′m, and transforms s′r to r′r, τ ≥ |T | ≥ ED(rl, sl)+ED(r′l, s

′
l)+ED(r′r, s

′
r) ≥ k+ED(r′l, s

′
l)+

τ + 1 − j + 1, thus ED(r′l, s
′
l) ≤ τ − k − (τ + 1 − j + 1) = j − k − 2. On the other hand,

as there are j − k − 1 segments in r′l, there must exist a segment of r′l which matches
a substring of s′l in the transformation T based on Lemma 3.1. This contradicts with
the assumption that r′m is the first segment in rr that matches a substring of sr. Thus
p′ ∈ [pj+△−(τ+1−j), pj+△+(τ+1−j)]. If p′ ∈ [pj−(j−1), pj+(j−1)], we set i = j and
the theorem is proved; otherwise, we have p′ ∈ [pj+△−(τ+1−j), pj+△+(τ+1−j)] and
p′ ̸∈ [pj − (j−1), pj +(j−1)]. We can repeat our above proof until the theorem is proved
or reaching the last segment of r (denoted by r′′m) that matches a substring of s (denoted
by s′′m). In the latter case, we have r′′m is the i-th segment of r and the start position of
s′′m is p′′. Based on the above proof, we have p′′ ∈ [pi+△− (τ +1− i), pi+△+(τ +1− i)].
Based on the proof in Lemma 4.4.1, we have p′′ ∈ [pi − (i − 1), pi + (i − 1)]. Thus
p′′ ∈ [pi − (i− 1), pi + (i− 1)] ∩ [pi +△− (τ + 1− i), pi +△+ (τ + 1− i)] = [⊥i,⊤i].

In summary, for any string r with length l(|s| − τ ≤ l ≤ |s|) which is similar to
s and visited before s, r must have an i-th segment rm matching a substring sm ∈
Wm(s,Li

l).

D. PROOF OF LEMMA 4.5
LEMMA 4.5. Let Wℓ(s, l),Wf (s, l),Wp(s, l),Wm(s, l) respectively denote the set of s-

elected substrings using the length-based selection method, the shift-based selection
method, the position-aware selection method, and the multi-match-aware selection
method. For any string s and a length l, we have

Wm(s, l) ⊆ Wp(s, l) ⊆ Wf (s, l) ⊆ Wℓ(s, l).

PROOF. If τ = 0, the four methods select s as its selected substring. Thus Wℓ(s, l) =
Wf (s, l) = Wp(s, l) = Wm(s, l) = {s}. Next we prove the lemma for τ > 0.

Given Li
l, firstly the substring length of each method is the same, i.e., li. Next we

consider the start positions.
(i) We first prove Wf (s, l) ⊆ Wℓ(s, l).

For Wℓ(s, l), the start positions are in [1, |s| − li + 1].
For Wf (s, l), the start positions are in [max(1, pi − τ),min(|s| − li + 1, pi + τ)].
To prove Wf (s, l) ⊆ Wℓ(s, l), we only need to prove

[1, |s| − li + 1] ⊇ [max(1, pi − τ),min(|s| − li + 1, pi + τ)].

It is obvious that max(1, pi − τ) ≥ 1 and min(|s| − li + 1, pi + τ) ≤ |s| − li + 1. Thus we
have Wf (s, l) ⊆ Wℓ(s, l).

(ii) We then prove Wp(s, l) ⊆ Wf (s, l).

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints App–5

For Wp(s, l), the start positions are in[
max(1, pi − ⌊τ −△

2
⌋),min(|s| − li + 1, pi + ⌊τ +△

2
⌋)
]
=[

pi − ⌊τ −△
2

⌋, pi + ⌊τ +△
2

⌋
]
∩ [1, |s| − li + 1]

For Wf (s, l), as [max(1, pi − τ),min(|s| − li +1, pi + τ)] = [pi − τ, pi + τ]∩ [1, |s| − li +1],
to prove Wp(s, l) ⊆ Wf (s, l), we only need to prove

[pi − τ, pi + τ] ⊇ [pi − ⌊τ −△
2

⌋, pi + ⌊τ +△
2

⌋]

As 0 ≤ △ ≤ τ , pi − τ ≤ pi − ⌊ τ−△
2 ⌋ and pi + τ ≥ pi + ⌊ τ+△

2 ⌋. Thus Wp(s, l) ⊆ Wf (s, l).

(iii) Next we prove Wm(s, l) ⊆ Wp(s, l).
For Wm(s, l), the start positions are in

[⊥i,⊤i] = [max(⊥l
i,⊥r

i),min(⊤l
i.⊤r

i)] =

[max(1, pi − (i− 1), pi +△− (τ + 1− i)),min(|s| − li + 1, pi + (i− 1), pi +△+ (τ + 1− i))] =

[max(pi − (i− 1), pi +△− (τ + 1− i)),min(pi + (i− 1), pi +△+ (τ + 1− i)] ∩ [1, |s| − li + 1]

To prove Wm(s, l) ⊆ Wp(s, l), we only need to prove

[pi − ⌊τ −△
2

⌋, pi + ⌊τ +△
2

⌋] ⊇ [⊥i,⊤i].

Firstly we prove ⊥i = max
(
pi − (i − 1), pi + △ − (τ + 1 − i)

)
≥ pi − ⌊ τ−△

2 ⌋. If pi −
(i − 1) ≥ pi + △ − (τ + 1 − i), we have ⊥i = pi − (i − 1). In this case i ≤ ⌊ τ−△

2 ⌋ + 1.
That is i − 1 ≤ ⌊ τ−△

2 ⌋. Obviously ⊥i = pi − (i − 1) ≥ pi − ⌊ τ−△
2 ⌋. On the contrary, if

pi − (i − 1) < pi + △ − (τ + 1 − i), we have ⊥i = pi + △ − (τ + 1 − i). In this case
i > ⌊ τ−△

2 ⌋+1. That is i−1 > ⌊ τ−△
2 ⌋. As ⊥i = pi+△− (τ +1− i) = pi+(i−1)− (τ −△),

⊥i ≥ pi − ⌊ τ−△
2 ⌋.

Then we prove that ⊤i = min
(
pi + (i − 1), pi + △ + (τ + 1 − i)

)
≤ pi + ⌊ τ+△

2 ⌋. If
pi + (i− 1) ≤ pi +△+ (τ + 1− i), we have ⊤i = pi + (i− 1). In this case i ≤ ⌊ τ+△

2 ⌋+ 1.
That is i − 1 ≤ ⌊ τ+△

2 ⌋. Obviously ⊤i = pi + (i − 1) ≤ pi + ⌊ τ+△
2 ⌋. On the contrary if

pi + (i − 1) > pi + △ + (τ + 1 − i), we have ⊤i = pi + △ + (τ + 1 − i). In this case
i > ⌊ τ+△

2 ⌋+1. That is i− 1 > ⌊ τ+△
2 ⌋. As ⊤i = pi +△+ (τ +1− i) = pi − (i− 1) + τ +△,

⊤i ≤ pi + ⌊ τ+△
2 ⌋. Thus we have Wm(s, l) ⊆ Wp(s, l).

Therefore Wm(s, l) ⊆ Wp(s, l) ⊆ Wf (s, l) ⊆ Wℓ(s, l) and the lemma is proved.

E. PROOF OF THEOREM 4.6
To prove Theorem 4.6, we first prove that the substring set Wm(s, l) generated by
the multi-match-aware selection method has the minimum size. That is for any oth-
er substring set W(s, l) generated by a method that satisfies completeness, we have
|Wm(s, l)| ≤ |W(s, l)|. The basic idea of our proof is as follows. For each substring
sm∈Wm(s, l), we generate a substring set Φ(sm, l), such that
Condition (1): If a substring selection method satisfies completeness, it must select a
substring in Φ(sm, l);

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

App–6 G. Li et al.

Condition (2): For any two substrings sm ̸= sm′ in Wm(s, l), if a substring selection
method satisfies completeness, it must select a substring in Φ(sm, l) and another sub-
string in Φ(sm′ , l), and the two substrings are not the same. Notice that two selected
substrings are said to be the same, if they are selected for the same segment and have
the same start positions and lengths.

Obviously if we can generate a substring set Φ(sm, l) satisfying the above two condi-
tions, we have |Wm(s, l)| ≤ |W(s, l)| (We will prove it in Theorem 4.6). Next we discuss
how to generate the substring set Φ(sm, l).

Notice that based on the definition of completeness, we need to guarantee complete-
ness for every string with length |s|, thus Wm(s, l) does not depend on the content of s.
In other words, the size of Wm(s, l) only depends on |s|. Without loss of generality, we
consider a string s whose characters are distinct, i.e., s[i] ̸= s[j] for i ̸= j where s[i] is
the i-th character of s for 1 ≤ i ≤ |s|.

Next we construct a string r with length l based on s, such that (1) r is similar to s
with τ edit operations; (2) if a substring selection method that satisfies completeness
does not select a substring from Φ(sm, l), the method will miss the similar pair ⟨s, r⟩.

We generate r from s as follows. Suppose the length of r is l, and the start position
of the i-th segment is pi and the length is li. We first partition s into τ + 1 substrings
and then use the k-th substring of s to generate the k-th segment of r. Let l′k and p′k
respectively denote the length and the start position of the k-th substring of s. We use
pk and lk to deduce l′k and p′k. Obviously we have p′1 = 1 and p′k = p′1 +

∑k−1
j=1 l

′
j . Next we

focus on how to get the length of each substring of s (l′k) and how to generate a segment
of r as follows.

Suppose sm is selected from the i-th segment, i.e., sm ∈ Wm(s,Li
l), and the position

of sm in s is p. Based on the multi-match-aware selection method, as p ∈ [pi−(i−1), pi+
(i−1)]∩ [pi+△− (τ +1− i), pi+△+(τ +1− i)], we can easily deduce that |p−pi| ≤ i−1
and |(l − pi)− (|s| − p)| = |p− pi −△| ≤ τ + 1− i. We first consider p ≤ pi.

• For each k ∈ [1, pi − p], we generate the k-th segment of r from the k-th substring of
s by applying an insertion. As an insertion operation will increase the length by 1,
we have l′k = lk − 1. Notice that as pi − p ≤ i − 1 (based on the multi-match-aware
selection), we can choose pi − p substrings from the first i − 1 substrings of s (before
sm) to apply an insertion on each substring. Here we choose the first pi−p substrings.

• For each k ∈ [pi−p+1, i−1], we generate the k-th segment of r from the k-th substring
of s by applying a substitution operation. As a substitution operation will not change
the substring length, we have l′k = lk.

• For k = i, the i-th segment of r is exactly the i-th substring of s (i.e., sm), thus l′k = lk.
• For each k ∈ [i + 1, τ + 1 − (pi − p +△)], we generate the k-th segment of r from the
k-th substring of s by applying a substitution operation. As a substitution operation
will not change the substring length, we have l′k = lk.

• For each k ∈ [τ + 1 − (pi − p +△) + 1, τ + 1], we generate the k-th segment of r from
the k-th substring of s by applying a deletion operation. As a deletion operation will
decrease the length by 1, we have l′k = lk + 1. Notice that to make the length of r
be l, we need to do some deletions on the last τ + 1 − i substrings of s (after sm). As
l = |s| −△, we need to do pi − p+△ deletions. As pi − p+△ ≤ τ + 1− i (based on the
multi-match-aware selection), we can choose pi − p +△ substrings from the the last
τ + 1− i substrings of s. Here we choose the last pi − p+△ substrings of s to apply a
deletion operation for each substring.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints App–7

Obviously, we only do τ edit operations on s to generate r. Thus r is similar to s
with τ edit operations. Next we discuss how to apply the insertion, substitution, and
deletion operations.

• For k ∈ [1, pi − p], we do insertion operations. As we can use a special character that
does not appear in s to apply the insertion operation, we do not need to select any
substring of s for the k-th segment of r. This is because the k-th segment of r will not
match any substring of s as it contains a special character.

• For k ∈ [pi − p + 1, i − 1], we need to do a substitution operation on each substring
of s. Similarly, we can use a special character that does not appear in s to apply the
substitution, thus we also do not select any substring for the k-th segment of r.

• For k = i, as sm matches rm, we add sm into Φ(sm, l).
• For k ∈ [i + 1, τ + 1 − (pi − p + △)], we need to do a substitution on each substring

of s. Similarly, we can use a special character that does not appear in s to apply the
substitution, thus we also do not select any substring for the k-th segment of r.

• Finally for each k ∈ [τ +1− (pi − p+△) + 1, τ +1], we need to do deletion operations.
If each substring has no smaller than 3 characters, we generate the k-th segment of r
from the the k-th substring of s by deleting a middle (i.e. neither the first nor the last)
character of the substring to apply the deletion operation. In this case we do not need
to select such substrings for the k-th segment of r. This is because as the characters
in the substrings are distinct, if we delete a middle character of the substring, the
generated segment will not match any substring of s. Thus if each substring has no
smaller that 3 characters, Φ(sm, l) = {sm}. Similarly, if p ≥ pi +△ or pi +△ > p > pi,
Φ(sm, l) = {sm} (each substring has no smaller than 3 characters).

In this case, we can easily prove that Φ(sm, l) satisfies condition (1) as formalized
in Lemma 4.6.1. Next we consider the case that some substrings have less than 3
characters.

If p ≤ pi, for the last pi − p + △ substrings of s, instead of deleting a character in
each substring, we delete the last pi−p+△ characters of s. In this way, we set the k-th
segment r[pk, lk] of string r as s[|s|−(pi−p+△)−(|r|−pk), l

′
k = lk]. We give the basic idea

as follows. Consider the k-th segment r[pk, lk] of r for k ∈ [τ +1− (pi− p+△)+1, τ +1].
Let s[xk · · · |s|] denote the substring of s from the xk-th character to the end of s and
r[pk · · · |r|] denote the substring of r from the pk-th character to the end of r. As we
delete the last pi−p+△ characters of s to make s[xk · · · |s|] and r[pk · · · |r|] have the same
length, we have |s[xk · · · |s|]|−|r[pk · · · |r|]| = pi−p+△. That is xk = |s|−(pi−p+△)−(|r|−
pk). Thus r[pk, lk] = s[xk, l

′
k = lk] for k ∈ [τ+1− (pi−p+△)+1, τ+1]. Note that the k-th

segment of r will not match any other substring of s as the characters of s are distinct.
Thus Φ(sm, l) = {sm}∪{s[|s|−(pi−p+△)−(|r|−pk), lk]|k ∈ [τ+1−(pi−p+△)+1, τ+1]}.
We can easily prove that Φ(sm, l) satisfies condition (1) as formalized in Lemma 4.6.1.

Similarly, if p ≥ pi +△, we do deletion operations on the first p − pi substrings of s.
We delete the first p− pi characters of s, and we have xk = pk + (p− pi) and l′k = lk for
k ∈ [1, p − pi]. Thus Φ(sm, l) = {sm} ∪ {s[pk + (p − pi), lk]|k ∈ [1, p − pi]}. We can easily
prove that Φ(sm, l) satisfies condition (1) as formalized in Lemma 4.6.1.

If pi < p < pi + △, we do deletion operations on the first p − pi substrings and
the last pi − p + △ substrings. We delete the first p − pi characters of s and the last
pi−p+△ characters of s, and we have xk = pk+(p−pi) and l′k = lk for k ∈ [1, p−pi], and
xk = |s|−(pi−p+△)−(|r|−pk) and l′k = lk for k ∈ [τ+1−(pi−p+△)+1, τ+1]. In this case,
Φ(sm, l) = {sm}∪{s[pk+(p−pi), lk]|k ∈ [1, p−pi]}∪{s[|s|− (pi−p+△)− (|r|−pk), lk]|k ∈
[τ +1− (pi − p+△) + 1, τ +1]}. We can easily prove that Φ(sm, l) satisfies condition (1)
as formalized in Lemma 4.6.1.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

App–8 G. Li et al.

LEMMA 4.6.1. If a selection method satisfies completeness, it must select a substring
in Φ(sm, l) for each sm ∈ Wm(s, l).

PROOF. Firstly if each substring of s has at least 3 characters, Φ(sm, l) = {sm}. As
only sm matches a segment of string r, if a substring selection method does not select
sm, the method must miss a similar pair ⟨s, r⟩. Thus any selection method that satisfies
completeness must select a substring in Φ(sm, l).

Secondly, if some substrings of s have less than 3 characters and we need to do
deletion operations on such substrings. We consider the following three cases.
Case (1): p ≤ pi. Φ(sm, l) = {sm}∪{s[|s|−(pi−p+△)−(|r|−pk), lk]}. As only substrings in
Φ(sm, l) matches a segment of string r. If a substring selection method does not select a
substring, the method must miss a similar pair ⟨s, r⟩. Thus any selection method that
satisfies completeness must select a substring in Φ(sm, l).
Case (2): p ≥ pi +△. It is similar to Case (1).
Case (3): pi<p<pi+△. It is similar to Case (1) and Case (2).

Thus the lemma is proved.

Then we prove that for any two substrings sm ̸= sm′ in Wm(s, l), if a substring selec-
tion method satisfies completeness, it must contain a substring in Φ(sm, l) and another
substring in Φ(sm′ , l) such that the two substrings are not the same as formalized in
Lemma 4.6.2.

LEMMA 4.6.2. For any two substrings sm ̸= sm′ in Wm(s, l), if a method satisfies
completeness, it must contain a substring in Φ(sm, l) and another substring in Φ(sm′ , l),
and the two substrings are not the same.

PROOF. Without loss of generality, suppose sm ∈ Wm(s,Li
l) ⊆ Wm(s, l) with start

position p and s′m ∈ Wm(s,Lj
l) ⊆ Wm(s, l) with start position p′ (Notice that i may be

equal to j). We only need to prove that, for any sk ∈ Φ(sm, l) and s′k ∈ Φ(sm′ , l), (1)
sk ̸= s′k; or (2) If sk = s′k, a method that only selects sk (or s′k) from Φ(sm, l) and Φ(sm′ , l)
will miss a similar pair.

Firstly, if sk and s′k are selected for different segments, we have sk ̸= s′k and the
lemma is proved. Secondly, sk and s′k are selected for the same segment. Without loss
of generality, suppose they are selected for the k-th segment of r. We consider the
following cases.
Case 1: sk = sm and s′k = s′m. In this case as sm ̸= s′m, sk ̸= s′k.
Case 2: sk = s[|s| − (pi − p+△)− (|r| − pk), lk] and s′k = s′m. In this case p < pi +△. We
prove that sk ̸= s′k as follows. If k ̸= j, sk ̸= s′k, as sk is selected for the k-th segment
and s′k is selected for j-th segment. If k = j, the start positions of s′k ∈ Wm(s,Lk

l)
are in [pk + △ − (τ + 1 − k), pk + △ + (τ + 1 − k)] ∩ [pk − (k − 1), pk + (k − 1)]. We
can deduce |s| − (pi − p + △) − (|r| − pk) < pk + △ − (τ + 1 − k) as follows. As sk =
s[|s| − (pi − p+△)− (|r| − pk), lk], we have k ∈ [τ + 1− (pi − p+△) + 1, τ + 1].

pk +△− (τ + 1− k) = pk + (|s| − |r|)− (τ + 1) + k

≥ pk + (|s| − |r|)− (τ + 1) + τ + 1− (pi − p+△) + 1

> |s| − (pi − p+△)− (|r| − pk)

s[|s|−(pi−p+△)−(|r|−pk), lk] will not match any substring in Wm(s,Lk
l). Thus sk ̸= s′k.

Case 3: sk = sm and s′k = s[|s| − (pj − p′ +△)− (|r| − pk), lk]. It is similar to Case (2);
Case 4: sk = s[pk + (p − pi), lk] and s′k = s′m. In this case, p > pi. We prove that
sk ̸= s′k as follows. If k ̸= j, sk ̸= s′k, as sk is selected for the k-th segment and s′k
is selected for j-th segment. If k = j, the start positions of s′k ∈ Wm(s,Lk

l) are in

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints App–9

[pk +△− (τ + 1− k), pk +△+ (τ + 1− k)] ∩ [pk − (k − 1), pk + (k − 1)]. As k ∈ [1, p− pi],
we have pk + (k − 1) ≤ pk + (p− pi)− 1 < pk + (p− pi). Thus s[pk + (p− pi), lk] will not
match any substring in Wm(s,Lk

l). That is sk ̸= s′k.
Case 5: sk = sm and s′k = s[pk + (p′ − pj), lk]. It is similar to Case (4);
Case 6: sk = s[pk + (p − pi), lk] and s′k = s[|s| − (pj − p′ + △) − (|r| − pk), lk], that is
p > pi and p′ < pj +△. We prove that sk ̸= s′k as follows. Based on the proofs of Case
4 and Case 3, we have pk + (k − 1) < pk + (p− pi) and |s| − (pj − p′ +△)− (|r| − pk) <
pk +△− (τ + 1− k). Meanwhile as △ ≤ τ , we have pk +△− (τ + 1− k) ≤ pk + (k − 1).
Thus s[pk + (p− pi), lk] ̸= s[|s| − (pj − p′ +△)− (|r| − pk), lk] as their start positions are
not the same. That is sk ̸= s′k.
Case 7: sk = s[|s| − (pi − p+△)− (|r| − pk), lk] and s′k = s[pk + (p′ − pj), lk]. It is similar
to Case (6).
Case 8: sk = s[pk + (p − pi), lk] and s′k = s[pk + (p′ − pj), lk], that is p > pi and p′ > pj .
In this case, we consider the following two cases:

(1) p− pi ̸= p′ − pj : We have pk + (p− pi) ̸= pk + (p′ − pj), thus sk ̸= s′k.
(2) p− pi = p′ − pj : We have sk = s′k as pk + (p− pi) = pk + (p′ − pj) and both of their

lengths are lk. Next we prove i ̸= j by contradiction. Suppose i = j, we have pi = pj .
As p− pi = p′ − pj , p = p′. Thus sm = s′m as they have the same start positions and the
same lengths. This contradicts with sm ̸= s′m. Thus i ̸= j.

Then we prove that a method that only selects sk (or s′k) from Φ(sm, l) and Φ(sm′ , l)
will miss a similar pair. We construct a new string r′ similar to the case of generating
the string r using sm except that (1) For the k-th substring of s, we apply an additional
substitution operation (by substituting character s[pk+(p−pi)] with a special character)
such that the k-th segment of r′ will not match any substring of s; and (2) The j-
th segment of r′ is exactly the j-th substring of s. Next we prove that the number
of edit operations in the new transformation from s to r′ is τ . Compared with the
transformation T from s to r and the new transformation T ′ from s to r′, T ′ has an
additional substitution operation on the k-th substring and a match operation on the
the j-th substring of s. Next we prove that in transformation T , we do a substitution
operation on the j-th substring.

As s′m ∈ Wm(s,Lj
l), we have p′ ∈ [pj−(j−1), pj+(j−1)]∩ [pj+△−(τ+1−j), pj+△+

(τ +1− j)]. Thus p′−pj < j < τ +1−|pj −p′+△|+1. In addition, as p−pi = p′−pj , we
have τ+1−|pj−p′+△|+1 = τ+1−|pi−p+△|+1. Thus p−pi < j < τ+1−|pi−p+△|+1.
As i ̸= j, in the transformation T , we do a substitution operation on the j-th substring.

Thus T and T ′ have the same number of edit operations, that is the number of edit
operations in T ′ is τ .

Note that in the transformation T ′ from s to r′, we only have the following match op-
erations: (1) the substring sm matches the i-th segment; (2) the j-th substring matches
the j-th segment; and (3) the other substrings in Φ(sm, l) and Φ(sm′ , l) except sk match
some other segments of r′. Next we prove that sk is neither sm nor the j-th substring.

Firstly as sm is a substring for the i-th segment and sk is a substring for the k-th
segment (k ̸= i), sk ̸= sm. Secondly s′k ̸= s′m as they are selected for different segments.
Thus sk = s′k ̸= s′m. Next we prove that the j-th substring of s is exactly s′m. Thus
sk is not the j-th substring of s. We prove it as follows. The start position of the j-th
substring of s is pj + (p− pi) as we do p− pi deletion operations in the transformation
T . In addition the start position of s′m is p′. As pj + (p − pi) = pj + (p′ − pj) = p′, the
j-th substring and s′m have the same start positions. On the other hand they have the
same length. Thus the j-th substring in the transformation T is exactly s′m.

As sk does not match a segment of r′, if we only select sk, we will miss the similar
pair ⟨s, r′⟩. Thus we cannot only select sk (or s′k) from Φ(sm, l) and Φ(sm′ , l).

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

App–10 G. Li et al.

Case 9: sk = s[|s|− (pi−p+△)− (|r|−pk), lk] and s′k = s[|s|− (pj−p′+△)− (|r|−pk), lk].
It is similar to Case (8).

Thus the lemma is proved.

Based on the two lemmas, next we prove that the substring set Wm(s, l) generated
by the multi-match-aware selection method has the minimum size.

THEOREM 4.6. The substring set Wm(s, l) generated by the multi-match-aware se-
lection method has the minimum size among all the substring sets generated by the
substring selection methods that satisfy completeness.

PROOF. Consider any substring selection method satisfying completeness. For each
sm ∈ Wm(s, l), based on Lemma 4.6.1 the method must select a substring in Φ(sm, l).
Based on Lemma 4.6.2, for different substrings sm and s′m in Wm(s, l), the method must
select two different substrings. Thus the method must select |Wm(s, l)| substrings, and
the theorem is proved.

F. PROOF OF THEOREM 4.8
THEOREM 4.8. If l ≥ 2(τ + 1) and |s| ≥ l, Wm(s, l) satisfies minimality.

PROOF. If l ≥ 2(τ+1), the substrings with deletion operations must contain at least
3 characters. In this case, Φ(sm, l) = {sm}, thus any substring selection method must
select {sm} based on Theorem 4.6. Thus Wm(s, l) satisfies minimality.

G. PROOF OF THEOREM 5.3
To prove Theorem 5.3, we first give an observation. Consider a string r and a string
s where s has a substring sm that matches r’s i-th segment rm. If ⟨s, r⟩ passes our
verification algorithm, that is ED(rl, sl) ≤ i− 1 and ED(rr, sr) ≤ τ + 1− i, ⟨s, r⟩ must be
a similar pair as ED(r, s) ≤ ED(rl, sl)+ED(rr, sr) ≤ τ . Thus our extension-based method
satisfies condition (1) of the correctness (Definition 5.2). To prove condition (2), we need
to prove that if s and r are similar, s must have a substring sm which matches the i-th
segment rm of r such that sm ∈ Wm(s, l), ED(rl, sl) ≤ i− 1 and ED(rr, sr) ≤ τ + 1− i as
stated in Lemma 5.3.3. To prove Lemma 5.3.3 we first give two lemmas as follows.

LEMMA 5.3.1. If s is similar to r within edit distance threshold τ , s must have a
substring sm which matches a segment rm of r, such that sm ∈ Wm(s, l) and ED(r, s) =
ED(rl, sl) + ED(rr, sr).

PROOF. We first prove that given a transformation T from r to s with |T | = ED(r, s)
edit operations, for any segment rm of r matching a substring sm of s in T , ED(r, s) =
ED(rl, sl) + ED(rr, sr). As T transforms rl to sl, matches rm with sm, and transforms
rr to sr, we have |T | ≥ ED(rl, sl) + ED(rm, sm) + ED(rr, sr). In addition, based on the
definition of edit distance, we have ED(rl, sl) + ED(rm, sm) + ED(rr, sr) ≥ ED(r, s). As
|T | = ED(r, s) and ED(rm, sm) = 0, we have ED(r, s) = ED(rl, sl) + ED(rr, sr).

Then, based on the proof of Theorem 4.4, for any transformation T such that |T | =
ED(r, s) ≤ τ , there must exist a substring sm ∈ Wm(s, l) of s that matches a segment
rm of r, and we have ED(r, s) = ED(rl, sl) + ED(rr, sr). Thus the lemma is proved.

LEMMA 5.3.2. If s is similar to r within edit distance threshold τ , s must have a
substring sm which matches the i-th segment rm of r, such that sm ∈ Wm(s, l), ED(r, s) =
ED(rl, sl) + ED(rr, sr) and ED(rr, sr) ≤ τ + 1− i.

PROOF. Based on Lemma 5.3.1, s must have a substring sm which matches a seg-
ment rm of r, such that sm ∈ Wm(s, l) and ED(r, s) = ED(rl, sl) + ED(rr, sr). We as-

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints App–11

sume rm is the first segment of r which matches a substring sm ∈ Wm(s, l) of s and
ED(r, s) = ED(rl, sl) + ED(rr, sr). Without loss of generality, suppose rm is the i-th
segment of r. Next we prove that ED(rr, sr) ≤ τ + 1 − i. We prove it by contradic-
tion. Suppose ED(rr, sr) ≥ τ + 2 − i. As ED(rl, sl) + ED(rr, sr) = ED(r, s) ≤ τ , we have
ED(rl, sl) ≤ τ−ED(rr, sr) ≤ i−2, i.e. rl and sl are similar within edit distance threshold
τ ′ = i−2. On the other hand we have i−1 segments in rl. Based on Theorem 4.4 sl must
have a substring in Wm(sl, |rl|) matching a segment of rl. As rm is the first segment of r
that matches a substring of s, none of the substrings in Wm(s,Lj

l)(1 ≤ j ≤ i− 1) match
any substring of s. Next we prove that for any 1 ≤ j ≤ i − 1, Wm(sl,Lj

rl
) ⊆ Wm(s,Lj

l).
Suppose the lengths of the j-th segments of r and rl are respectively lj and l′j and the
corresponding start positions are pj and p′j . As the i− 1 segments of rl are exactly the
first i − 1 segments of r, for any 1 ≤ j ≤ i − 1 we have lj = l′j and pj = p′j . Based on
Section 4, for any 1 ≤ j ≤ i − 1, Wm(s,Lj

l) is the set of substrings of s with length lj
and with start positions in

[⊥j ,⊤j] = [max(⊥r
j ,⊥l

j),min(⊤r
j ,⊤l

j)]

= [max(pj − (j − 1), pj +△− (τ + 1− j)),min(pj + (j − 1), pj +△+ (τ + 1− j))]

= [pj − (j − 1), pj + (j − 1)] ∩ [pj +△− (τ + 1− j), pj +△+ (τ + 1− j)]

Note that Wm(sl,Lj
rl
) is the set of substrings of s with length lj and with start posi-

tions in

[⊥′
j ,⊤′

j] = [max(⊥′r
j ,⊥′l

j),min(⊤′r
j ,⊤′l

j)]

= [max(pj − (j − 1), pj + |sl| − |rl| − (τ ′ + 1− j)),min(pj + (j − 1), pj + |sl| − |rl|+ (τ ′ + 1− j))]

= [pj − (j − 1), pj + (j − 1)] ∩ [pj + |sl| − |rl| − (i− 1− j), pj + |sl| − |rl|+ (i− 1− j)].

Thus we only need to prove that

[pj +△− (τ + 1− j), pj +△+ (τ + 1− j)] ⊇ [pj + |sl| − |rl| − (i− 1− j), pj + |sl| − |rl|+ (i− 1− j)]

We have an observation that |rl| + 1 = pi and |sl| + 1 equals to the start position of
sm. Thus |sl| − |rl| is exactly the difference between the start position of sm and rm. On
the other hand, we have the start position of sm in

[⊥i,⊤i] = [max(⊥r
j ,⊥l

j),min(⊤r
j ,⊤l

j)] ⊇ [⊥l
i,⊤l

i] = [pi +△− (τ + 1− i), pi +△+ (τ + 1− i)]

where pi is the start position of rm. Thus △− (τ + 1− i) ≤ |sl| − |rl| ≤ △+ (τ + 1− i).
Then we have

pj + |sl| − |rl| − (i− 1− j) ≥ pj +△− (τ + 1− i)− (i− 1− j)

> pj +△− (τ + 1− j)

pj + |sl| − |rl|+ (i− 1− j) ≤ pj +△+ (τ + 1− i) + (i− 1− j)

< pj +△+ (τ + 1− j).

Thus for any 1 ≤ j ≤ i − 1, Wm(sl,Lj
rl
) ⊆ Wm(s,Lj

l). That is none of the substrings in
Wm(sl, |rl|) matches any segment of rl. This contradicts with Theorem 4.4. Thus the
lemma is proved.

The lemma above is gotten from the left-side perspective. Similarly, we can get an-
other conclusion from the right-side perspective that if s is similar to r, s must have
a substring sm which matches the i-th segment rm of r, such that sm ∈ Wm(s, l),
ED(r, s) = ED(rl, sl) + ED(rr, sr) and ED(rl, sl) ≤ i − 1. Next we combine these two
conclusions and prove Lemma 5.3.3.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

App–12 G. Li et al.

LEMMA 5.3.3. If s is similar to r within edit distance threshold τ , s must have a
substring sm which matches the i-th segment rm of r, such that sm ∈ Wm(s, l), ED(r, s) =
ED(rl, sl) + ED(rr, sr), ED(rl, sl) ≤ i− 1 and ED(rr, sr) ≤ τ + 1− i.

PROOF. Consider the last segment rm of r which matches with a substring sm ∈
Wm(s, l) such that ED(r, s) = ED(rl, sl) + ED(rr, sr). Without loss of generality, suppose
rm is the i-th segment of r. Based on the proof of Lemma 5.3.2 (from the right-side
perspective) ED(rl, sl) ≤ i − 1. If ED(rr, sr) ≤ τ + 1 − i, the lemma is proved; other-
wise we have ED(rr, sr) ≥ τ + 2 − i and ED(rl, sl) + ED(rr, sr) = ED(r, s) ≤ τ , thus
ED(rl, sl) ≤ i − 2 while there are i − 1 segments in rl. Let τ ′ = i − 2, r′l and s′l are
similar within edit distance threshold τ ′. Based on Lemma 5.3.1 there must be at least
one substring s′m ∈ Wm(sl, |rl|) ⊂ Wm(s, l) of sl matching a segment r′m of rl such
that ED(rl, sl) = ED(r′l, s

′
l) + ED(r′r, s

′
r) where r′l/s

′
l are left parts of r′m/s′m and r′r/s′r are

the right parts. We still consider the last segment r′m of rl that satisfies the condition
above and suppose r′m is the j-th segment. Based on Lemma 5.3.2 (from the right-
side perspective) ED(r′l, s

′
l) ≤ j − 1. As s′m ∈ Wm(s, l), ED(r, s) = ED(rl, sl) + ED(rr, sr) =

ED(r′l, s
′
l)+ED(r′r, s

′
r)+ED(rr, sr) and ED(r′l, s

′
l) ≤ j−1, if ED(r′r, s

′
r)+ED(rr, sr) ≤ τ+1−j,

the lemma is proved; otherwise we have ED(r′r, s
′
r) + ED(rr, sr) ≥ τ + 2 − j and

ED(r, s) = ED(r′l, s
′
l) + ED(r′r, s

′
r) + ED(rr, sr) ≤ τ . Thus ED(r′l, s

′
l) ≤ j − 2 while there

are j − 1 segments in r′l. We can repeat our proof above until the lemma is proved or
reaching the first segment r′′m of r which matches a substring s′′m ∈ Wm(s, l) of s such
that ED(r, s) = ED(r′′l , s

′′
l)+ED(r′′r , s

′′
r)+ · · ·+ED(r′r, s

′
r)+ED(rr, sr). Without loss of gen-

erality suppose r′′m is the k-th segment of r. Based on the proof of Lemma 5.3.2 (from
the left-side perspective) we have ED(r′′r , s

′′
r)+ · · ·+ED(r′r, s

′
r)+ED(rr, sr) ≤ k−1. Based

on the proof above we have ED(r′′l , s
′′
l) ≤ τ + 1− k. Thus the lemma is proved.

In summary, if s is similar to r within edit distance threshold τ , s must have
a substring sm which matches the i-th segment rm of r, such that sm ∈ Wm(s, l),
ED(r, s) = ED(rl, sl) + ED(rr, sr), ED(rl, sl) ≤ i− 1 and ED(rr, sr) ≤ τ + 1− i.

Based on the lemmas above, we prove Theorem 5.3.

THEOREM 5.3. Our extension-based verification method satisfies the correctness.

PROOF. We first prove the condition (1). If ⟨s, r⟩ passes our verification algorith-
m, then there exists a segment rm matching a substring sm, ED(sl, rl) ≤ i − 1 and
ED(sr, rr) ≤ τ +1− i. Thus ED(sl, rl) + ED(sr, rr) ≤ τ and there exists a transformation
from r to s with no large than τ edit operations. Hence ⟨s, r⟩ must be a similar pair.

Then we prove the condition (2). If ⟨s, r⟩ is a similar pair, based on Lemma 5.3.3,
there exists a substring sm ∈ Wm(s, l) matching the i-th segment rm of r, ED(sl, rl) ≤
i−1 and ED(sr, rr) ≤ τ +1− i. Thus ⟨s, r⟩ must pass our extension-based algorithm.

H. PROOF OF THEOREM 5.4
To prove Theorem 5.4, we need to prove that our iterative-based verification satisfies
conditions (1) and (2) of the correctness (Definition 5.2). It is easy to prove condition
(1) similar to Theorem 5.3. To prove condition (2), we first prove that for two similar
strings, their left parts can pass the iterative-based verification from the left-side per-
spective as stated in Lemma 5.4.1. We can get a similar conclusion from the right-side
perspective. Finally we combine these two conclusions and prove Theorem 5.4.

LEMMA 5.4.1. If s is similar to r within edit distance threshold τ , s must have a
substring sm which matches a segment rm of r, such that sm ∈ Wm(s, l) and ⟨rl, sl⟩ can
pass the ITERATIVEVERIFICATIONLEFT algorithm.

PROOF. If ⟨s, r⟩ are similar, based on Lemma 5.3.2, there must exist a substring
sm ∈ Wm(s, l) which matches the i-th segment rm of r such that ED(s, r) = ED(sl, rl) +

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

A Partition-based Method for String Similarity Joins with Edit-Distance Constraints App–13

ED(sr, rr) and ED(sl, rl) ≤ τl = i − 1. If rm and sm are not the first pair matching
with each other, the iterative-based method calls the length-aware verification method
on rl and sl. rl and sl can pass the algorithm as ED(rl, sl) ≤ τl. Otherwise, as stated
in Section 5.3, we find the longest common suffix of rl and sl. If x = 1 we use the
length-aware verification method to verify rl and sl. As ED(rl, sl) ≤ τl, it can pass the
ITERATIVEVERIFICATIONLEFT algorithm. If x > 1, we partition rl to i segments as
state in Section 5.3. As ED(rl, sl) ≤ τl = i − 1 and rl contains i segments, based on
Theorem 4.4 there must be a segment of rl matching a substring of sl. Next we prove
there exists a substring in Wm(sl,Li−1

rl
) matching the (i − 1)-th segment of rl. We can

prove that neither the first i − 2 segments of rl nor the i-th segment of rl matches a
substring of sl.

We first prove the i-th segment cx . . . cy cannot match any substrings in Wm(sl,Li
rl
).

The start position of strings in Wm(sl,Li
rl
) are in [p′i − (i− 1), p′i + (i− 1)] ∩ [p′i + |sl| −

|rl|−(i− i), p′i+ |sl|−|rl|+(i− i)] = [p′i+ |sl|−|rl|, p′i+ |sl|−|rl|] as
∣∣|sl|−|rl|

∣∣ ≤ i−1(based
on the multi-match aware method from left-side perspective) where p′i is the position
of cx. Thus there is only one substring sl[p

′
i + |sl| − |rl| . . . |sl| − 1] in Wm(sl,Li

rl
). Next

we prove sl[p
′
i + |sl| − |rl| . . . |sl| − 1] is exactly c′x′ . . . c′y′ . As the position of c′y′ is |sl| − 1,

we only need to prove the length of sl[p′i + |sl| − |rl| . . . |sl| − 1] is equal to the length
of c′x′ . . . c′y′ . That is we need to prove |rl| − p′i = y′ − x′ + 1. On one hand we have
cx+1 . . . cy = c′x′+1 . . . c

′
y′ , y′ − x′ = y− x. On the other hand we have the position of cy is

|rl|−1 and p′i is the position of cx, y−x = |rl|−1−p′i. Thus |rl|−p′i = y′−x′+1 and we have
sl[p

′
i+ |sl|− |rl| . . . |sl|−1] = c′x′ . . . c′y′ . As cx+1 . . . cy = c′x′+1 . . . c

′
y′ is the longest common

suffix of rl and sl, cx ̸= c′x′ , cx . . . cy ̸= c′x′ . . . c′y′ , sl[p′i + |sl| − |rl| . . . |sl| − 1] ̸= cx . . . cy.
Thus the i-th segment of rl cannot match any substring in Wm(sl,Li

rl
).

Then we consider the first i − 2 segments of rl which are exactly the first i − 2
segments of r. As rm is the first segment of r which matches a substring of s, none
of the substrings in Wm(sl,Lj

rl
)(1 ≤ j ≤ i − 2) matching the first i − 2 segments of

r. Next we prove that for any 1 ≤ j ≤ i − 2, Wm(sl,Lj
rl
) ⊆ Wm(s,Lj

l). Suppose the
lengths of the j-th segment of r and rl are lj and l′j and the start positions are pj and p′j
respectively. As the first i− 2 segments of rl is exactly the first i− 2 segments of r, for
any 1 ≤ j ≤ i− 2 we have lj = l′j and pj = p′j . Based on Section 4, for any 1 ≤ j ≤ i− 2,
Wm(s,Lj

l) is the set of substrings of s with length lj and with start position in

[⊥j ,⊤j] = [max(⊥r
j ,⊥l

j),min(⊤r
j ,⊤l

j)]

= [max(pj − (j − 1), pj +△− (τ + 1− j)),min(pj + (j − 1), pj +△+ (τ + 1− j))]

= [pj − (j − 1), pj + (j − 1)] ∩ [pj +△− (τ + 1− j), pj +△+ (τ + 1− j)]

Wm(sl,Lj
rl
) is the set of substrings of s with length lj and with start position in

[⊥′
j ,⊤′

j] = [max(⊥′r
j ,⊥′l

j),min(⊤′r
j ,⊤′l

j)]

= [max(pj − (j − 1), pj + |sl| − |rl| − (τl + 1− j)),min(pj + (j − 1), pj + |sl| − |rl|+ (τl + 1− j))]

= [pj − (j − 1), pj + (j − 1)] ∩ [pj + |sl| − |rl| − (i− j), pj + |sl| − |rl|+ (i− j)].

Thus we only need to prove that

[pj +△− (τ + 1− j), pj +△+ (τ + 1− j)] ⊇ [pj + |sl| − |rl| − (i− j), pj + |sl| − |rl|+ (i− j)]

We have an observation that |rl| + 1 = pi and |sl| + 1 equals to the start position of
sm. Thus |sl| − |rl| is exactly the difference between the start position of sm and rm. On

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

App–14 G. Li et al.

the other hand, we have the start position of sm in

[⊥i,⊤i] = [max(⊥r
j ,⊥l

j),min(⊤r
j ,⊤l

j)] ⊇ [⊥l
i,⊤l

i] = [pi +△− (τ + 1− i), pi +△+ (τ + 1− i)]

where pi is the start position of rm. Thus △− (τ + 1− i) ≤ |sl| − |rl| ≤ △+ (τ + 1− i).
Then we have

pj + |sl| − |rl| − (i− j) ≥ pj +△− (τ + 1− i)− (i− j) = pj +△− (τ + 1− j),

pj + |sl| − |rl|+ (i− 1− j) ≤ pj +△+ (τ + 1− i) + (i− j) = pj +△+ (τ + 1− j).

Thus for any 1 ≤ j ≤ i − 2, Wm(sl,Lj
rl
) ⊆ Wm(s,Lj

l), which means none of the
substrings in Wm(sl,Lj

rl
)(1 ≤ j ≤ i− 2) matching any segment of rl.

Based on the proof above the (i − 1)-th segment of rl must match a substring in
Wm(sl,Li−1

rl
) and it calls ITERATIVEVERIFICATIONLEFT algorithm again. Iteratively,

strings rl and sl can pass the ITERATIVEVERIFICATIONLEFT algorithm.

We can prove the conclusion from the right-side perspective similarly. Notice that
instead of the fact that rm is the first segment of r that matches a substring sm of
s from the left-side perspective, we can assume rm is also the first segment of r that
matches a substring sm of s from the right-side perspective. This is because we will call
this algorithm later if there exists another segment r′m of rr which matches a substring
s′m of sr based on the multi-match-aware technique.

Next we prove Theorem 5.4.

THEOREM 5.5.1. Our iterative-based verification method satisfies the correctness.

PROOF. We first prove the condition (1). If ⟨s, r⟩ passes our iterative-based verifi-
cation algorithm, then there exists a segment rm which matches a substring sm such
that ED(sl, rl) ≤ i − 1 and ED(sr, rr) ≤ τ + 1 − i. Thus ED(sl, rl) + ED(sr, rr) ≤ τ and
there exists a transformation from r to s with no large than τ edit operations. Hence
⟨s, r⟩ must be a similar pair.

Then we prove the condition (2). If ⟨s, r⟩ is a similar pair, based on Lemma 5.3.3,
there must exists a substring sm ∈ Wm(s, l) matching with the i-th segment rm of r,
such that ED(s, r) = ED(sl, rl) + ED(sr, rr), ED(sl, rl) ≤ i − 1 and ED(sr, rr) ≤ τ + 1 − i.
Consider the first segment r′m of r matching a substring s′m ∈ Wm(s, l) of s. If r′m = rm
based on Lemma 5.4.1, r and s can pass our iterative-based algorithm. If r′m ̸= rm, the
iterative-based method will call the extension-based method on rm and sm and based
on Theorem 5.3, r and s can pass the iterative-based method.

I. PROOF OF THEOREM 5.5
THEOREM 5.5. Our algorithm satisfies the (1) completeness: Given any similar pair

⟨s, r⟩, our algorithm must find it as an answer; and (2) correctness: A pair ⟨s, r⟩ found
in our algorithm must be a similar pair.

PROOF. We first prove completeness of our method. That is given a similar pair
⟨s, r⟩, our method must find it as an answer. Without loss of generality, suppose r
is visited before s. Based on Theorem 4.4, our multi-match-based method must find
this pair as a candidate pair. Based on Theorem 5.3, the similar pair ⟨s, r⟩ can pass
our extension-based verification, and thus it must be added as an answer. Thus our
algorithm satisfies completeness.

Then we prove correctness of our method. That is a pair ⟨s, r⟩ found in our algorithm
must be a similar pair. Based on Theorem 5.3, any pair ⟨s, r⟩ passed our extension-
based verification must be a similar pair. Thus our algorithm satisfies correctness.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: June 2012.

	Introduction
	Problem Formulation
	The Segment Filter Based Framework
	Partition Scheme
	The Segment-Filter-based Framework

	Improving The Filter Step by Selecting Effective Substrings
	Position-aware Substring Selection
	Multi-match-aware Substring Selection
	Comparison of Selection Methods
	Substring-selection Algorithm

	Improving The Verification Step
	Length-aware Verification
	Extension-based Verification
	Iterative-based Verification
	Correctness and Completeness

	Discussions
	Supporting Normalized Edit Distance
	Supporting R-S Join

	Experimental Study
	Evaluating Substring Selection
	Evaluating Verification
	Comparison with Existing Methods
	Scalability
	Evaluating Edit Distance
	Evaluating Normalized Edit Distance
	Evaluating R-S Join

	Related Work
	Conclusion
	Proof of Theorem 4.2
	Proof of Lemma 4.3
	Proof of Theorem 4.4
	Proof of Lemma 4.5
	Proof of Theorem 4.6
	Proof of Theorem 4.8
	Proof of Theorem 5.3
	Proof of Theorem 5.4
	Proof of Theorem 5.5

