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Abstract—A set containment join operates on two set-valued
attributes with a subset (⊆) relationship as the join condition. It
has many real world applications, such as in publish/subscribe
services and inclusion dependency discovery. Existing solutions
can be broadly classified into union-oriented and intersection-
oriented methods. Based on several recent studies, union-oriented
methods are not competitive as they involve an expensive
subset enumeration step. Intersection-oriented methods build
an inverted index on one attribute and perform inverted list
intersection on another attribute. Existing intersection-oriented
methods intersect inverted lists one-by-one. In contrast, in this
paper, we propose to intersect all the inverted lists simultaneously
while skipping many irrelevant entries in the lists. To share
computation, we utilize the prefix tree structure and extend our
novel list intersection method to operate on the prefix tree. To
further improve the efficiency, we propose to partition the data
and use different methods to process each partition. We evaluated
our methods using both real-world and synthetic datasets. Ex-
perimental results show that our approach outperforms existing
methods by up to 10×.

I. INTRODUCTION

Set containment is an important relationship between two

sets, which indicates that one set is a subset of another. It has

numerous real world applications. For example, if the skills

mastered by a worker and those required for a job are modeled

as sets, the set containment relationship indicates whether or

not a worker is competent in a job. As another example,

if the keywords subscribed to by a user and the words in

an article are modeled as the sets, then the set containment

determines if an article aligns with the users interests and

should be suggested to them. Additionally, set containment

is also relevant for inclusion dependency. Specifically, if two

columns of values are modeled as sets, then set containment

can be used to determine if there is an inclusion dependency

between them. In this paper, we study the set containment join

problem, which, given two collections R and S of sets, finds

all the set pairs (R, S) with a set containment relationship,

i.e., R ⊆ S. Since the volume of data is increasingly large,

we focus on improving the efficiency and scalability of this

operation.

There are many existing works that focus on set containment

joins. Based on one recent study [25], existing methods can be

broadly classified into union-oriented methods [9], [13], [15],

[16], [18], [24], [25] and intersection-oriented methods [3],

[10], [11], [13], [14].

∗Chengcheng Yang and Shuo Shang are the corresponding authors.

Fig. 1. Two ways to intersect inverted lists: “cross-cutting” and “rip-cutting”.

Union-oriented Methods. Union-oriented methods first gen-

erate a signature for each set. The signature guarantees that

R ⊆ S only if Sig(R) ⊆ Sig(S), where Sig(R) and Sig(S)
are the signatures of R and S, respectively. Next, all subsets

in Sig(S) are enumerated and any Sig(R) that is identical

to any of these subsets is retrieved. Based on the guarantee

provided by the signatures, (R, S) is a candidate pair. Finally,

the candidates are verified and the join results obtained. Based

on several recent studies [3], [24], union-oriented methods

cannot compete with intersection-oriented methods. This is

because a large signature size will lead to an expensive

subset enumeration cost, which grows exponentially with the

increasing of the signature size, while a small signature will

result in many candidates and a high verification cost.

As an example, Helmer et al. [9] use a bitmap of size b as a

signature. To generate the signature bitmap for a set, they map

each element in the set to a number i between 1 and b and set

the ith bit of its signature bitmap to 1. Obviously, for any two

sets R and S, R ⊆ S only if every 1 bit in Sig(R) is also set

to 1 in Sig(S), which we denote as Sig(R) ⊆ Sig(S). In this

case, union-oriented methods need to enumerate 2b bitmaps

for each set from S, which is highly inefficient.

Intersection-oriented Methods. Intersection-oriented meth-

ods first build an inverted index I for S, where the inverted

list I[e] consists of all the sets in S containing the element e

(the sets are sorted). Then, for each set R in R, they intersect

all the inverted lists corresponding to the elements in R and

obtain a list of sets from S. For each S in the list, R is a subset

of S and (R, S) is a result.

In this paper, we propose an intersection-oriented method.

However, we intersect the inverted lists in a new way. All

existing methods intersect the inverted lists one by one in
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a “rip-cutting” fashion. For example, consider the set R1 =
{e1, e2, e3, e4} and its four inverted lists as shown on the left

of Fig. 1. Existing methods first intersect I[e1] with I[e2] and

get L1 = {S3, S7}. Then they intersect L1 with I[e3] and get

L2 = {S3, S7}. Finally, they intersect L2 with I[e4], get the

list L3 = {S3}, and generate a result (R1, S3).
In our case, however, we intersect the inverted list in a

“cross-cutting” fashion as shown on right of Fig. 1 (details

of which will be provided in Section III). A huge advantage

of cross-cutting based intersection is that it can use the “gap”

between two consecutive entries in an inverted list to skip

irrelevant entries in the other lists. For example, consider the

two consecutive entries S3 and S7 in I[e1] in Fig. 1. As S4,

S5, and S6 are not in I[e1], e1 does not exist in the three sets

and R1 cannot be a subset of S4, S5, or S6. Thus we can skip

the three sets in all the other inverted lists, i.e., I[e2], I[e3],
and I[e4]. To share the computation between the sets in R,

we propose to build a tree on R and extend the cross-cutting

based intersection to operate on the tree. To further improve

the performance and scalability of our method, we propose to

partition the data and process each partition separately.

In summary, we make the following contributions in this

paper:

• We develop a novel, intersection-oriented approach for

set containment joins. Our approaches can skip irrelevant

entries in the inverted lists when intersecting them.

• We design a tree-based method to share the computation

between sets in R. We propose an early termination

technique for the tree-based method.

• We propose to partition the data to further improve the

efficiency and scalability of our method.

• We conduct extensive experiments on both real-world

datasets and synthetic datasets. The experimental results

show that our approach outperform current state-of-the-

art methods by up to one order of magnitude.

The rest of the paper is organized as follows. Section II

defines the problem. Our set containment join framework is

presented in Section III. We discuss the tree-based methods in

Section IV and data partition in Section V. Section VI provides

experimental results. We review related work in Section VII

and conclude in Section VIII.

II. PROBLEM DEFINITION

Given two collections of sets, the set containment join

problem aims to find all the set pairs from the two collections

in which one set is a subset of the other. A formal definition

is provided below.

Definition 1 (Set Containment Join): Given two collections

R and S of sets, the set containment join R ��⊆ S finds all pairs

(R, S) such that R ⊆ S, where R and S are two sets in R and S,

respectively. That is R ��⊆ S = {(R, S)|R ⊆ S,R ∈ R, S ∈ S}.

Example 1: For example, consider the two collections R

and S of sets in Table I. Each set R ∈ R (or S ∈ S) is

associated with an identifier Rid (or Sid). The set containment

TABLE I
RUNNING EXAMPLE

Rid R

R1 {e1, e2, e3, e4}
R2 {e2, e3, e5}
R3 {e1, e2, e5, e6}

Sid S

S1 {e1, e3, e4, e5, e6}
S2 {e1, e3, e5}
S3 {e1, e2, e3, e4, e6}
S4 {e2, e4, e5, e6}
S5 {e2, e3, e4, e5, e6}
S6 {e2, e3, e4, e6}
S7 {e1, e2, e3, e6}

(a) dataset R (b) dataset S

join R ��⊆ S will result in two pairs (R1, S3) and (R2, S5),
where the first sets are subsets of the second ones. For all the

other 19 pairs, there is no subset relationship.

III. THE FRAMEWORK

In this section, we present our set containment join frame-

work. The framework first builds an inverted index for the sets

in S (Section III-A). Then, it calculates the set containment

join using the inverted index previously built (Section III-B).

A. Inverted Index Construction

We build an inverted index I for S. The headers of the

inverted lists in I are the distinct elements in S. For each

distinct element e in S, its corresponding inverted list I[e]
consists of the identifiers Sid of the sets S containing e, i.e.,

e ∈ S. For ease of presentation, hereinafter, we use the set and

its identifier interchangeably. Note that the identifiers in the

inverted lists are ordered by their subscripts in ascending order.

For example, Fig. 2 shows the inverted index I constructed

for the sets in S in Table I(b). The inverted index can be

constructed by sequentially reading the sets in S and, for each

element e in Si, appending Si to the end of I[e].

Fig. 2. The inverted index I for S in Table I (b).

B. All Pair Set Containment Search

After the inverted index is constructed, we use it to find all

the set pairs with a subset relationship. At a high level, for

each set R ∈ R, intersection-oriented methods retrieve all the

inverted lists corresponding to the elements in R and intersect

them. The intersection result is a list L of sets in S, which are

all supersets of R. Thus, we produce a result (R, S) for each

set S ∈ L.

For this purpose, all existing approaches intersect the in-

verted lists one by one. We call this “rip-cutting” based
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intersection since all entries in a list are processed at the

same time. In contrast, in our framework, we employ a “cross-

cutting” based intersection. The basic idea is that we first

check each inverted list in R to see whether all of them contain

a “specific set” Si. If so, R ⊆ Si and we produce a result

(R, Si). Then, for any inverted list I[e] in R, let Sj be the

first entry greater than Si in the list. Obviously, the element e

must not exist in any Sk where i < k < j and R �⊆ Sk. Thus

we can skip all the entries in the “gap” (i.e., Si+1, · · · , Sj−1)

in all the other inverted lists. To this end, we use Sj as the

new specific set to check and repeat the above process until

we reach the end of any inverted list.

Note that we can use the first entry Sj greater than Si in any

inverted list in R to skip the irrelevant entries. To reach the end

of the inverted lists as soon as possible, we propose to use the

largest entry as the next specific set to check, because it will

have the largest gap, enabling us to skip more entries in the

other inverted lists. In addition, we initially use the smallest

set S1 as the first specific set to check.

Example 2: For example, consider the two datasets R and

S in Table I. For R1, there are four inverted lists I[e1], I[e2],
I[e3], I[e4], as shown on the right of Fig. 1. Our framework

first initializes the specific set to check to be S1. Since S1 is

not found in I[e2], it cannot be a superset of R1. The first

entries in I[e1], I[e2], I[e3], and I[e4] greater than S1 are

S2, S3, S2, and S3, respectively. We use the largest one, S3,

as the next specific set to check. Since S3 exists in all the

lists, our framework generates a result (R1, S3). We repeat this

process, with the next specific set to check being S7. However,

S7 is larger than all the entries in I[e4]. Thus our framework

reaches the end of I[e4] and terminates.

Correctness and soundness. The framework is correct and

sound, i.e., the set pairs found by the framework all have the

set containment relationship and all the set containment pairs

can be found by the framework. The correctness is obvious as

the framework returns a pair only if the specific set is found in

all the inverted lists of R, which indicates a set containment

relationship. The framework is also sound. For any set pair

(R, S) in R× S where R ⊆ S, all the inverted lists of R must

have the entry S. Since in the framework an entry is skipped

only if it does not exist in at least one of the inverted lists in

R, S cannot be skipped and must be a specific set to check in

the framework. Once S is checked, the framework must find

it in all the inverted lists of R and return the pair (R, S).

The pseudo-code of our framework is shown in Algorithm 1.

It takes two collections R and S of sets as input, and outputs

their set containment join result A = R ��⊆ S. To do so, it

first builds an inverted index I for the sets in S (Line 2). Then

for each set R ∈ R, it initializes the specific set MaxSid to

check to be S1 (Line 4). Next our framework binary searches

for MaxSid on each inverted list in R (Line 6). If MaxSid

is found in all the lists, it adds the pair (R, S) to the result

A (Lines 7-8). Then, the framework identifies the first entry

in each inverted list in R that is greater than MaxSid and

use the largest one among them as the next specific set to

Algorithm 1: THE CROSS-CUTTING FRAMEWORK

Input: S and R: two collections of sets.

Output: A: R ��⊆ S = {(R, S)|R ⊆ S,R ∈ R, S ∈ S};

begin1

Build an inverted index I for S;2

foreach R ∈ R with identifier Rid do3

MaxSid = 1;4

while not reaching the end of any inverted list do5

binary search for MaxSid on the inverted6

lists corresponding to the elements in R;

if MaxSid is found on all the lists then7

add the pair (Rid,MaxSid) to A;8

find the first entry greater than MaxSid in9

each inverted list in R and let NextMax be

the largest one among them;

update MaxSid as NextMax;10

return A;11

end12

check (Lines 9-10). These steps are repeated until the end of

an inverted list is reached (Line 5). Finally, the result A is

returned (Line 11).

Cost analysis. The cost for building the inverted index is

ΣS∈S|S|. Suppose on average our framework checks x specific

sets for each set in R. Then the cost for binary searching for

the specific sets is around xΣR∈RΣe∈R log |I[e]| and the cost

for setting the next specific sets to check and producing results

is xΣR∈R|R|, where |I[e]| is the inverted list length and |R| is

the set size. In total, the cost is

ΣS∈S|S|+ xΣR∈R(|R|+Σe∈R log |I[e]|).

C. Early Termination

In each round, our framework binary searches for a specific

set MaxSid in all the inverted lists in R. We observe that we

can terminate the binary searches earlier in each round. More

specifically, whenever MaxSid is not found in an inverted list

I[e] in R, we do not need to check if MaxSid is in the other

inverted lists in R. This is because e �∈ MaxSid and MaxSid

cannot be a superset of R.

Instead of using the largest gap (i.e., the first entry greater

than MaxSid) in all the inverted lists in R as the new specific

set NextMax to check in the next round, we set NextMax as

the largest gap in all the visited inverted lists in the current

round. This is because the binary searches are skipped on the

unvisited lists and their gaps are unknown. In addition, we

propose to visit the inverted lists in ascending order of length.

This is because the short inverted lists potentially have larger

“gaps” and we can skip more entries in each round.

Example 3: In the previous example, our framework binary

searches for S1, S3, and S7 in the four inverted lists. In total,

our framework performs 12 binary searches. By employing the
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early termination technique, we visit the lists in the order of

I[e1], I[e2], I[e4], and I[e3]. As the first specific set S1 is

not found in I[e2], we stop the current round and set the next

specific set to check to be the larger one between S2 from

I[e1] and S3 from I[e2], which is S3. As S3 is found in all

the inverted lists, we produce a result (R1, S3). Then the next

specific set to check is S7. We terminate after binary searching

S7 on I[e4] as we reach the end of I[e4]. In total, the early

termination only performs 9 binary searches.

The early termination may not find the largest specific set

to check in each round. Nevertheless, it can save some unnec-

essary binary search operations if the specific set MaxSid is

not a superset of R, especially when the set size |R| is large.

IV. THE TREE-BASED METHOD

This section discusses how to share the computation on

the sets in R. We first introduce the prefix tree index in

Section IV-A and then present the tree-based method in

Section IV-B. The tree-based method is essentially traversing

the tree in postorder. Finally, we integrate the early termination

technique into the tree-based method in Section IV-C.

A. The Prefix Tree

We build a prefix tree T for the sets in R, where each tree

node n is associated with an element n.e. For this purpose,

we first sort the elements in each set R ∈ R in a global order.

Then we sequentially insert the elements in R into T . Each

set R ∈ R corresponds to a unique leaf node in T where

the elements associated with the nodes on the path from the

root node T .root to this leaf node are exactly the elements

in R, sorted in the global order. For example, Fig. 3 shows

the prefix tree for the three sets in R in Table I(a). Note,

in this paper, as an example, we use an increasing order

of subscripts as the global order for the elements. However,

to share more computation, in our implementation we use

a decreasing order of frequency as the global order of the

elements. In addition, to save memory usage, we can replace

the prefix tree with the Patricia tree (a.k.a. radix trie), where

the inner nodes containing only one child are merged. All our

techniques proposed in this paper apply to this more compact

tree structure.

For ease of presentation, hereinafter we use the set R and

its corresponding leaf node in T interchangeably. We also

use the node n and its corresponding inverted list I[n.e]
interchangeably. For instance, a set S exists in a node n really

means S exists in the corresponding inverted list I[n.e] of n.

B. Set Containment Join via Postorder Tree Traversing

In this section, we discuss how to find all the set contain-

ment pairs using the inverted index I and the prefix tree T .

We first give the high level idea.

As discussed in the framework, for each set R in R, we

maintain a specific set MaxSid and check whether MaxSid

exists in every inverted list in R. Since each set R ∈ R

corresponds to a leaf node in the prefix tree T , we propose to

keep the specific set to check for each set in its corresponding

Fig. 3. The tree structure for R in Table I (a).

leaf node n, denoted as n.MaxSid. For the inner node n, we

use n.MaxSid to keep the smallest specific set to check among

all the leaf nodes in the subtree rooted at n so as to. As we

will see later in this section, this helps us update the specific

sets in the leaf nodes in a new round.

The next step in the framework is to produce a result if the

specific set exists in all the inverted lists of R. To achieve this

on the tree, for each node n in the tree, we use n.RidList to

keep the list of leaf nodes where i) the specific set of the leaf

node is n.MaxSid and ii) n.MaxSid exists in all the nodes

on the path from n to this leaf node (recall that a set S exists

in a node n really means S exists in the inverted list I[n.e]).
Based on this definition, all the sets in T .root.RidList are

subsets of T .root.MaxSid, where T .root is the root node of

T . Thus, for each set R ∈ T .root.RidList, we produce a result

(R, T .root.MaxSid).
The last step is to update the specific sets to check on the

leaf nodes in next round. Intuitively, for each leaf node n, we

can go through all the ancestor nodes of n and update the new

specific set of n to be the largest gap of its ancestor nodes and

itself (recall the gap of a node v is the first entry greater than

the current specific set n.MaxSid in the inverted list I[v.e]).

Example 4: Figure 4 shows a running example based on

the two datasets in Table I using the idea above. For each

node ni in the tree, we show its two variables ni.MaxSid and

ni.RidList. At the beginning (as shown in Fig. 4(a)), the initial

specific sets for all the leaf nodes n5, n7, and n10 are S1. For

the inner nodes, based on the definition, their specific sets are

also S1. We also have n4.RidList = {R3}. This is because i)

the corresponding leaf node n5 of R3 has the same specific

set as n4 (i.e., n5.MaxSid = n4.MaxSid = S1) and ii) the

specific set n4.MaxSid = S1 exists in both inverted lists of n4

and n5, i.e., I[e5] and I[e6], as shown in Figure 2. Similarly,

we have n5.RidList = {R3}, n6.RidList = {R1}, etc. Note

that n3.RidList = φ as its specific set n3.MaxSid = S1 does

not exist in the inverted list I[e2] of n3.

In the second round, as shown in Fig. 4(b), we update the

specific sets in the leaf nodes. For the leaf node n5, as the gaps

in itself and its ancestor nodes n4, n3, and n2 are respectively
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Fig. 4. A running example of the tree-based method based on the datasets in Table I.

S3, S2, S3, and S2, we update its specific set n5.MaxSid as

the largest one S3. Similarly we can update the specific sets

in the other nodes, which are all set to S3. We also have

n1.RidList = {R1} as i) the corresponding leaf node n7 of

R1 has the same specific set as n1 and ii) the specific set

n1.MaxSid = S3 exists in all the inverted lists I[e1], I[e2],
I[e3], and I[e4] of n2, n3, n6, and n7. Thus, we produce

a result (R1, S3). Similarly, in the next round as shown in

Fig. 4(c), we find another result (R2, S5). In the last round,

as shown in Fig. 4(d), the specific set for the root node is

n1.MaxSid = S∞, which indicates that we have reached the

ends of the inverted lists for all leaf nodes, and we terminate.

Postorder Tree Traversing. To implement the above high-

level idea, we design a postorder tree traversing method. In

traversing the tree, n.MaxSid and n.RidList will get updated

for every node n in the tree.

More specifically, consider an inner node n. Suppose for

every child node c of n, c.MaxSid and c.RidList have been

updated in the postorder tree traversing. We first discuss how to

update n.MaxSid using the child nodes of n. On the one hand,

n.MaxSid (or c.MaxSid) is defined as the smallest specific

set in all the leaf nodes in the subtree rooted at n (or c). On

the other hand, the leaf nodes in the subtree rooted at n are

exactly the leaf nodes in all the subtrees rooted at the child

nodes of n. Thus we can update n.MaxSid as the smallest

specific set c.MaxSid among all its child nodes. For example,

consider the node n1 in Fig. 4(c). It has two child nodes n2

and n8, whose specific sets are respectively n2.MaxSid = S7

and n8.MaxSid = S5. Thus we set n1.MaxSid as the smaller

one S5.

Next we discuss how to calculate n.RidList based on the

child nodes of n. Recall that n.RidList (or c.RidList) is the

list of leaf nodes where (1) their specific sets are n.MaxSid

(or c.MaxSid) and (2) n.MaxSid (or c.MaxSid) exists in all

the nodes on the paths from n (or c) to these leaf nodes.

Thus we set n.RidList as φ if n.MaxSid does not exist in

the node n as none of the leaf nodes satisfies condition (2);

otherwise, we update n.RidList as the union of all c.RidList

where c is a child node of n and c.MaxSid = n.MaxSid.

This is because, on the one hand, for any leaf node in these

c.RidList, (1) its specific set is c.MaxSid = n.MaxSid and

(2) c.MaxSid = n.MaxSid exists in both all the nodes on

the path from c to this leaf node and the parent node n of

c. Thus this leaf node must also in n.RidList. On the other

hand, for any leaf node not in the above c.RidList, either its

specific set is not c.MaxSid or c.MaxSid does not exists in

a node on the path from c to this leaf node, which indicates

that this leaf node must also not in n.RidList. For example,

consider the node n3 in Fig. 4(b). It has two child nodes

n4 and n6 where n4.RidList = φ and n6.RidList = {R1}.

As n3.MaxSid = S3 exists in n3’s inverted list I[n3.e],
we have n3.RidList = n4.RidList ∪ n6.RidList = {R1}.

As another example, consider the node n3 in Fig. 4(a). As

n3.MaxSid = S1 does not exist in I[n3.e = e2], we have

n3.RidList = φ. Note that if n is a leaf node, based on the

definition, if n.MaxSid exists in the inverted list I[n.e], we

have n.RidList = {n}.

Lastly, we show how to update the specific set on the leaf

nodes. Note that a postorder tree traversing is also a type

of deep first traversing. Thus a node n must be traversed to

through all its ancestor nodes. As such when we traverse to a

node n, we can get the largest gap of n and all its ancestors.

We keep this largest gap in a variable NextMax. This variable

NextMax will be passed through the parent node to all its

child nodes and get updated in the postorder (i.e., deep first)

tree traversing. Then, whenever a leaf node n is reached, we

can update its new specific set n.MaxSid as NextMax.

Note that, the gap in a node n (i.e., the first entry in the

inverted list I[n.e] greater than the specific set n.MaxSid)

can be calculated at the time of checking whether the specific

set n.MaxSid exists in I[n.e]. To reuse this computation later

when updating the specific sets in next round, we keep the gap

in a variable n.NextMax. More specifically, we can binary

search for the first entry Sid no smaller than n.MaxSid. If

Sid is identical to n.MaxSid, it means n.MaxSid exists in

the inverted list I[n.e] and we use the entry next to Sid in

the inverted list as the gap n.NextMax; otherwise, it means

n.MaxSid does not exist in the inverted list and we use Sid

as the gap n.NextMax.

The pseudo-code of the tree-based method is shown in
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Fig. 5. Status of the prefix tree.

Algorithm 2. It takes two datasets R and S as input and returns

their set containment join. The tree-based method first builds

a prefix tree T for R and an inverted index I for S (Lines 2

to 3). Then for each node n in the tree, it initializes both the

specific set n.MaxSid and the gap n.NextMax as S1 (Line 4).

Next it repeatedly invokes the procedure POSTORDERTRA-

VERSE (Line 6). Each invocation will get T .root.MaxSid

updated as the next smallest specific set to check in all the

leaf nodes and get T .root.RidList updated according. Based

on the definitions, all the sets in T .root.RidList are subsets of

T .root.MaxSid. Thus we add a pair (R, T .root.MaxSid) to

the result A for each set R ∈ T .root.RidList (Lines 7 to 8).

It terminates when the smallest specific set T .root.MaxSid is

identical to the “maximum” set S∞, which indicates the end

of an inverted list is reached for every leaf node (Line 5).

Finally, the result A is returned (Line 9).

The pseudo-code of the postorder tree traversing POS-

TORDERTRAVERSE is shown in Algorithm 3. It takes a tree

node n and the largest gap NextMax in all the ancestors of n as

input. At the end of each invocation, the variables n.MaxSid,

n.RidList, and n.NextMax will get updated. At the beginning,

NextMax is the largest gap in all the ancestor nodes of n and

n.NextMax is the gap on n. Thus the larger one of these

two is the largest gap in all the ancestor nodes of any child

node c of n (Line 2). Then the postorder traversing recursively

invoke itself on the child nodes of n to get their specific

sets updated (Lines 3 and 4). Note that for the child node

c of n whose specific set c.MaxSid is larger than the largest

gap NextMax, c.MaxSid does not need to be updated as this

specific set has not been checked yet. Thus the procedure

will not be recursively invoked on these child nodes. After

this, all the child nodes of n have their variables update-to-

date. Next, it updates the specific set n.MaxSid of n. As

discussed before, if n is a leaf node, n.MaxSid is updated

as the largest gap NextMax; otherwise, n.MaxSid is updated

as the smallest c.MaxSid where c is a child of n (Lines 5

to 8). Then it updates n.RidList and the gap n.NextMax. For

this purpose, it first binary searches for the first entry Sid

in I[n.e] no smaller than n.MaxSid (Line 9). As discussed

before, if Sid == n.NextMax, we update the gap n.NextMax

as the entry next to Sid in I[n.e] (Line 11); otherwise, we

update the gap n.NextMax as Sid (Line 17). Note that if we

reach the end of the inverted list, we set Sid and the gap as

the “maximum” set S∞, i.e., n.NextMax = Sid = S∞. For

n.RidList, as discussed before, if Sid == n.MaxSid, which

indicates the specific set n.MaxSid exists in n and its inverted

list I[n.e], and n is a leaf node, we set n.RidList as the set

corresponding to n itself, i.e., n.RidList = {n} (Line 13).

However, if Sid == n.MaxSid and n is not a leaf node, we

update n.RidList as the union of c.RidList where c is a child

node of n and c.MaxSid = n.MaxSid (Line 15). In the case

Sid �= n.MaxSid, which indicates the specific set n.MaxSid

does not exist in n, we have n.RidList = φ (Line 17). Now

all the variables n.MaxSid, n.RidList, and n.NextMax of n

are update-to-date.

Example 5: Consider the running example in Fig. 4. Fig-

ure 5(a) shows the status of the prefix tree after the first

round of traversing. We discuss how this then transverses to

the second round (as shown in Fig. 5(b)). First, the POS-

TORDERTRAVERSE algorithm traverses to the leaf node n5,

through its ancestor nodes n4, n3, n2, and n1, and updates the

variable NextMax to be the largest one amongst n5.NextMax,

n4.NextMax, n3.NextMax, n2.NextMax, and n1.NextMax,

which is n3.NextMax = S3. Then, as n5 is a leaf node, it

updates n5.MaxSid to be NextMax = S3. Next it binary

searches for the first entry in I[n5.e = e6] no smaller than

S3 and obtains Sid = S3. As Sid == n.MaxSid, it sets

n.NextMax to be the next entry after S3 in I[e6], which is S4.

It also sets n5.RidList to be the corresponding set of n, which

is R3, since n5 is a leaf node. Next it visits the node n4. As n4

is not a leaf node, it sets n4.MaxSid to be the smallest specific

sets among all of its child nodes, which is n5.MaxSid = S3. As

the first entry no smaller than S3 in I[n4.e = e5] is Sid = S4,

which is not identical to n4.MaxSid = S3, it sets n4.NextMax

as Sid = S4 and n4.RidList = φ. Similarly, it traverses and

updates all the nodes in the prefix tree and Fig. 5(b) shows the

status of the tree at the end of the postorder tree traversing.

Correctness and soundness. We first show the correctness

of the tree-based method. In the algorithm, the leaf node v

is only added to v.RidList if v.MaxSid is found in v. For

the inner node n and its child node c, the sets in c.RidList

are only added to n.RidList if c.MaxSid = n.MaxSid

and n.MaxSid is found in n. Thus, recursively, we have

that for the root node T .root and a leaf node n, the leaf

node n is only added to T .root.RidList if n.MaxSid =
T .root.MaxSid and T .root.MaxSid is found in all the nodes

on the path from T .root to n. This implies a set containment

relationship between n (i.e., its corresponding set R) and

T .root.MaxSid. Thus for any R ∈ T .root.RidList, the pair

(R, T .root.MaxSid) is a result. Next we show the soundness

of our method. As discussed before, for any set pair (R, S) in

R× S where R ⊆ S, all the inverted lists of R must have the

entry S. Let n be the leaf node corresponding to R. Then S
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Algorithm 2: TREE-BASED METHOD

Input: S and R;

Output: A: R ��⊆ S = {(R, S)|R ⊆ S,R ∈ R, S ∈ S};

begin1

build a prefix tree T on R;2

build an inverted index I on S;3

for each node n ∈ T , n.MaxSid = n.NextMax = S1;4

while T .root.MaxSid �= S∞ do5

POSTORDERTRAVERSE(T .root, 1);6

foreach R ∈ T .root.RidList do7

add (R, T .root.MaxSid) to A;8

return A;9

end10

Algorithm 3: POSTORDERTRAVERSE(n, NEXTMAX)

Input: n: a tree node; NextMax: the largest gap in all

the ancestor nodes of n.

begin1

NextMax = max(NextMax, n.NextMax);2

foreach child c of n where c.MaxSid ≤ NextMax do3

DEEPFIRSTTRAVERSE(c, NextMax);4

if n is a leaf node then5

set n.MaxSid as NextMax;6

else7

set n.MaxSid as the smallest c.MaxSid, where c8

is a child node of n;

binary search for the first entry Sid no smaller than9

n.MaxSid in I[n.e];
if Sid == n.MaxSid then10

set n.NextMax as the entry next to Sid in I[n.e];11

if n is a leaf node then12

set n.RidList as the set corresponding to n;13

else14

set n.RidList as the union of c.RidList where15

c is a child of n and c.MaxSid = n.MaxSid;

else16

set n.NextMax as Sid and n.RidList = φ;17

end18

exists in all the nodes on the path from T .root to n and cannot

be skipped. That is, the specific set n.MaxSid must be updated

to be S at some point. At the time when n.MaxSid = S,

R will be added to n.RidList as n.MaxSid exists in n. In

our algorithm, n.MaxSid and n.RidList will be propagated

to n’s ancestor nodes once n.MaxSid becomes the smallest

specific set in the subtree rooted at these ancestor node. When

n.MaxSid = S and n.RidList = {R} are propagated to the

root node T .root, the pair (R, S) will be returned in our

algorithm.

Algorithm 4: EARLYTERMINATION

begin1

// add to Algorithm 3 after Line 17

within the if-else condition

POSTORDERTRAVERSE(n,NextMax);2

end3

C. Early Termination for the Tree-based Method

In this section, we extend the early termination technique

to support the tree-based method.

In the framework, whenever the specific set is not found in

an inverted list, the early termination stops binary searching

the rest of inverted lists and uses the largest gap in the visited

inverted list as the new specific set in the next round. Similarly,

in the tree-based method, if a specific set n.MaxSid is not

found in the inverted list I[n.e] of a node n, the specific

sets of some leaf nodes in the subtree rooted at n need to

be updated. To this end, we recursively invoke the procedure

POSTORDERTRAVERSE on node n to update the variables of

n. Only if the specific set n.MaxSid is found in the inverted

list I[n.e], will this procedure traverse to the parent node of

n.

V. DATA PARTITIONING

In this section, we discuss our data partition methods. We

first introduce how to partition the data in Section V-A and

then discuss how to deal with each partition using different

methods in Section V-B.

A. Partitioning the Sets

In this section, we further improve the efficiency and

scalability of our proposed tree-based method by partitioning

the data. The basic idea is that we can first partition the sets in

R into disjoint partitions. Then, for each partition, we construct

a “local” inverted index using a small part of the sets in S such

that the rest of sets in S are not a superset of any set R in

this partition. Then we can use the previous tree-based method

to process each partition and its corresponding local inverted

index to get all the results in this partition. Together, we can

get the set containment join result.

For this purpose, in this paper, we propose to partition

the sets in R by their smallest elements in the global order.

For example, consider the dataset R in Table I. The smallest

elements in R1, R2, and R3 are e1, e2, and e1, respectively.

Thus, we partition R into two partitions Re1 and Re2 where

Re1 = {R1,R3} and Re2 = {R2}. Clearly, each set in R

is allocated into one and only one partition in this partition

scheme. Next, we deal with the sets in S. Let Re denote

the partition with all the sets whose smallest elements are e.

Clearly, all the sets in Re contain the element e. Thus, for a

set S to be a superset of any set R in the partition Re, S must

also contain the element e. Thus we construct a local inverted

index Ie using only those sets in S containing the element e.

The rest of sets in S do not contain e and cannot be a superset
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of any set in Re. Then we use the tree-based method to deal

with the partition Re and its corresponding local inverted index

Ie to get results in this partition. In our implementation, we

use the element frequency order as the global order and the

most frequent element to partition the data.

Example 6: Consider the datasets in Table I. As discussed

above, our data partition scheme will partition R into Re1

and Re2 . For the partition Re1 , we construct an inverted index

Ie1 with four sets S1, S2, S3, and S7 containing e1. For the

partition Re2 , we construct another inverted index Ie2 with

five sets S3, S4, S5, S6, and S7 containing e2. Take the left

subtree rooted at n2 where n2.e = e1 in Fig. 4 as an example.

As shown in Fig. 2 and Fig. 4, initially, the average inverted

list length is 5 for the left subtree, and the length is reduced

to 2.8 (i.e., 4, 2, 4, 2, 2, 3 for each inverted list respectively)

after the partition method is applied.

Obviously, the prefix tree for the partition Re is a branch

of the prefix tree for the entire dataset R, i.e., the subtree

rooted at the child node of T .root with element e. In addition,

the size of the local inverted index Ie is much smaller than

the original inverted index I. Actually, each inverted list in

the local inverted index Ie is a sub-list of the corresponding

inverted list in the original inverted index I. Thus, the binary

search cost decreases in the tree-based method for each

partition. However, for some extremely small partitions, the

overhead of constructing the local inverted index may be even

larger than directly applying the tree-based method on the

original inverted index. In the next section, we discuss how to

determine which inverted index to use for each partition.

B. Processing the Partitions

Note that to efficiently find all the sets in S containing

a specific element e, we still need to construct the original

inverted index I based on the entire dataset S. Then we can

use the sets in I[e] to construct the local inverted index Ie.

However, for some small partitions, the local inverted index

construction cost may be even larger than the benefit of replac-

ing the original inverted index with the local inverted index.

Since the local inverted index construction cost grows linearly

with increasing partition size while the set containment join

cost on each partition grows quadratically, we propose to use

the original inverted index for the small partitions and the local

inverted index for the large partitions.

To dynamically determine the partition size boundary for

these two inverted indexes, we propose to visit the partitions

in increasing order of size. For each partition Re, we first use

the original inverted index to process it. In the meanwhile, we

count the cost Y of using the original inverted index. Then, we

estimate the cost of using the local inverted index to process

this partition as Y · |I[e]||S| , where |I[e]| and |S| are the number

of sets in I[e] and S. The local inverted index construction

cost can be estimated as the total size of sets in I[e]. Once

the total estimated cost is steadily no greater than Y , we start

directly using the local inverted index to process the remaining

partitions.

TABLE II
STATISTICS OF THE REAL-WORLD DATASETS

Dataset # of Sets Min/Max/Avg Size # of Elements z-value

FLICKR 3,546,729 1 / 1230 / 5.4 618,971 0.63

AOL 36,389,577 1 / 125 / 2.5 3,849,556 0.68

ORKUT 15,301,901 2 / 9120 / 7 2,322,299 0.13

TWITTER 28,819,434 2 / 4998 / 9 13,096,918 0.3
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Fig. 6. Frequency Distribution of Real-world Datasets.

VI. EXPERIMENT

In this section, we evaluate the efficiency and scalability of

our proposed methods.

A. Experimental Setup

We conducted experiments on both real-world and synthetic

datasets. As with previous studies [3], [24], we evaluate all

the methods on the self-join case, i.e., R = S. However,

all our proposed techniques can be seamlessly adapted for

the two-relation join case. Particularly, we use the following

four real-world datasets: FLICKR1, AOL2, ORKUT3 and

TWITTER4. The FLICKR dataset is a photo-tag dataset. Each

photo corresponds to a set and each photo tag corresponds to

an element. The AOL dataset is a query log dataset. Each

query corresponds to a set and each whitespace-split query

word corresponds to an element. The ORKUT dataset contains

community information from a free on-line social network.

Each community is a set while each user in the community is

an element. The TWITTER dataset is a social network dataset.

Each user corresponds to a set. The followers of a user are

the elements of the corresponding set. Note that in TWITTER

dataset, we removed the sets with more than 5000 elements to

keep the number of results reasonable. Table II provides some

statistics for these four datasets.

As with the previous work [25], we makes use of Zipf’s

law [17] to generate the synthetic datasets with four parame-

ters. (1) Data cardinality, i.e., the number of sets in the dataset,

ranges from 2.5 million to 10 million. (2) The average set size

ranges from 4 to 128. (3) The number of distinct elements

ranges from 10 thousands to 10 million. (4) the z-value, which

measures the skewness of the datasets, ranges from 0.25 to

1.0. The higher the z-value is, the more “skew” the dataset is.

1https://www.flickr.com
2http://www.cim.mcgill.ca/∼dudek/206/Logs/
3https://snap.stanford.edu/data/com-Orkut.html
4https://snap.stanford.edu/data/twitter-2010.html
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TABLE III
STATISTICS OF THE SYNTHETIC DATASETS

Parameter Values

data cardinality 2.5M, 5M, 10M, 20M

average set size 4, 8, 16, 32, 64, 128

number of distinct elements 10K, 100K, 1M, 10M

z-value 0.25, 0.5, 0.75, 1.0

More specifically, a dataset with z-value 1− log(a/100)
log(b/100) means

the most frequent b percent of elements accounts for a percent

of the total number of elements in the dataset. For example,

if in a dataset the most frequent 20% of elements accounts

for 80% of the total number of elements, i.e., a = 80 and

b = 20, the z-value is 0.86. Similarly, for a more even dataset

where a = b = 50, the z-value is 0. Table III summarizes

the statistics of the synthetic datasets. On each experiment,

we vary one of the parameters and set the other parameters to

their default values (in bold font in the table). Note that the

previous work [25] uses significantly higher z-values (greater

than 1.0). We argue that in the real-world, the z-values of most

datasets are within 1.0 based on the 80/20 law [17].

For the four real-world datasets, Fig. 6 shows the percentage

of the total number of elements that the top 150 most frequent

elements account for. We can see that the most frequent

elements in the FLICKR and AOL datasets account for much

higher percentage (about 100×) of the total elements than

those of the ORKUT and TWITTER datasets, which indicates

that the FLICKR and AOL datasets are more skew than the

ORKUT and TWITTER datasets.

We compared LCJoin with three state-of-the-art algorithms,

PRETTI [10], LIMIT+ [3] and TT-Join [24], [25]. PRETTI

indexes R with a prefix tree and S with an inverted index.

The prefix tree is traversed in a depth-first manner and the

corresponding inverted lists on the nodes are intersected so that

the list intersections on common prefix are shared. LIMIT+

improves PRETTI by employing a cost model to decide online

whether to stop list intersections as the number of candidates

may be small. In our experiment, we used the trained cost

model provided by the author. TT-Join uses k least frequent

elements as the signature and a candidate is generated and

verified each time the signature is matched when traversing the

prefix tree built on S. In our experiment, we set the parameter

k as 3, which is the same as in [25].

All the methods were implemented in C++ and compiled

using g++ 5.4.0 with -O3 flag. We reimplemented PRETTI and

TT-Join and got the source code of LIMIT+ from its author.

The experiments were ran on a workstation powered by a 20-

core Intel Xeon Gold-6148 CPU on Linux (Ubuntu 16.04)

with 64 GB main memory.

B. Evaluating the Tree-based Methods

In this section, we evaluate the efficiency of our proposed

framework method and tree-based method, along with the

early termination techniques. We implemented the following

four methods. (1) Framework uses the framework method

as described in Algorithm 1. It intersects the inverted lists

in a cross-cutting way. (2) FrameworkET improves Frame-

work with the early termination technique as discussed in

Section III-C. (3) TreeBased utilizes a prefix tree index to

share the computation on R as described in Algorithm 2. (4)

TreeBasedET integrates the early termination technique into

the TreeBased method as discussed in Section IV-C.

We varied the data cardinality (using 20%, 40%, 60%, 80%,

and 100% of the sets in the datasets) and reported the runtime

of different methods. Figure 7 shows the experimental results

on the four real-world datasets. We observed that the two tree-

based methods TreeBasedET and TreeBased outperformed

the two framework methods Framework and FrameworkET

by up to 20× when the data cardinality was large (≥ 80%). For

example, on the AOL dataset with 100% data cardinality, the

time elapsed for TreeBasedET, TreeBased, FrameworkET,

and Framework were 70s, 79s, 1524s, and 1568s, respectively.

For small data cardinality, the framework methods occasion-

ally outperformed the tree-based methods. This is because

the tree methods can share the computation in the common

prefixes of the sets. The larger the data cardinality is, the more

computation can be shared. In contrast, if the data cardinality

is too small, the overhead, such as constructing and initializing

the prefix tree, may be larger than the benefit of shared

computation. We also observed that the early termination

techniques helped improve the performance. This is because

they can avoid unnecessary binary search operations.

C. Evaluating the Data Partition Methods

In this section, we evaluate the data partition methods. We

implemented two methods. 1) AllPartition partitions the sets

in R using their smallest elements in the global order and

uses the local inverted index and the tree-based method to

process all partition as discussed in Section V-A. 2) LCJoin

uses the method as described in Section V-B to determine

whether to use the local inverted index or the original inverted

index to process each partition . We varied the data cardinality

and reported the runtime of TreeBasedET, AllPartition, and

LCJoin. Note TreeBasedET does not partition the data. The

results on the real-world datasets are shown in Fig. 8. We

can see from the figure that LCJoin always achieved the best

performance. For example, on the AOL dataset with 100% data

cardinality, the runtime of TreeBasedET, AllPartition, and

LCJoin were 79s, 24s, and 19s, respectively. This is because

the partition based methods can reduce the inverted index size

for each partition, which results in less binary search cost

and more skipping of irrelevant entries in the inverted lists.

We also noticed that the partition based method AllPartition

sometimes did not perform as well as the non partition method

TreeBasedET. This is because, when the partition size is

very small, the local inverted index construction cost for

this partition may be larger than the cost of directly using

the original inverted index. LCJoin alleviates this issue by

dynamically determining whether to use the original inverted

index or to build a local inverted index to process each

partition.
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Fig. 7. Evaluation of the tree-based methods.
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Fig. 8. Evaluation of the data partition methods.

D. Comparing with Existing Methods on Real-world Datasets

In this section, we compared LCJoin with three state-of-

the-art methods, PRETTI, LIMIT+, and TT-Join. We varied

the data cardinality and reported the runtime of different

methods. Figure 9 shows the results. Note that on the TWIT-

TER dataset with data cardinalities 80% and 100%, PRETTI

failed to return results due to an out-of-memory error. We

observed that LCJoin always achieved the best performance

and improved existing methods by up to 10×. For example,

on the AOL dataset with 100% cardinality, the runtime for

PRETTI, LIMIT+, TT-Join, LCJoin were 344s, 358s, 160s,

and 19s, respectively. This is because our cross-cutting based

list intersection can skip many irrelevant entries in the inverted

lists and the data partition technique can reduce the size of

the inverted index in each partition. We also observed that our

approach LCJoin scaled very well when data cardinality was

increased. For example, on FLICKR dataset, when the data

cardinality was 20%, 40%, 60%, 80% and 100%, the runtime

of our approach were respectively 0.52s, 1.11s, 1.7s, 2.23s, and

2.91s, which suggests an almost linear growth. This is due to

the fact that our tree-based method can share computation in

the common prefixes of the sets.

We also measured the peak memory usage of the four

algorithms. Figure 10 shows the results. We observed that

LCJoin had the lowest peak memory usage in nearly all cases.

For example, on the FLICKR dataset, the peak memory usage

for PRETTI, LIMIT+, TT-Join, and LCJoin were 2.4GB,

1.21GB, 1.03GB, and 0.83GB, respectively. The main reason

for this is that TT-Join utilizes two sparse tree structures in its

algorithm, which consumes more memory than our compact

tree structure. Though PRETTI and LIMIT+ also make use

of compact tree structures, their top-down list intersections

generate a large number of intermediate results, which leads

to bad memory fragmentation, and thus have larger peak

memory usage. Although our data partition technique may

require building local inverted indexes for the partitions, all

of these indexes can share the memory through a memory

pre-allocation mechanism.

E. Comparing with Existing Methods on Synthetic Datasets

In this section, we compared our method LCJoin with

existing methods on the synthetic datasets. We evaluated these

methods on synthetic datasets using different parameters and

reported their runtime. Figure 11 shows the results. We can see

that our approach outperformed existing methods in all settings

by up to 70×. For example, as shown in Fig. 11(c), when the

z-value was 0.5, the average set size was 8, the number of

distinct elements was 10 thousand, and the data cardinality

was 10 million, the runtimes for PRETTI, LIMIT+, TT-Join,

and LCJoin were 1687s, 1393s, 3604s and 52s, respectively.

More specifically, Fig. 11(a) depicts the results for scalabil-

ity experiments. We can see that our approach showed good

scalability with the increasing of data cardinality, just as we

observed for the real-world datasets. Note that the performance

of TT-Join decreased faster than other algorithms with the

increase of the data cardinality, this is because the fixed-length

signature scheme (k least frequent prefix) is not adaptive

to the datasets. Figure 11(b) shows the results for different

average set sizes. PRETTI failed to return results when the

average set size were greater than 32. It also shows good

scalability of our algorithm with the increase of the average

set size. Figure 11(c) gives the runtime of all algorithms when

varying the number of distinct elements. We observe that the
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Fig. 9. Comparing with existing approaches on real-world datasets.
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Fig. 10. Comparing peak memory usage with existing methods on real-world
datasets.

performance of LCJoin is rather steady. For example, when the

number of distinct element were 10 thousands and 10 million,

the runtime of our approach were respectively 52s and 16s,

while for TT-join, PRETTI, and LIMIT+ the run time were

3604s/1687s/1393s and 40s/124s/69s. The main reason is that

our data partition method can effectively reduce the inverted

index size, which alleviate the side-effect caused by long

inverted lists, especially when the number of distinct elements

is small. Figure 11(d) presents the results of varying the z-

value of elements. LCJoin performed well under different z-

value and outperformed PRETTI, LIMIT+, and TT-Join by up

to 9.8×, 5.8×, and 4.7×.

VII. RELATED WORK

Set Containment Joins. Several methods have been developed

to address the set containment join problem, some of them

union-oriented and others intersection-oriented. For union-

oriented methods, Helmer and Moerkotte [9] proposed to use

the Signature-Hash Join (SHJ) to address the set containment

join problem. SHJ first uses a signature structure [19] to

compactly represent sets, and then performs signature enu-

merations and comparisons to filter unqualified set pairs. As

SHJ involves an expensive signature enumeration cost, it scales

poorly with the dataset cardinality. Ramasamy et al. [18]

proposed the Partitioned Set Join (PSJ) method, while Melnik

et al. [15] developed the Divide-and-Conquer Set Join (DCJ)

method. PSJ and DCJ both employ a hash function to partition

the sets into different buckets such that two sets have a set

containment relationship only if they reside in the same bucket.

The pairs in the same bucket are then further verified. Melink

et al. [16] improved PSJ and DCJ by using a comprehensive

model to analyze the partitioning algorithms. They proposed

to use more sophisticated partitioning strategies to improve

the filtering efficiency. Luo et al. [13] further improved these

methods by using a Patricia tree to reduce the signature

enumeration cost. Yang et al. [24], [25] proposed the TT-

Join, which takes the data skewness into account. For each

set in R, TT-Join uses its k least frequent elements as the

signature. However, as shown in several previous studies [3],

[24], [25], most union-oriented methods are not competitive

with intersection-oriented methods. Mamoulis [14] proposed

the Block Nested Loop Join (BNL), which first builds an

invert index over S and then performs list intersections for

all the elements in each R ∈ R. Jampani and Pudi [10]

improved BNL by using a prefix tree to share the computation

across the sets in R. Luo et al. [13] further improved BNL by

replacing the prefix tree with a more compact tree structure,

the Patricia tree. To avoid performing too many inverted list

intersections for a large prefix tree, Bouros et al. [3] proposed

the LIMIT+ method which only uses up to l elements in the

sets to construct the prefix tree. In addition, they also proposed

the Order and Partition Join technique to build the inverted

index incrementally, resulting in a lower list intersection cost.

Finally, Kunkel et al. [11] proposed the PIEJoin method, which

uses a tree structure to reduce the size of the inverted index

on S. Note that all these intersection-oriented methods utilize

the “rip-cutting” based list intersection while we propose to

use the “cross-cutting” based list intersection.

Set Similarity Joins. Another relevant line of research is the

set similarity joins. A set similarity join takes two collections

of sets and identifies all the set pairs that are similar with

regards to a given similarity function and threshold. For

example, Deng et al. [7] proposed a partition-based method

for set similarity joins under Jaccard similarity constraints.

Bayardo et al. [2], on the other hand, proposed to apply the

prefix filtering technique for the set similarity join. For each

set, the prefix filter first sorts the elements using a global order

and then uses the first few elements as the prefix. The prefix

filter technique guarantees that two sets are similar only if their

prefixes share at least one element. Xiao et al. [23] improved

the prefix filter with a position filter. Wang et al. [22] proposed

AdaptJoin algorithm, which uses a longer prefix to filtering

more dissimilar pairs. Deng et al. [8] proposed a size-aware
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Fig. 11. Comparing with existing approaches on synthetic datasets.

method for the overlap set similarity join problem, which finds

all the set pairs with a sufficient large overlap size. Deng et

al. [5] proposed an efficient method to find related sets using

two-tier similarity functions. To further improve the scalability,

Vernica et al. [21], Sun et al. [20], and Deng et al. [6]

proposed to perform the set similarity join on MapReduce [4]

or Spark [26]. Agrawal et al. [1] proposed to solve the error-

tolerant set containment join problem. Li et al. [12] developed

algorithms to solve the T-occurrence problem. These methods

can be adapted to solve our set containment join problem.

However, as shown in [25], they did not perform well when

applied to our problem.

VIII. CONCLUSION

In this paper, we studied the set containment join problem,

which, given two collections R and S of sets, finds all the set

pairs in R × S with a set containment relationship. Existing

methods can be broadly classified into union-oriented and

intersection-oriented methods. The union-oriented methods are

not competitive because they involve an expensive signature

enumeration step. The intersection-oriented methods build

an inverted index on S. In contrast to existing intersection-

oriented methods, which use the rip-cutting fashion to intersect

inverted lists, we design a cross-cutting based list intersection

method. The cross-cutting based list intersection can skip

many irrelevant entries in the inverted lists by using the

gaps between two consecutive entries in the inverted lists. To

share computation across sets, we built a prefix tree on R

and extend the cross-cutting based list intersection to operate

on this prefix tree. To further improve the efficiency and

scalability of our proposed method, we partitioned the sets

in R according to their smallest elements in the global order.

We also developed a method to apply different approaches to

each partition. We evaluated our techniques on both real-world

and synthetic datasets. Experimental results showed that our

approach outperformed existing methods by up to 10× for the

real-world datasets.
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