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Abstract—Entity extraction is fundamental to many text min-
ing tasks such as organisation name recognition. A popular
approach to entity extraction is based on string matching against
a dictionary of known entities. For approximate entity extraction
from free text, considering solely character-based or solely token-
based similarity cannot simultaneously deal with minor name
variations at token-level and typos at character-level. Moreover,
the tolerance of mismatch in character-level may be different
from that in token-level, and the tolerance thresholds of the
two levels should be able to be customised individually. In
this paper, we propose an efficient character-level and token-
level edit-distance based algorithm called FuzzyED. To improve
the efficiency of FuzzyED, we develop various novel techniques
including (i) a spanning-based candidate sub-string producing
technique, (ii) a lower bound dissimilarity to determine the
boundaries of candidate sub-strings, (iii) a core token based
technique that makes use of the importance of tokens to reduce
the number of unpromising candidate sub-strings, and (iv) a
shrinking technique to reuse computation. Empirical results on
real world datasets show that FuzzyED can efficiently extract
entities and produce a high F1 score in the range of [0.91, 0.97].

I. INTRODUCTION

In data integration and text mining, a primitive task is

entity extraction—the recognition of the names of entities

such as people, locations and organisations—in a free text

document [1], [2]. A common approach to entity extraction

is to compare sub-strings of a document (hereafter “candidate
sub-strings” or simply “candidates”) against a dictionary of

entities [3]. This approach needs to handle the following two

issues. (i) Typos may appear in documents, e.g. “Melbourne”

written as “Melbounre”. (ii) Different names may refer to the

same entity, e.g. “Melbounre University” is the same as “The

University of Melbourne”. It is challenging to address the

two issues in the context of free text, due to the difficulty in

deciding the boundaries of a candidate sub-string. As a result,

the number of candidate sub-strings is very large, and all those

candidate sub-strings need to match against the dictionary.

Previous methods [4], [5], [6] using only character-based

or token-based (i.e. one-level) similarity cannot handle both
of the issues in the free text context. Moreover, the tolerance

of mismatch in character-level is usually different from that

in token-level depending on applications. Hence, the tolerance

thresholds of the two levels should be customised individually

by the domain experts. To be more concrete, when analysing

BBC news articles, data mining practitioners may want the en-

tity extraction algorithm to tolerate less in character-level and

tolerate more in token-level. In comparison, when modelling

online product reviews, data mining practitioners may want to

be more tolerant in both character-level and token-level. Using

only character-based or token-based similarity cannot support

the customisation on the two tolerance thresholds.

To extract approximate entities efficiently and effectively,

we propose an algorithm based on character-level and token-

level edit-distance (i.e. two-level edit-distance) which we call

FuzzyED. Our key idea is to measure both the character

and token similarity via edit-distance. As a result, FuzzyED

natively supports the customisation of the tolerance thresholds

of mismatch on character-level and token-level individually.

However, a naive implementation of two-level edit-distance

for entity extraction is inefficient due to the huge computation

cost and numerous candidate sub-strings for evaluation. For

achieving a fast entity extraction algorithm, we develop various

novel techniques to improve the efficiency of FuzzyED. To

summarise, we make the following two major contributions

in this paper. First, we propose an efficient algorithm based

on two-level edit-distance for approximate entity extraction.

Second, to reduce the number of unpromising candidate sub-

strings in the similarity evaluation, we propose various novel

techniques including (i) a spanning-based candidate sub-string

producing technique, (ii) a lower bound dissimilarity to deter-

mine the boundaries of candidate sub-strings, (iii) a core token

based technique that makes use of the importance of tokens

to further reduce the number of unpromising candidate sub-

strings, and (iv) a shrinking technique to reuse computation

during candidate sub-string producing.

We conduct experiments to validate the efficiency and

effectiveness of FuzzyED. Our experimental results show that

FuzzyED is fast and achieves a high F1 score in the range

of [0.91, 0.97]. The remainder of this paper is structured as

follows. We first present the key preliminaries in Section II.

Then, we discuss the related work on approximate entity ex-

traction in Section III and elaborate the techniques of FuzzyED

in detail in Section IV. Our comprehensive experimental study

is provided in Section V. Finally, we conclude the paper in

Section VI.
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TABLE I
FREQUENTLY USED SYMBOLS

t, e, s a token, an entity token and a text token
idf(t), w(t) IDF and the weight of t, respectively

E , S, Ei, Sj an entity, sub-string candidate, the ith token

of E , and the jth token of S, respectively
eds(e, s) the edit similarity of e and s

τ, δ token and entity edit similarity thresholds
C a set of core tokens of E
Ci the ith core token in C

II. PRELIMINARIES

For ease of presentation, a token (e.g. word) of a candidate

sub-string is called a text token. Similarly, we call a token of

an entity in the dictionary an entity token. Some frequently

used symbols in the rest of the paper are summarised in

Table I. In this section, we provide background knowledge

of edit-distance, edit similarity, and techniques of matching

text tokens against entities.

A. Edit-distance and edit similarity

Without loss of generality, we assume that all the edit

operations have the same cost in this paper. Formally, given

two tokens e and s, the edit similarity eds(e, s) can be

computed as follows.

eds(e, s) = 1− ed(e, s)

max{|e|, |s|} (1)

where ed(e, s) is the edit-distance between the two tokens; |e|
and |s| are the number of characters in e and s, respectively.

The computation of edit-distance is a well studied problem,

and a common approach to compute edit-distance of two

tokens is through dynamic programming [7].

Note that edit-distance and edit similarity can be applied to

token-level. We postpone our definition of the cost of token-

level edit operations and edit similarity until Section IV.

B. Assigning weights to tokens

In many applications, the tokens in an entity (or a candidate

sub-string) have different importance, also called weights, in

the entity (or the candidate sub-string). In this paper, we

focus our presentation on using IDF [8] to measure the

weights of tokens, although other ways of measuring the

weights of tokens (e.g. TF-PDF [9]) can be straightforwardly

integrated into our proposed algorithm. In the approximate

entity extraction problem, the dictionary is known a priori

and documents are unknown beforehand. Hence, we compute

the IDF value of a token based on the dictionary. Specifically,

given the dictionary with N entities and a token t, we count the

number Nt of entities that contain t to serve as the “document

frequency” of the token. Then, the IDF value of t is computed

by idf(t) = log
N

Nt + 1
. The total IDF value of a set of tokens

A is the sum of the IDF values of all the tokens in A, and

can be computed as follows.

Tidf (A) =
∑
t∈A

idf(t) (2)

E4 E2 X X E1 E4 X

Fig. 1. All the matched text tokens to E

Fig. 2. All the matched text tokens to the university of melbourne

After computing idf(t) and Tidf (A), we can compute the

weight of the token t by the equation below.

w(t) =
idf(t)

Tidf (A) (3)

Note that A can be either the entity E or the sub-string

candidate S. We define the total weight of a subset A′ of

tokens in A (i.e. A′ ⊆ A) as follows.

Tw(A′) =
∑
t∈A′

w(t) (4)

C. Matching text tokens against entities

Since we are interested in extracting entities from docu-

ments (i.e. free text), the first step is to find in the documents

the tokens that approximately match to the tokens of an entity

in the dictionary. There are many efficient algorithms that can

check if two tokens are matched approximately [10]. In this

paper, we use Li et al.’s algorithm [11] for finding all the

matched tokens in a document to an entity. The technical

details about how Li et al.’s algorithm works are unimportant

for understanding our algorithms, and hence are omitted. Here,

we briefly explain the results produced by the algorithm.

Figure 1 gives example results of the matched tokens in a

document. In the example, the dictionary contains an entity E
which contains four tokens E1, E2, E3 and E4. The document

is represented by a row, and each cell of the row contains

the matching information to the entity. A cell containing “X”

indicates that the position1 does not match any token of the

entity; a cell containing Ei indicates that the text token at this

position matches the ith token of the entity E . For ease of

presentation, we call all the positions marked with Ei shown

in Figure 1 a position list.
Example 1: Given a document D = “... melbounre univercity

is near the melbourne cbd ...” and an entity E = “the university

of melbourne”, then each token of E is E1 =“the”, E2 =
“university”, E3 = “of”, and E4 =“melbourne” (cf. Figure 2).

After identifying all the matched token of E in D, we can

formally represent D as “... E4 E2 X X E1 E4 X ...”.

III. RELATED WORK

The approximate entity extraction problem can be modelled

as a string matching problem [10]. Here, we focus on the

relatively recent related work.

1For ease of presentation, we refer “the position” to “the token at the
position of the document”.
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A. Related work on entity extraction

Gattani et al. developed a dictionary-based algorithm for

entity extraction with exact matching [12]. Kim et al. [13]

proposed a memory efficient indexing approach for string

matching using character-based similarity. Wang et al. pro-

posed an approximate entity extraction algorithm using neigh-

bourhood generation [4]. Deng et al. [5] designed an efficient

algorithm for approximate entity extraction based on trie tree

index. Kim and Shim proposed an algorithm that finds from

a document top-k most similar candidate sub-strings to an

entity [14]. A more recent study [15] presents techniques

to find duplicated sub-strings between two documents using

token-level similarity. All these algorithms use one-level, i.e.

either character-based or token-based, similarity to find similar

entities (or candidate sub-strings) in documents.

Some existing studies [16], [17], [18] designed similarity

functions and indexing techniques for the string similarity

search problem. Cohen et al. [19] developed an open source

software toolkit, which supports different similarity functions,

for measuring the similarity between two strings. Pappu et

al. [20] designed a lightweight system for multilingual entity

extraction. Chakrabariti et al. [6] proposed a filter using the

token-based similarity to classify candidate sub-strings into

two classes: valid candidate sub-strings that may match some

entities in the dictionary; invalid candidate sub-strings that do

not match any entities in the dictionary. We use Chakrabariti

et al.’s filter in our proposed algorithm discussed in Section IV

and the baseline discussed in Section V for fair comparison.

Carreras et al. proposed an Adaboost based approach for

named entity extraction [21]. Their key idea is to extract

entities using two classifiers: a local classifier for detecting

if a token belongs to a named entity; a global classifier for

detecting if a candidate sub-string is a named entity. Jain and

Pennacchiotti [22] proposed an approach using heuristics (e.g.

tokens with first letter capitalised) to extract entities from

query log, and then the extracted entities are grouped into

different clusters and assigned labels accordingly. Cohen and

Sarawagi [23] designed an algorithm using the Markov model

for entity extraction. The algorithm has two main phases. First,

a label (e.g. person name) is assigned to each token based

on dictionaries/heuristics. Then, the Markov model is trained

and used to predict the entity probability for each candidate

sub-string based on the token labels. One major limitation of

the abovementioned approaches is that they require significant

amount of human effort to collect training datasets and/or to

tune heuristics. When the training datasets are not available,

it is impossible to extract entities using machine learning.

Our work is to address entity extraction problems without the

training datasets.

B. Related work on string similarity joins

The string similarity join problems are well studied in the

field of text mining and data cleaning [24], [25], [26]. A string

similarity join finds similar pairs between two collections of

strings. The assumption is that the candidate sub-strings are

already available. This assumption is invalid in the entity

Fig. 3. Overview of the process of FuzzyED

extraction problems where the candidate sub-strings need to be

obtained from free text. Nevertheless, our baseline is inspired

by the Fuzzy Jaccard algorithm for solving string similarity

join problems. In the following, we present the key related

work in string similarity joins.

Many studies [27], [28] have been dedicated to solving the

string similarity join problems more efficiently and effectively.

However, those studies exploit only the character-based sim-

ilarity for the string similarity join problems. A more recent

work [29] studies approximate string joins with abbreviation.

Fuzzy Jaccard [30], [31] uses both character-based and token-

based similarity for the string similarity join problems. It

can be extended to extract entities when it equips with our

proposed candidate sub-string producing techniques discussed

in the next section. We will discuss the extension of Fuzzy

Jaccard for entity extraction in Section V when we present

our baseline.

IV. OUR FUZZYED ALGORITHM

In this section, we elaborate the details of our proposed

algorithm for approximate entity extraction based on two-level

(i.e. character-level and token-level) edit-distance, and we call

it Fuzzy Edit-Distance (FuzzyED for short). FuzzyED natively

allows domain experts to customise the tolerance thresholds

of the two levels individually.

A. Overview of FuzzyED

The overview of the FuzzyED algorithm is shown in Fig-

ure 3. To begin with, the matched text tokens of a document

to an entity is obtained. In this paper, we use Li et al.’s

algorithm [11] to obtain the matched text tokens as we have

discussed in Section II-C, although other algorithms of finding

matched tokens between a document and an entity work just

fine with FuzzyED.

In the second step, we need to find out all the candi-

date sub-strings which are potentially recognised as “entity”.

In order to do that, we first propose a method to pro-

duce candidate sub-strings by enumeration, which exploits

the minimum/maximum valid matching length to reduce the

number of candidate sub-strings. However, due to the high

computation cost of two-level edit-distance and numerous

candidate sub-strings for evaluation, producing candidate sub-

strings by enumeration is inefficient. To address the ineffi-

ciency problem, we propose a method which is equipped
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with various novel techniques. Firstly, we develop a core

token based technique that makes use of the importance of

tokens to reduce the number of unpromising candidate sub-

strings. Secondly, we explore the lower bound dissimilarity

of two-level edit-distance to determine the boundaries of

candidate sub-strings. Thirdly, we exploit right spanning and

left spanning to produce candidate sub-strings, which avoids

producing many unpromising candidate sub-strings. Finally,

we propose a shrinking technique to reuse the computation

during the candidate sub-string producing with spanning.

After the candidate sub-strings are produced, we exploit

techniques to further prune the candidate sub-strings that will

not be recognised as “entity”. The pruning techniques include

a lower bound cost of edit operations and a filter (discussed

later in Section IV-E). Then, we measure the FuzzyED simi-

larity for the remaining candidate sub-strings, and those sub-

strings with similarity scores above a threshold are recognised

as “entity”.

Next, we present the details of the whole FuzzyED algo-

rithm. We first define the cost of token-level edit operations

and the similarity of FuzzyED. We then present two techniques

for producing candidate sub-strings, one based on enumeration

and one based on spanning. Finally, we describe the pruning

techniques for further improvement.

B. Token-level edit operations and FuzzyED similarity

Here, we define the cost of the token-level edit operations

including deletion, insertion and substitution. The key idea

is similar to the traditional edit-distance. After defining the

token-level edit operations, we define the similarity function

used in FuzzyED. The similarity score is bounded in the

domain of [0,1] by forcing the negative scores back to 0 and

large scores back to 1.

1) Cost of token-level edit operations: FuzzyED needs

to perform two types of edit-distance: the character-based

edit-distance and the token-based edit-distance. As we have

discussed the character-level edit-distance in Section II-A, here

we provide details of the token-level edit-distance.

We formulate the total cost of transforming a candidate sub-

string S to an entity E using the following equation.

FuzzyED(E ,S) = CD(S) + CI(E) + CS(E ,S) (5)

where CD(S) is the total deletion cost of removing text tokens

from S; CI(E) is the total insertion cost of inserting entity

tokens of E to S; CS(E ,S) is the total substitution cost of E
and S. We let S ′ be a subset of tokens in S that match to E ;

E ′ denotes tokens that are matched by S ′.
Deletion: The total deletion cost is computed by CD(S) =

Tw(S \ S ′), where S \ S ′ is a subset of the tokens in S (i.e.

S \ S ′ ⊆ S) that need to be deleted from S.

Insertion: The total insertion cost is computed by CI(E) =
Tw(E \E ′), where E \E ′ is a subset of tokens in E (i.e. E \E ′ ⊆
E) that needs to be inserted to S.

Substitution: The total substitution cost is computed by:

CS(E ,S) =
∑

e∈E′,s∈S′
(1− eds(e, s))× (w(e) + w(s)) (6)

where s is a text token (s ∈ S ′) that matches entity token e.

Following the common practice of computing edit-distance,

we propose to use a dynamic programming based algo-

rithm [10] to compute Equation (5) to measure the cost of the

longest sub-string of S that is the most similar to the entity

E . The time complexity of the algorithm is O(mn), where m
and n are the number of tokens of E and S, respectively.

2) Computing the FuzzyED similarity: After computing the

total edit cost in Equation (5), we can compute the FuzzyED

similarity using the following equation.

FuzzyEDS(E ,S) =
{
0 if FuzzyED(E ,S) ≥ 1,

1− FuzzyED(E ,S) otherwise.
(7)

Note that the substitution cost may be larger than 1 when

the token edit similarity threshold τ is less than 0.5 (cf.

Equation (6)) which results in FuzzyEDS(E ,S) > 1.

C. Producing candidate sub-strings by enumeration

We present the first approach to produce candidate sub-

strings for evaluation here. The key idea of this approach

is to enumerate all the possible sub-strings of a document.

This enumeration results in a large number of candidate sub-

strings, many of which are not matched to the entity. To filter

out those sub-strings, we deduce two propositions of valid

matching length. The intuition of the two propositions is that

very short or very long candidate sub-strings will not match

the entity. We explain the details of this enumeration based

approach and the two propositions in the following.

Recall that a position list corresponds to the matches be-

tween the document and an entity (cf. Section II-C). Given

a position list, we can obtain the candidate sub-strings by

enumeration, i.e. all candidate sub-strings with one matched

token, two matched tokens, three matched tokens, etc. This

enumeration produces
k(1+k)

2 candidate sub-strings in total,

where k is the length of the position list (i.e. the number

of tokens that match the entity in the document). Among

the
k(1+k)

2 candidate sub-strings, many of them tend to be

unpromising candidate sub-strings. For example, a candidate

sub-string with only one matched token is unlikely to match

an entity of ten tokens with threshold δ = 0.8. To produce

fewer unpromising candidate sub-strings, we propose a lower

bound and upper bound (denoted by l and u, respectively) for

the number of matched tokens. We refer the candidate sub-

strings with length in the domain [l, u] to candidate sub-strings

of valid matching length. The intuition of the valid matching

length is that very short or very long candidate sub-strings will

not match the entity with threshold of δ. Next, we present two

propositions for the minimum and maximum valid matching

length (i.e. the lower and upper bound).

1) Two propositions of the valid matching length: For

ease of presentation, we classify the text tokens of a sub-

string candidate S into three types. (1) Unmatched text tokens
denoted by Ŝ. (2) Redundant matched text tokens denoted by

S ′′: the text tokens match the entity tokens but are finally

removed (by the maximum weight matching algorithm). (3)
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Valid matched text tokens denoted by S ′: the text tokens match

the entity tokens and are not redundant. Please note that only

the redundant matched text tokens and valid matched text

tokens are in the position list.

The minimum valid matching length l: Suppose a sub-string

candidate S has only l tokens that match the entity E , i.e. the

similarity of S and E is not smaller than δ. If l is the minimum

valid matching length, the following proposition must be true:

Proposition 1. All the l text tokens are (i) exactly matched to
a token of the entity and (ii) valid matched text tokens.

The proof is straightforward and hence omitted. According

to the proposition, we have S = S ′ and Tw(S) = Tw(S ′) = 1
(cf. Equations (4)), where S ′ denotes the valid matched tokens

in S.

The maximum valid matching length u: Suppose a sub-string

candidate S has u tokens matched the entity with similarity

score not smaller than δ. If u is the maximum valid matching

length, the following proposition must be true:

Proposition 2. All the tokens of the entity are exactly matched.

The proof is straightforward and hence omitted. From the

above proposition, we have Tw(E) = Tw(E ′) = 1 (cf.

Equations (4)), where E ′ denotes all the matched tokens in

E . Next, we compute a domain [l, u] for the valid matching

length for FuzzyED.

The minimum valid matching length l: According to

Proposition 1, the substitution and deletion cost are zero,

and only the insertion cost is involved in transforming S to

E . Therefore, the total cost FuzzyED(E ,S) equals to the

insertion cost Tw(E \E ′) where E \E ′ is a subset of the tokens

in E needed to be inserted to S. According to Equation (7),

the similarity score is 1 − Tw(E \ E ′) and should satisfy the

constraint 1 − Tw(E \ E ′) ≥ δ to allow S matching to E . To

compute the minimum number l given the above constraint,

we simply sum up l entity tokens with the largest weight, such

that the total weight of the l entity tokens is larger than δ.

The maximum valid matching length u: According to

Proposition 2, no insertion cost and no substitution cost are

involved, and the only cost is deletion on the redundant

matched text tokens. We denote the valid matched text tokens

by S ′, and the redundant matched text tokens by S ′′. The total

weight of the valid matched tokens is

Tw(S ′) =
Tidf (S ′)
Tidf (S) ≤

Tidf (S ′)
Tidf (S ′) + Tidf (S ′′)

.

Since the candidate sub-string should match the entity, we have

the constraint Tw(S ′) ≥ δ. So, we have

Tidf (S ′)
Tidf (S ′) + Tidf (S ′′)

≥ δ.

From Proposition 2, Tidf (S ′) equals to Tidf (E) and is a

constant. The number of the tokens in S ′′ is maximised when

each redundant token has the smallest IDF value. Therefore,

the maximum length u equals to the number of the tokens of

S ′ plus the number of tokens in S ′′ that has all the text tokens

match the entity token with the smallest IDF value.

2) Analysis of FuzzyED with the enumeration-based candi-
date sub-string producing technique: This enumeration-based

approach produces many unpromising candidate sub-strings.

More precisely, the total number of candidate sub-strings

generated is (u − l) × k, where k is the number of matched

tokens in the document (i.e. length of the position list). Next,

we propose a spanning-based candidate sub-string producing

technique that reduces the number of candidate sub-strings to

smaller than k.

D. Producing candidate sub-strings by spanning

We present our second approach of producing candidate

sub-strings here. The key idea is that we start from a core

token and perform left/right spanning to obtain candidate sub-

strings. We deduce a lemma that guarantees any sub-strings

without a core token will not match to the entity. To determine

when the spanning can be terminated, we develop a lower

bound dissimilarity based on the similarity function.

We observe that the large number of unpromising candi-

date sub-strings generated by enumeration is because many

matched tokens are not important tokens (i.e. tokens with small

IDF values [32]). Those tokens are likely to appear many times

in a document and result in generating many unpromising

candidate sub-strings. Here, we propose a spanning-based

candidate sub-string producing technique that makes use of

important tokens which we call core tokens. Our spanning-

based technique starts from a core token and uses left and

right spanning to find candidate sub-strings for the similarity

evaluation. To determine when the left spanning and right

spanning should stop, we design a lower bound dissimilarity

derived from the FuzzyED similarity.

1) Finding core tokens of an entity: As we have discussed

in Section II-B, each token is associated with a weight. The

weights of tokens can help reduce the number of unpromising

candidate sub-strings. In this paper, we use IDF to measure the

weights of tokens, although other weighting schemes (e.g. TF-

PDF [9]) can be straightforwardly applied in our algorithm.

Our key idea is to find a subset of entity tokens (i.e. core

tokens) to represent the entity.

Example 2: We can use core tokens {university, melbourne}
to represent the entity with tokens {the, university, of, mel-

bourne}. The tokens with smaller weights, such as {the, of},
are called optional tokens.

Formally, given an entity similarity threshold δ and an entity

with m tokens E = {E1, E2, ..., Em}, we construct a set C of q
tokens to represent the entity E where C ⊆ E . The remaining

(m − q) tokens in E \ C form a set O corresponding to the

optional tokens. The property of core tokens is that at least one

core token should appear in a sub-string candidate to allow the

candidate to match the entity. The core token set C satisfies

the following constraint.

Tw(C) > 1− δ (8)
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The above constraint guarantees that the total weight of tokens

in the optional token set O to be smaller than δ. The following

Lemma shows that at least one core token should appear in a

candidate sub-string to allow the candidate sub-string to match

the entity.

Lemma. Given a candidate sub-string S that matches an
entity E (i.e. the similarity between S and E is not smaller
than δ), the candidate sub-string S must have at least one
text token matching to a core token of the entity E .

Proof. Suppose no token in S matches the core tokens of E .

For transforming S to E , at least we need to insert all the core

tokens in E to S and the total cost of the insertion is larger

than 1−δ (cf. Constraint (8)). Hence, the similarity between S
and E is smaller than δ. Therefore, for S to match E (i.e. the

similarity between S and E is not smaller than δ), at least one

text token in S must match a core token of the entity E .

According to the above lemma, the candidate sub-strings

containing no core tokens can be discarded without sacrificing

recall. Hence, core tokens are good starting points to find the

candidate sub-strings.

Note that the number of core tokens of an entity should be

as small as possible, because a core token may match many

text tokens. Those matched text tokens may further generate

many candidate sub-strings. To minimise the number of core

tokens to represent an entity, we select q tokens with the largest

weights from E to make C just satisfy Constraint (8).

2) Producing a candidate sub-string via spanning: Since

the core tokens represent the entity, we only use the core

tokens as query tokens to find their matching positions in the

document using Li et al.’s algorithm. The matched results of

the entity in the document are similar to the results shown in

Figure 1, except that all those matched tokens are core tokens

this time. As the boundaries of the candidate sub-strings may

not be the core tokens, we need to check the left side and the

right side of the core token and see if any optional tokens are

near the core token. We use left spanning and right spanning
to find the left boundary and right boundary, respectively.

To determine when the spanning should be terminated, we

compute a lower bound dissimilarity between a candidate

sub-string and the entity. When the left spanning or right

spanning results in the lower bound dissimilarity higher than

the threshold (1− δ), the spanning should be terminated.

Figure 4 shows an overview of the process of finding the

boundaries of a candidate sub-string. Initially, the candidate

sub-string which we call current candidate sub-string has only

one token (i.e. the core token C1). Then, the left spanning leads

to an optional token O1 included in the current candidate sub-

string. The left spanning is terminated because of the lower

bound dissimilarity is higher than (1 − δ) if more tokens in

the left side are included. After the right spanning, the current

candidate sub-string covers one more core token (i.e. C2) and

one optional token (i.e. O3). The current candidate sub-string

cannot be further extended because of the high lower bound

current candidate sub-string

initialX X X C1 C2 X X C1

current candidate sub-string

left
spanningX O1 X C1 C2 X X C1

current candidate sub-string

right
spanningX O1 X C1 C2 O3 X C1

Fig. 4. Spanning from the core token

dissimilarity, and hence we obtain the full candidate sub-string

which requires computing FuzzyED similarity.

Example 3: Given a document D = “... located near the
city cbd, melbounre univercity, a top university in australia...”
and an entity E = “the university of melbourne”, then the core

tokens are {university, melbourne} and the optional tokens are

{the, of} according to their IDF values. FuzzyED starts with

the core token “melbourne” in the document. After performing

left and right spanning, a candidate sub-string “melbourne

univercity” is produced. The token “the” before “city cbd” and

the second “university” in the document are not included in

this candidate sub-string due to the lower bound dissimilarity

(discussed next) exceeding the threshold.

The lower bound dissimilarity: As demonstrated in Fig-

ure 4, we start with a candidate sub-string with a core token,

and then enlarge the candidate sub-string by the left spanning

and the right spanning. When we transform a candidate sub-

string to the entity, a token of the candidate sub-string S is

either deleted or substituted. Therefore, including a token to

the current candidate sub-string involves a cost, i.e. deletion

cost or substitution cost. We compute the lowest cost for

including each text token. Hence, the sum of the lowest cost

of each token in the current candidate sub-string is the lower

bound dissimilarity, denoted by B⊥. Next, we explain how to

compute the total deletion cost and the total substitution cost

in B⊥ while fining the candidate sub-string.

To compute the deletion cost in B⊥ more efficiently, we

maintain the total IDF values VT for all the tokens in the

current candidate sub-string, and the total IDF values VR for

those text tokens needed to be deleted in the current candidate

sub-string. VT is initialised to the IDF value of the core token

and VR is initialised to 0.

The substitution cost between two similar tokens Ei and

Sj is (1− eds(Ei,Sj))× (w(Ei)+w(Sj)) according to Equa-

tion (6). As there may exist another not included token Sr that

is more similar to Ei than Sj , i.e. eds(Ei,Sr) > eds(Ei,Sj). If

Sr exists, we need to delete Sj with cost w(Sj). Note that the

substitution cost (1 − eds(Ei,Sj)) × (w(Ei) + w(Sj)) may

be larger than the deletion cost w(Sj). Hence, the lowest

cost of including Sj to the current candidate sub-string is

set to (1 − eds(Ei,Sj)) × w(Sj) which is smaller than both

(1− eds(Ei,Sj))× (w(Ei) +w(Sj)) and w(Sj). Because we
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do not know the weight of the text token (i.e. w(Sj)) as we do

not know the full candidate sub-string yet (cf. Equation (3)),

we use the IDF value of the text token to compute the lower

bound. For this reason, the lower bound dissimilarity of includ-

ing the text token is represented by (1−eds(Ei,Sj))×idf(Sj).
This substitution cost is equivalent to deleting a token with

an IDF value of (1 − eds(Ei,Sj)) × idf(Sj). Since the

substitution cost can be viewed as deletion cost, in what

follows we compute the lower bound dissimilarity as if we

only considered deletion cost.

For ease of computing the lower bound, we also maintain

an array M of length |E|. The ith element of the array M (i.e.

Mi) corresponds to the edit similarity between the most similar

text token and the ith entity token of E (i.e. Ei). We compute

the lower bound dissimilarity by the following equation.

B⊥ =
VR +

∑
i (1−Mi)× idf(S ′

i)

VT +
∑

r idf(Er)
(9)

where i ∈ {i : τ ≤Mi ≤ 1} and r ∈ {r : Mr < 1}.
The numerator of Equation (9) represents the total “deletion

cost”: true deletion cost VR and the substitution cost which

is
∑

i (1−Mi)× idf(S ′
i), where S ′

i is the text token that is

the most similar to Ei. The denominator is the ideal total IDF

value of the candidate sub-string. VT is the total IDF value

of the current candidate sub-string. The term
∑

r idf(Er) of

the denominator is the total IDF value of all the not exactly

matched entity tokens. The not included text token next to

the current candidate sub-string may exactly match the entity

token Er without any cost (i.e. exact matching). We can prove

that the lower bound increases monotonically as the candidate

sub-string spans. The key idea of the proof is that adding the

same value idf(t) > 0 to the numerator and the denominator

of Equation (9) leads to the value of B⊥ increasing. The proof

is straightforward and hence omitted.

Left spanning: To begin with, we provide the details of

finding the left boundary for a candidate sub-string. We start

from the first matched text token t (e.g. the first C1 in Figure 4)

in the document. Without loss of generality, we suppose the

text token t matches the ith token of the entity E , so we set

the ith element of the array M to the edit similarity of t and

Ei (i.e. Mi = eds(t, Ei)). Then, we span to the left side of the

current candidate sub-string by one text token, denoted by t′.
For updating VT and VR in this spanning, we need to handle

the following two cases separately.

• Case 1: t′ does not match any optional tokens of E , so

we need to delete t′. Hence, we update VR by VR =
VR + idf(t′), and we update the total IDF value VT by

VT = VT + idf(t′).
• Case 2: t′ matches an optional token Ej of E . We update

VT by VT = VT + idf(Ej). We consider this as a

substitution operation and we update VR in two scenarios.

– No other text token in the current candidate sub-

string matches Ej . We update Mj by Mj =
eds(t′, Ej). We do not update VR, due to no deletion

required.

Fig. 5. Shrinking the previous candidate sub-string

– A text token in the current candidate sub-string has

matched to Ej . We update VR by VR = VR+idf(S ′
j),

and Mj by Mj = eds(t′, Ej) if eds(t′, Ej) > Mj .

Otherwise, we update VR by VR = VR + idf(t′).
After VT and VR are updated, we compute the lower bound

B⊥ using Equation (9). If 1 − B⊥ ≤ δ, we span the current

candidate sub-string to cover the token t′. Otherwise, the left

spanning is terminated. After the termination, the leftmost

matched text token is identified as the left boundary of the

candidate sub-string.

Right spanning: After the left spanning, we span the

current candidate sub-string to cover the tokens in its right

side. Similar to the left spanning, we compute the lower bound

using Equation (9). If 1 − B⊥ > δ, we terminate the right

spanning and the rightmost position of the candidate sub-string

is the right boundary.

3) Reusing computation in producing candidate sub-
strings: The boundaries of a candidate sub-string should start

and end with matched tokens, because the unmatched tokens

next to the boundaries are not part of the entity. We can

use this property to reuse some computation while finding

the boundaries of a neighbour candidate sub-string (i.e. a

candidate sub-string next to the previously found candidate

sub-string). We refer to the text token that matches an entity

token as the landmark token.

Shrinking: To find the neighbour candidate sub-string, we

shrink the previous candidate sub-string by one landmark

token. That is the left boundary is moved from the leftmost

landmark, denoted by l1, to the second leftmost landmark,

denoted by l2.

Example 4: Given a piece of text “... near the park is mel-
bourne university the best university in australia”. Suppose the

leftmost landmark l1 and the second leftmost landmark l2 of

the previous candidate sub-string are “the” and “melbourne”,

respectively; the leftmost landmark of the candidate sub-string

after shrinking is “melbourne”. Figure 5 gives an example of

shrinking the previous candidate sub-string.

Suppose l1 matches the ith entity token Ei. We update VR
using the following equation.

VR =

{
VR − Vs − idf(l1) if eds(l1, Ei) < Mi,

VR − Vs − idf(t) otherwise.
(10)

where Vs =
∑

idf(tj), and tj is the text token between the

leftmost landmark l1 and the second leftmost landmark l2; if

eds(l1, Ei) = Mi, we need to update Mi by Mi = eds(t, Ei)
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where t is the second most similar token to Ei in the previous

candidate sub-string.

The total IDF value VT of the candidate sub-string after

shrinking can be updated as follows.

VT = VT − Vs − idf(l1) (11)

After the shrinking, we can start the right spanning to find the

right boundary of the new candidate sub-string.

4) Analysis of FuzzyED with the spanning-based candidate
sub-string producing algorithm: In FuzzyED, the number of

candidate sub-strings required the similarity evaluation is k at

most, where k is the number of matched tokens (including

core tokens and optional tokens). To explain this, we refer to

Figure 5. Every time, we shrink the previous candidate sub-

string by one matched text token and find a new candidate

sub-string. Hence, we perform k shrinking at most, and each

shrinking corresponds to a candidate sub-string. Therefore,

the spanning-based candidate sub-string producing algorithm

generates k candidate sub-strings at most. In comparison, the

enumeration-based candidate sub-string producing algorithm

generates (u−l)×k candidate sub-strings as we have analysed

in Section IV-C2.

The spanning-based candidate sub-string producing algo-

rithm can be applied to the case of not using core tokens.

We conduct experiments to investigate the importance of core

tokens in Section V.

E. Pruning techniques

Here we describe two pruning techniques. The intuition

of the first pruning technique is that if a sub-string requires

edition cost exceeding the limit, then the sub-string will not

match the entity and can be pruned. The intuition of the second

pruning technique is that if the total weight of the matched

tokens is less than the minimum value, then the sub-string

will not match the entity and can be pruned as well.

The time complexity of computing FuzzyED similarity is

O(mn) for an entity E and a candidate sub-string S as we

have discussed in Section IV-B1. In the approximate entity

extraction problem, the number of entities and candidate sub-

strings is large especially for large datasets. To enhance the

efficiency of FuzzyED, we should avoid as many similarity

computations as possible.

1) A lower bound cost: To reduce the number of similarity

computations, we use a technique to prune some candidate

sub-strings. The key idea of the pruning technique is to

compute a lower bound cost for transforming a candidate

sub-string to an entity, and is to prune the candidate sub-string

with a lower bound cost higher than a certain threshold. The

lower bound cost includes insertion and substitution cost, and

is computed by the equation below.

C⊥(E ,S) =
∑
Ei∈E

(1−Mi)× w(Ei) (12)

where Mi is the edit similarity of the entity token Ei to the

most similar text token in the candidate sub-string S. Note that

both the insertion cost and the substitution cost are considered

in the above equation, because Mi = 0 is the case of insertion

and Mi > 0 is the case of substitution. If the lower bound

cost C⊥(E ,S) is higher than the threshold 1−δ, we prune the

candidate sub-string and avoid computing FuzzyEDS(E ,S).
2) A general filtering technique: We notice that a filtering

technique introduced by Chakrabariti et al. [6] can be used in

FuzzyED. For completeness, we use the filter to improve the

efficiency of FuzzyED. Formally, a sub-string candidate can

be pruned if the condition below is satisfied.

Tw(S ∩ E) < δ (13)

We explain the intuition of the above filter in the following.

If the total weight of the matched tokens in the sub-string

candidate is smaller than δ, then the sub-string candidate will

not match to the entity and hence can be pruned. Tw(S ∩ E)
can be viewed as the upper bound score of S matching to E .

The sub-string candidate is filtered out if its upper bound score

is smaller than the similarity threshold. The filter helps reduce

the cost of further computing the token-level edit-distance.

V. EXPERIMENTAL STUDY

In this section, we present the empirical results on the

efficiency and effectiveness of FuzzyED denoted by “FED”

in comparison with a baseline denoted by “FJ” discussed in

Section V-A2.

A. Experiment Setup

All experiments were conducted on a machine running

Linux with an Intel Xeon E5-2643 CPU and 32GB memory.

We set the entity similarity threshold δ to 0.9, and the token

edit similarity threshold τ to 0.8.

1) Datasets: We used six publicly available real-world

datasets in our experiments. They are Amazon Reviews [33],

DBWorld Messages, IMDB Reviews [34], News, Tweet and

Wikipedia articles. The details of the datasets are as follows.

• Amazon Reviews: the dataset contains 346,867 product

reviews from the customers of Amazon. Each product

review serves as a document; 1,989,376 product names

from Amazon form the entity dictionary.

• DBWorld Messages: the dataset contains 33, 628 mes-

sages of “call for papers”, job advertisement and so

forth in the database research community. Each message

is a document; the entity dictionary contains 132,745

worldwide institution names from Free-base [35].

• IMDB Reviews: the dataset has 97,788 movie reviews

from the IMDB website. Each movie review is a docu-

ment; the entity dictionary contains 108,941 movie names

in the IMDB website.

• News: the dataset contains 90,328 news [36] and

3,199,972 company names which was used to form the

entity dictionary. The company names were downloaded

from the website of Australian Securities and Investments

Commission2.

2https://goo.gl/7Uvvo3

1005

Authorized licensed use limited to: Rutgers University. Downloaded on October 18,2020 at 00:48:10 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
DETAILS OF DOCUMENTS AND DICTIONARIES

dataset size ave. len. max. len. min. len.
Amazon doc. 346,867 191 29,070 30
Amazon dict. 1,989,376 6 204 1
DBWorld doc. 33,628 732 33,648 1
DBWorld dict. 132,745 3 27 1
IMDB doc. 97,788 277 2,968 8
IMDB dict. 108,941 3 24 1
News doc. 90,328 49 277 3
News dict. 3,199,972 4 28 1
Tweet doc. 14,873 54 90 1
Tweet dict. 7,100,397 2 17 1
Wikipedia doc. 1,273 189,595 207,250 159,585
Wikipedia dict. 20,483 2 6 1

• Tweet: this dataset contains 14,873 tweets3, and

7,100,397 celebrity names from the IMDB website were

used to form the entity dictionary.

• Wikipedia: the dataset has 1,273 articles downloaded

from Wikipedia4, and the entity dictionary contains

20,483 street names obtained from OSNI Open Data5.

More details of the datasets are provided in Table II; the

average, maximum and minimum length of the documents or

the entities in the dictionary were measured by the number of

tokens.

2) The extended Fuzzy Jaccard algorithm: As we have

discussed in Section III-B, Fuzzy Jaccard [30] can be extended

to extract entities when it equips with our proposed candidate

sub-string producing techniques. Formally, Jaccard similarity

of E and S is defined as follows.

JAC =
|E ∩ S|
|E ∪ S| =

|E ∩ S|
|E|+ |S| − |E ∩ S| (14)

where |E ∩ S| is the number of matched tokens between E
and S; |E ∪ S| is the number of tokens in the union of E
and S; |E| and |S| are the number of tokens in E and S,

respectively. Due to the tolerance of character mismatching,

one text token may match multiple tokens of an entity and

vice versa. In entity extraction applications, an entity token can

match at most one token of a candidate sub-string and vice

versa. Following the settings of the original Fuzzy Jaccard

algorithm, the maximum weight matching algorithm [37] is

applied to guarantee the one to one matching in Fuzzy Jaccard.

By considering the weights of tokens (cf. Section II-B), we

can write Fuzzy Jaccard similarity as follows.

FJ =
1
2

∑
e∈E′,s∈S′ eds(e, s) · (w(e) + w(s))

1 + 1− 1
2

∑
e∈E′,s∈S′ eds(e, s) · (w(e) + w(s))

(15)

For a fairer comparison, we adapt all the FuzzyED’s

techniques to the extended Fuzzy Jaccard with calibration

specifically for the Jaccard similarity. The filter explained in

Section IV-E2 proposed by Chakrabariti et al. [6] is also used

in the extended Fuzzy Jaccard. Please refer to our technical

3https://goo.gl/MFCTcr
4https://dumps.wikimedia.org/enwiki/latest/
5https://goo.gl/GSQAUs

TABLE III
OVERALL EFFICIENCY COMPARISON

sub-dataset
using enumeration using spanning
FED-e FJ-e FED-s FJ-s

Amazon 1.05 h 26.7 h 7 sec 10 sec
DBWorld 0.25 h 12.9 h 11 sec 11 sec

IMDB 0.13 h 6.06 h 11 sec 12 sec
News 0.7 h 1.1 h 18 sec 26 min
Tweet 44 sec 49 sec 2 sec 12 sec

Wikipedia 0.47 h 0.75 h 2.3 min 3.9 min

report6 for more details about the adaptation of the other

techniques.

3) Implementations: We have implemented four algorithms

in C++: FED-e (resp. FED-s) is FuzzyED together with the

enumeration-based (resp. spanning-based) candidate produc-

ing technique; FJ-e (resp. FJ-s) is Fuzzy Jaccard together

with the enumeration-based (resp. spanning-based) candidate

producing technique.

B. Efficiency and effectiveness comparison

Here, we investigate the performance of our algorithm in

three aspects: overall efficiency, the effect of varying the

parameters (e.g. τ and δ) on the efficiency, and effectiveness.

1) Overall efficiency: We conducted experiments on the

six datasets for FED-s and the elapsed time of FED-s for

Amazon Reviews, DBWorld Messages, IMDB Reviews, News,

Tweet and Wikipedia. is 16 hours, 17 minutes, 16 minutes,

31 minutes, 3 minutes and 6.2 hours, respectively; FJ-s took

twice more time than FED-s to process the datasets. In

comparison, FED-e and FJ-e were extremely slow to process

the whole datasets, because they require measuring the two-

level similarity for more sub-string candidates as discussed in

Section IV-C2. To provide some specific results on the elapsed

time of the four implementations, we randomly sampled

a sub-dataset from each of the original document dataset.

To construct the six sub-datasets, we sampled 1 per 100

documents in DBWorld Messages, IMDB Reviews, News,

Tweet and Wikipedia, and 1 per 10,000 documents in Amazon

Reviews. Thus, FJ-e and FED-e can process the sub-datasets

in a reasonable amount of time.

Table III gives the efficiency of the four implementations on

the six sub-datasets. As we see from the table, implementa-

tions using spanning-based candidate producing technique (i.e.

FED-s and FJ-s) are often 10x times faster than those using

enumeration-based candidate producing technique. Another

observation is that FED-s is slightly more efficient than FJ-s,

because the dataset is too small to demonstrate the advantage

of FED. Recall that FED-s is two times faster than FJ-s when

using the whole dataset.

2) Effect of varying the parameters on efficiency: Next, we

study the effect of varying the parameters on the efficiency of

FED-s, FED-e, FJ-s and FJ-e. We used the DBWorld Messages

dataset as a representative in this set of experiments. The

default settings of the experiments are as follows: (i) the

6https://arxiv.org/pdf/1702.03519.pdf
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entity similarity threshold δ was set to 0.9; (ii) the token edit

similarity threshold τ was set to 0.8; (iii) the number of entities

in the dictionary is 132,745 (i.e. the whole dictionary) and (iv)

the number of documents is 10.

Effect of varying the entity similarity threshold: To

study the effect of the entity similarity threshold δ, we

varied δ from 0.85 to 1. Figure 6 shows the results of the

effect on the four implementations. As can be seen from the

figure, FED based implementations consistently outperform

FJ based implementations. Implementations using spanning-

based candidate producing technique outperform those using

enumeration-based candidate producing technique by around

100 times. An observation of the figure is that as the entity

similarity threshold decreases the total elapsed time of all

the implementations increases. This is because when the

entity similarity threshold is small, more candidates require

measuring the two-level similarity.

Effect of varying the token similarity threshold: Figure 7

gives the results of varying the token similarity threshold τ
from 0.7 to 1. FED-s and FJ-s significantly outperform FED-e

and FJ-e by two orders of magnitude. Similar to varying δ, the

smaller the threshold, the more time our algorithm requires.

Effect of varying the size of the entity dictionary: To

study the effect of the size of the dictionary, we varied the

number of entities in the dictionary from 2,000 to 128,000.

Figure 8 shows that the elapsed time of all the four imple-
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mentations increases as the size of the dictionary increases.

Effect of varying the number of documents: To study

the effect of the number of documents on the efficiency, we

sampled from the DBWorld Messages dataset four sub-datasets

of 10, 20, 40 and 80 documents with the average length of

732. We measured the total elapsed time of extracting entities

from each sub-dataset. As shown in Figure 9, the elapsed time

of FED based implementations grows more slowly compared

with FJ based ones. This is because the more documents, the

more sub-string candidates are generated. As a result, our

algorithm needs to measure more two-level similarity. The

elapsed time of FJ based implementations increases faster than

that of FED based ones.

3) Overall effectiveness: To demonstrate the effectiveness

of the FuzzyED similarity and the Fuzzy Jaccard similarity, we

used the whole dataset of DBWorld Messages. We manually

labelled 20,000 sub-string candidates as a set of ground truth.

Entities in the document correctly extracted as entities in

the dictionary are called true positive (denoted by tp); no

entities in the document extracted as entities in the dictionary

are called false positive (denoted by fp). We compute the

precision p and recall r by p =
tp

tp+ fp
and r =

tp

tp+ fn
,

where fn is the number of false negative and hence tp+ fn
is the total number of true positives in the ground truth set.

Table IV shows the results of F-measure for FED and FJ
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TABLE IV
F-MEASURE OF FED AND FJ

δ
precision recall F1

FED FJ FED FJ FED FJ
1.00 100% 97.6% 94.5% 95.4% 97.2% 96.5%
0.95 88.0% 85.3% 94.8% 95.5% 91.3% 88.4%
0.90 71.5% 69.5% 96.6% 97.1% 82.2% 81.0%
0.85 64.1% 62.6% 99.7% 100% 78.0% 77.0%

TABLE V
EFFICIENCY OF CORE TOKENS ON CANDIDATES PRODUCING

sub-dataset FED-s FED-a speedup
Amazon 7 sec 0.70 h 362
DBWorld 11 sec 0.14 h 45

IMDB 11 sec 0.17 h 56
News 18 sec 5.1 h 1036
Tweet 2 sec 2.2 min 66

Wikipedia 2.3 min 48 h 1250

on the entity similarity threshold δ changing from 0.85 to 1.

As we can see from the table, FED has better F1 score and

precision than FJ and comparable recall to FJ, since FJ totally

ignores order information of tokens in an entity.

The percentage of occurrence of the problems where both

typos and name variations occurred in our labeled candidate

sub-strings is about 2‰. Here are three examples.

• The sub-string in text is university of hong kong of
sciences and technology which matches to the entity

hong kong university of science and technology in the

dictionary. The matching score for this pair is 0.919759.

• The sub-string in text is universitat rovira i virgili which

matches to the entity rovira i virgili university in the dic-

tionary. We have found that “universitat” is the spelling

of “university” in Spain. The matching score for this pair

is 0.915718.

• The sub-string in text is universite claude bernard lyon
which matches to the entity claude bernard university
lyon in the dictionary. We have found that “universite”

is the spelling of “university” in French. The matching

score for this pair is 0.922923.

C. Effect of core tokens

In this set of experiments, we provide experimental results

of the spanning-based approach using core tokens compared

with the spanning-based approach without using core tokens

as discussed in Section IV-D4. The datasets used in these

experiments are identical to those detailed in Table III.

To demonstrate the effectiveness of using core tokens, we

used two versions of FED: one with core tokens applied in

the candidate producing process; the other, denoted by FED-a

(“a” for all entity tokens), without using core tokens in the

candidate producing process. Note that the FJ based approach

without using core tokens were extremely slow and did not

complete within our time limit, and hence the results of FJ

are not shown here. As we can see from Table V, FED-s

consistently outperforms FED-a by orders of magnitude. This

is because using core tokens reduces the number of matched

TABLE VI
PRECISION, RECALL AND F1 SCORE COMPARISON OF FED-S AND FED-A

δ
precision recall F1

FED-s FED-a FED-s FED-a FED-s FED-a
1.00 100% 100% 94.5% 94.5% 97.2% 97.2%
0.95 88.0% 88.0% 94.8% 94.8% 91.3% 91.3%
0.90 71.5% 71.5% 96.6% 96.6% 82.2% 82.2%
0.85 64.1% 64.1% 99.7% 99.7% 78.0% 78.0%

TABLE VII
COMPARISON WITH THE ONE-LEVEL EDIT-DISTANCE BASED APPROACH

algorithm Amazon DBWorld IMDB News Tweet Wikipedia
TASTE >5 days 2.7 h 9.5 h 11 h 7.7 h 4.5 h
FED 16 h 17 min 16 min 31 min 3 min 3.2 h

tokens in the document, and hence significantly reduces the

number of sub-string candidates produced.

We have conducted experiments to compare the effective-

ness of FED-s and FED-a to study the effectiveness of core

tokens. The experimental results are shown in Table VI. The

results show that the effectiveness (measured by precision,

recall and F1 score) of FED-s and FED-a is identical. This

is because the technique of core tokens can be treated as a

pruning technique, where only the sub-strings that will not

match to any entity are pruned.

D. Comparison with one-level edit-distance based approach

Here we compare our FuzzyED with the one-level edit-

distance based approach. Since the approach called TASTE
outperforms that proposed by Wang et al. [4] as shown

in the experiments [5], we compared our algorithm against

TASTE. As we can see from Table VII, FuzzyED consistently

outperforms TASTE by an order of magnitude, thanks to

our series of novel techniques (e.g., core tokens, spanning

and pruning techniques) to improve efficiency discussed in

Section IV-D and Section IV-E. In terms of effectiveness,

FED achieves about 3% higher F1 score than TASTE on

our manually labeled sub-strings discussed in Section V-B3.

TASTE cannot recognize university of hong kong of sciences
and technology as the entity hong kong university of science
and technology due to the large dissimilarity measured in

TASTE [5].

It is worthy to point out that the elapsed time of FuzzyED

on the Amazon dataset is 16 hours, which seems to be long at

first glance. This amount of time is fairly short for the dataset

which has nearly two million entities in the dictionary and

about half a million documents.

VI. CONCLUSION

In this paper, we have proposed a two-level edit-distance

based algorithm (which we call FuzzyED) for the approximate

entity extraction. FuzzyED natively allows domain experts to

customise the tolerance thresholds of the two levels individu-

ally. FuzzyED is efficient thanks to various novel techniques

we have proposed. The key techniques include (i) a spanning-

based candidate sub-string producing technique, (ii) a lower

bound dissimilarity to determine the boundaries of candidate
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sub-strings, (iii) a core token based technique that makes use of

the importance of tokens to reduce the number of unpromising

candidate sub-strings, and (iv) a shrinking technique to reuse

computation. A comprehensive empirical study has confirmed

that our algorithm based on two-level edit-distance is efficient

and also effective. We hope that FuzzyED would provide data

mining practitioners a better alternative towards named entity

extraction from free text.
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