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Abstract— String similarity search is a fundamental operation
in many areas, such as data cleaning, information retrieval, and
bioinformatics. In this paper we study the problem of top-k string
similarity search with edit-distance constraints, which, given a
collection of strings and a query string, returns the top-k strings
with the smallest edit distances to the query string. Existing
methods usually try different edit-distance thresholds and select
an appropriate threshold to find top-k answers. However it is
rather expensive to select an appropriate threshold. To address
this problem, we propose a progressive framework by improving
the traditional dynamic-programming algorithm to compute
edit distance. We prune unnecessary entries in the dynamic-
programming matrix and only compute those pivotal entries. We
extend our techniques to support top-k similarity search. We
develop a range-based method by grouping the pivotal entries
to avoid duplicated computations. Experimental results show
that our method achieves high performance, and significantly
outperforms state-of-the-art approaches on real-world datasets.

I. INTRODUCTION

String similarity search takes as input a set of strings
and a query string, and outputs all the strings in the set
that are similar to the query string. It is an importan-
t operation and has many real applications such as data
cleaning, information retrieval, and bioinformatics. For exam-
ple, most search engines support query suggestions, which
can be implemented using the similarity search operation.
Consider a query log {“schwarzenegger,” “russell,”. . .}
and a query “shwarseneger.” String similarity search returns
“schwarzenegger” as a suggestion. It has attracted signifi-
cant attention from the database community recently [14].

Existing similarity search methods [14] require users to
specify a similarity function and a similarity threshold. They
find those strings with similarities to the query string within
the given threshold. However it is rather hard to give an
appropriate threshold, as a small threshold will involve many
dissimilar answers and a large threshold may lead to few
results. To address this problem, in this paper we study the
problem of top-k string similarity search, which, given a
collection of strings and a query string, returns the top-k most
similar strings to the query string.

There are many similarity functions to quantify the similari-
ty of two strings, such as Jaccard similarity, Cosine similarity,
and edit distance. In this paper, we focus on edit distance.
The edit distance of two strings is the minimum number
of single-character edit operations (i.e. insertion, deletion,
and substitution) needed to transform one string to another.
For example, the edit distance between “schwarzenegger”

and “shwarseneger” is 3. Edit distance can be used to
capture typographical errors for text documents and evaluate
similarities for homologous proteins or genes [21], and is
widely adopted in many real-world applications.

We can extend existing threshold-based similarity search
methods [14] to support our problem as follows. We increase
the edit-distance threshold by 1 each time (initialized as 0).
For each threshold, we use existing methods to find those
strings with edit distances to the query string no larger than the
threshold. If there are smaller than k similar strings, we check
the next threshold; otherwise we compute top-k similar strings
with this threshold. However this method is rather expensive
because it executes multiple similarity search operations for
different thresholds. To address this problem, we propose a
progressive framework to efficiently find top-k answers.

A well-known method to compute the edit distance between
two strings employs a dynamic-programming algorithm using
a matrix (see Section III-A). Notice that we do not need
to compute all entries of the matrix. Instead we propose a
progressive method which prunes unnecessary entries and only
computes some entries. We extend this technique to support
top-k similarity search (see Section III-B). To further improve
the performance, we propose pivotal entries and only need to
compute the pivotal entries in the matrix (see Section IV). We
develop a range-based method to group the pivotal entries to
avoid duplicated computations (see Section V). To summarize,
we make the following contributions.

• We devise a progressive framework to address the prob-
lem of top-k string similarity search.

• We propose pivotal entries to find top-k answers, which
can avoid many unnecessary computations by pruning
large numbers of useless entries.

• We develop a range-based method to group the pivotal
entries so as to avoid duplicated computations.

• We have implemented our techniques, and experimental
results show that our method achieves high performance
and significantly outperforms existing methods.

The rest of this paper is organized as follows. We formalize
the top-k string similarity search problem and review related
works in Section II. A progressive framework is proposed
in Section III. We devise a pivotal-entry based method in
Section IV. A range-based method is proposed in Section V.
Experiment results are provided in Section VI. We conclude
the paper in Section VII.



II. PRELIMINARIES

A. Problem Formulation

Given a collection of strings and a query string, top-k string
similarity search finds top-k strings with the highest similar-
ities to the query string. In this paper we use edit distance
to quantify the similarity of two strings. The edit distance of
two strings is the minimum number of single-character edit
operations (i.e. insertion, deletion, and substitution) needed to
transform one string to another. Given two strings r and s,
we use ED(r, s) to denote their edit distance. For example, ED
(“seraji”, “sraijt”) = 3. Next we formulate the problem of
top-k string similarity search with edit-distance constraints.

Definition 1 (Top-k String Similarity Search): Given a
string set S and a query string q, top-k string similarity
search returns a string set R ⊆ S such that |R| = k and for
any string r ∈ R and s ∈ S −R, ED(r, q) ≤ ED(s, q).

Example 1: Consider the string set in Table I and a
query “srajit”. Top-3 string similarity search returns
{“surajit”, “seraji”, “sarit”}. The edit distances of the
three strings to the query are respectively 1, 2 and 2. The edit
distances of other strings to the query are not smaller than 2.

TABLE I
A STRING SET S AND A QUERY q = “srajit”

ID s1 s2 s3 s4 s5 s6
String sarit seraji suijt suit surajit thrifty

B. Related Works

Top-k String Similarity Search: Yang et a. [23] proposed
a gram-based method to support top-k similarity search. It
increased thresholds by 1 each time from 0 and tuned the gram
length dynamically. However it needed to build redundant
inverted indexes for different gram lengths and resulted in low
efficiency. Zhang et a. [24] indexed signatures (e.g., grams) of
strings using a B+-tree and utilized the B+-tree to compute
top-k answers. It iteratively traversed the B+-tree nodes,
computed a lower bound of edit distances between the query
and strings under the node, and used the lower bound to update
the threshold. However this method had to enumerate many
strings to adjust the threshold. Kahveci et a. [11] transformed
a set of contiguous substrings into a Minimum Bounding
Rectangle (MBR) and used the MBR to estimate the edit-
distance threshold of top-k answers. However the MBR-based
estimation usually estimated a large threshold and thus this
method resulted in low efficiency.
String Similarity Search with Thresholds: There are many
studies on approximate string search [5], [14], [8], [24], which,
given a set of strings, a query string, a similarity function,
and a threshold, finds all strings with similarities to the query
string within the threshold. Existing methods usually employed
a gram-based method. They first generated q-grams of each
string, and proved that two strings are similar only if their gram
sets share enough common grams. They used inverted indexes
to index the grams. Given a query string, they generated its
grams, retrieved the corresponding inverted lists, and merged

the inverted lists to find similar answers. We can extend these
methods to support the top-k similarity search problem as
follows. We increase the edit-distance threshold by 1 each time
(initialized as 0). For each threshold, we find similar strings
of the query using existing methods [14]. If the size of the
similar string set is not smaller than k, we terminate and return
k strings with the minimum edit distances. However these
methods have to enumerate different edit-distance thresholds
and involve many unnecessary computations.
Similarity Joins: There have been many studies on string
similarity joins [7], [2], [3], [6], [18], [21], [22], [19], [21],
[16]. Given two sets of strings, a similarity join finds all
similar string pairs. Xiao et al. [22] studied top-k similarity
joins by using a prefix filtering based technique. Their problem
is different from ours and their prefix-filtering based method
cannot be used in our problem.
Fuzzy Prefix Search: Ji et al. [10] utilized the trie structure to
support fuzzy prefix search (type-ahead search). They specified
a threshold and computed results based on the thresholds.
Wang et al. [19] proposed a trie-based framework to support
similarity joins. Although they used a trie structure to support
approximate search, they focused on prefix search and their
methods cannot support top-k similarity search.
Others: Navarro studied the approximate string matching
problem [17], which, given a query string and a text string,
finds all substrings of the text that are similar to the query.
There are some studies on selectivity estimation [9], [12], [13]
and approximate entity extraction [1], [4], [20], [15].

III. A PROGRESSIVE FRAMEWORK

We first propose a method to progressively compute edit
distance (Section III-A) and then develop a progressive frame-
work to support top-k search (Section III-B).
A. Progressively Computing Edit Distance

We first consider the problem of computing the edit distance
between two strings. The traditional method uses a dynamic
programming method. Given two strings r and s, it utilizes a
matrix D with |r| + 1 rows and |s| + 1 columns to compute
their edit distance. Let |s| denote s’s length, s[j] denote the
j-th character of s, and s[i, j] denote s’s substring from the
i-th character to the j-th character. D[i][j] is the edit distance
between the prefix r[1, i] and the prefix s[1, j]. Obviously
D[i][0] = i for each 0 ≤ i ≤ |r| and D[0][j] = j for
each 0 ≤ j ≤ |s|. Then it iteratively computes D[i][j] for
1 ≤ i ≤ |r| and 1 ≤ j ≤ |s| as follows:

D[i][j] = min(D[i−1][j]+1, D[i][j−1]+1, D[i−1][j−1]+δ),
(1)

where δ = 0 if r[i] = s[j]; otherwise δ = 1. D[|r|][|s|] is
exactly the edit distance between r and s. The time complexity
is O(|r| × |s|) and the space complexity is O(min(|r|, |s|)).
For example, Figure 1(a) shows the matrix D to compute the
edit distance of r =“seraji” and s =“srajit”.

A progressive method: We propose a progressive method to
compute the edit distance, which only computes some entries
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0 1 2 3 4 5 6

1 0 1 2 3 4 5

2 1 1 2 3 4 5

3 2 1 2 3 4 5

4 3 2 1 2 3 4

5 4 3 2 1 2 3

6 5 4 3 2 1 2

(a) Traditional method

0 1 2

1 0 1 2

2 1 1 2

2 1 2

2 1 2

2 1 2

2 1 2

(b) Progressive method
Fig. 1. Computing edit distance of two strings

in the matrix, instead of all entries. We use ⟨i, j⟩ to denote
the entry of the i-th row and the j-th column of the matrix.
Let Ex denote the set of entries in the matrix whose values
are x. Given two strings r and s, if ⟨|r|, |s|⟩ ∈ Ex, we have
ED(r, s) = x. To compute the edit distance of r and s, we
iteratively compute Ex from x = 0. Initially we compute E0.
If ⟨|r|, |s|⟩ ∈ E0, the edit distance between r and s is 0 and we
terminate the computation; otherwise we compute E1 based on
E0. Iteratively we compute the value x such that ⟨|r|, |s|⟩ ∈ Ex

and return x as the edit distance.
Example 2: Figure 1(b) shows the matrix D to compute

the edit distance between “seraji” and “srajit”. We first
compute E0 = {⟨0, 0⟩, ⟨1, 1⟩}. As ⟨|r|, |s|⟩ ̸∈ E0, we compute
E1 = {⟨0, 1⟩, ⟨1, 0⟩, ⟨1, 2⟩, ⟨2, 1⟩, ⟨2, 2⟩, ⟨3, 2⟩, ⟨4, 3⟩, ⟨5, 4⟩,
⟨6, 5⟩}. As ⟨|r|, |s|⟩ ̸∈ E1, we compute E2 = {⟨0, 2⟩, ⟨1, 3⟩,
⟨2, 0⟩, ⟨2, 3⟩, ⟨3, 1⟩, ⟨3, 3⟩, ⟨4, 2⟩, ⟨4, 4⟩, ⟨5, 3⟩, ⟨5, 5⟩, ⟨6, 4⟩,
⟨6, 6⟩}. As ⟨|r| = 6, |s| = 6⟩ ∈ E2, the edit distance
between “seraji” and “srajit” is 2 and we terminate the
computation. Notice that we can prune many useless entries.

Algorithm to compute Ex: We employ an iterative method to
compute Ex. Initially we compute E0, and then we compute
Ex+1 based on Ex. For ease of presentation, we first introduce
an operation called FINDMATCH, which, given two prefixes
of two strings, finds the entries with matching characters after
the two prefixes. Formally, given two strings r and s, and two
integers i and j, FINDMATCH(r, s, i, j) returns a set of entries
⟨i + t, j + t⟩ such that s[i + 1, i + t] = r[j + 1, j + t]. If the
two strings are clear in the context, FINDMATCH(r, s, i, j)
is abbreviated as FINDMATCH(i, j). For example, consider
two strings “seraji” and “srajit”. For ⟨i = 2, j = 1⟩,
as s[i + 1, i + 4] = r[j + 1, j + 4] = “raji”, ⟨i + 4, j +
4⟩ will be returned by the FINDMATCH operation. We have
FINDMATCH(2, 1) = {⟨3, 2⟩, ⟨4, 3⟩, ⟨5, 4⟩, ⟨6, 5⟩}.

Initially we use the FINDMATCH operation to compute E0.
For each entry ⟨i, j⟩ ∈ E0, as D[i][j] = 0, we have i = j and
r[1, i] = s[1, j]. Obviously E0 = FINDMATCH(−1,−1). Next
we use an EXTENSION operation to compute Ex+1 based on
Ex. Let H=∪xt=0Et. For each ⟨i, j⟩ ∈ Ex, EXTENSION applies
the following operations.
(1) Substitution: As we can substitute r[i + 1] for s[j + 1],
D[i+1][j+1] ≤ D[i][j]+1 = x+1. If ⟨i+1, j+1⟩ ̸∈ H (i.e.,
D[i+1][j+1] > x), then D[i+1][j+1] = x+1, thus we add
⟨i+1, j+1⟩ into Ex+1. As r[i+2] may match s[j+2], there
may exist entries ⟨i+ t, j+ t⟩ such that D[i+ t][j+ t] = x+1
for t ≥ 2. We use FINDMATCH(i+1, j+1) find such entries.

(2) Insertion: As we can insert r[i+1] after s[j], D[i+1][j] ≤
D[i][j] + 1 = x + 1. If ⟨i + 1, j⟩ ̸∈ H, then D[i + 1][j] =
x + 1, thus we add ⟨i + 1, j⟩ into Ex+1. Similarly, we use
FINDMATCH(i+1, j) to find entries whose values are x+1.
(3) Deletion: As we can delete s[j+1] from s, D[i][j+1] ≤
D[i][j] + 1 = x + 1. If ⟨i, j + 1⟩ ̸∈ H, then D[i][j + 1] =
x + 1, thus we add ⟨i, j + 1⟩ into Ex+1. Similarly, we use
FINDMATCH(i, j +1) to find entries whose values are x+1.

We can prove that our progressive method correctly com-
putes Ex as formalized in Lemma 1.

Lemma 1: The entry set Ex computed by our method
satisfies (1) completeness: if D[i][j] = x, ⟨i, j⟩ must be in
Ex; and (2) correctness: if ⟨i, j⟩ ∈ Ex, D[i][j] = x.

Example 3: Table II illustrates how to compute the edit
distance between “seraji” and “srajit”. Firstly, we com-
pute E0 = FINDMATCH(−1,−1) = {⟨0, 0⟩, ⟨1, 1⟩}. Then
we compute E1 based on E0. Consider ⟨0, 0⟩ ∈ E0. We
want to add ⟨1, 1⟩ (substitution), ⟨1, 0⟩ (insertion), and ⟨0, 1⟩
(deletion), into E1. As ⟨1, 1⟩ ∈ H = E0, we do not add it
into E1. For ⟨1, 1⟩, we want to add ⟨2, 2⟩ (substitution), ⟨2, 1⟩
(insertion), and ⟨1, 2⟩ (deletion), into E1. For ⟨2, 1⟩ ∈ E1, we
use FINDMATCH operation to add ⟨2, 1⟩, ⟨3, 2⟩, ⟨4, 3⟩, ⟨5, 4⟩,
⟨6, 5⟩ into E1. Similarly we compute E2. As ⟨6, 6⟩ ∈ E2, we
return 2 as the edit distance of the two strings.
Complexity: Given two strings r and s, suppose their edit
distance is τ . For any entry ⟨i, j⟩ ∈ Ex, we have |i − j| ≤
ED(r[1, i], s[1, j]) ≤ x. For each i, i − x ≤ j ≤ i + x, thus
|Ex| ≤ (2x+1)×min(|r|, |s|). The space complexity is O

(
τ×

min(|r|, |s|)
)
. In addition, each entry in Ex+1 is computed

from at most three entries (left entry, top entry, top-left entry)
in Ex. Thus the time complexity is O(

∑τ
x=0 |Ex|)∗. As there

are at most (2τ + 1) × min (|r|, |s|) entries in ∪τx=0Ex, the
time complexity is O

(
τ ×min (|r|, |s|)

)
.

B. Progressive Similarity Search

We extend the progressive method to support top-k similar-
ity search. Given a collection of strings, S, and a query string
q, for each string s ∈ S , we compute its entry set, denoted by
Ex(s). Let E′

x denote the set of triples ⟨s, i, j⟩ where s ∈ S
and ⟨i, j⟩ in Ex(s). For each triple ⟨s, i, j⟩ ∈ E′

x, if i = |s|
and j = |q|, the edit distance between s and q is x and we
add it into the result set R. If |R| ≥ k, we have found the
top-k answers and terminate the iteration.

Next we discuss how to compute E′
x. For x = 0, we

enumerate each string s ∈ S and use the FINDMATCH
operation to generate the entry set for s. For each entry
⟨i, j⟩ ∈ E0(s), we add triple ⟨s, i, j⟩ into E′

0. For x + 1, we
enumerate each triple ⟨s, i, j⟩ ∈ E′

x and use the EXTENSION
operation to compute Ex+1(s) based on Ex(s). For each pair
⟨i′, j′⟩ in Ex+1(s), we add ⟨s, i′, j′⟩ into E′

x+1.
However this method is expensive as it needs to enumerate

every strings in S. Notice that we can share computations
on common prefixes of different strings. Consider two strings

∗We use a hash table to implement H, and thus the complexity to check whether an
entry is in H is O (1).
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TABLE II
PROGRESSIVELY COMPUTING EDIT DISTANCE (“srajit”,“seraji”)

(a) E0 = FINDMATCH(−1,−1) = {⟨0, 0⟩, ⟨1, 1⟩}
(b) Computing E1 based on E0

E0 ⟨0,0⟩ ⟨1,1⟩

EXTENSION
Substitution Insertion Deletion Substitution Insertion Deletion
⟨1, 1⟩ ⟨1, 0⟩ ⟨0, 1⟩ ⟨2, 2⟩ ⟨2, 1⟩ ⟨1, 2⟩

⟨3, 2⟩, ⟨4, 3⟩, ⟨5, 4⟩, ⟨6, 5⟩
E1 ⟨1, 0⟩, ⟨0, 1⟩, ⟨2, 2⟩, ⟨2, 1⟩, ⟨3, 2⟩, ⟨4, 3⟩, ⟨5, 4⟩, ⟨6, 5⟩, ⟨1, 2⟩

(c) Computing E2 based on E1

E1 ⟨1,0⟩ ⟨0,1⟩ ⟨2,2⟩ ⟨2,1⟩ ⟨3,2⟩ ⟨4,3⟩ ⟨5,4⟩ ⟨6,5⟩ ⟨1,2⟩

EXTENSION
Substitution ⟨2,1⟩ ⟨1,2⟩ ⟨3,3⟩ ⟨3,2⟩ ⟨4,3⟩ ⟨5,4⟩ ⟨6,5⟩ ⟨2,3⟩
Insertion ⟨2,0⟩ ⟨1,1⟩ ⟨3,2⟩ ⟨3,1⟩ ⟨4,2⟩ ⟨5,3⟩ ⟨6,4⟩ ⟨2,2⟩
Deletion ⟨1,1⟩ ⟨0,2⟩ ⟨2,3⟩ ⟨2,2⟩ ⟨3,3⟩ ⟨4,4⟩ ⟨5,5⟩ ⟨6, 6⟩ ⟨1,3⟩

E2 ⟨2,0⟩, ⟨0,2⟩, ⟨2,3⟩, ⟨3,1⟩, ⟨4,2⟩, ⟨3,3⟩, ⟨5,3⟩, ⟨4,4⟩, ⟨6,4⟩, ⟨5,5⟩, ⟨6, 6⟩, ⟨1,3⟩

s1, s2 and s1[1, i] = s2[1, i]. For t ≤ i, if ⟨s1, t, j⟩ ∈ E′
x, then

⟨s2, t, j⟩ ∈ E′
x, and vice versa. To share the computations on

common prefixes, we propose a trie-based method.
We use a trie structure to index the strings in S. Each node

on the trie is associated with a character. The character of the
root is ϵ. The characters on a path from the root to a leaf node
correspond to a string†. Strings with the same prefixes share a
common trie node. For simplicity, node n is interchangeably
used with its corresponding prefix (the string composed of
characters from the root to node n). For example, Figure 2
shows a trie structure for strings in Table I. “suijt”, “suit”,
and “surajit” share a common prefix “su” (node n11).

Next we discuss how to use the trie structure to find top-k
answers efficiently. Let Tx denote the set of trie-based entries
⟨n, j⟩ with ED(n, q[1, j]) = x, where n is a trie node and j is
an integer. For ⟨n, j⟩ in Tx, if n is a leaf node and j = |q|,
we add n into R. If |R| ≥ k, we terminate the iteration. Next
we discuss how to compute Tx.

For x = 0, T0 is the set of entries ⟨n, j⟩, where n
matches q[1, j]. We compute T0 as follows. As the root r
matches the empty string ϵ, we add ⟨r, 0⟩ into T0. Then
we use the operation FINDMATCH(r, q, 0) to find the entries.
If the root has no child with character q[1], FINDMATCH
terminates; otherwise, there exists a child nc with character
q[1], FINDMATCH adds ⟨nc, 1⟩ into T0. Next for node nc,
FINDMATCH checks whether it has a child with label q[2]
and repeats the above steps. Iteratively we get T0.

Next we use the EXTENSION operation to compute Tx+1

based on Tx. Let H=∪xt=0Tx. For ⟨n, j⟩ in Tx, EXTENSION
applies the following operations.
(1) Substitution: For each child nc of node n, we can
substitute the character of nc for q[j + 1]. If ⟨nc, j + 1⟩ ̸∈ H,
we add ⟨nc, j + 1⟩ into Tx+1. As nc may contain a child
with label q[j+2], next we call the FINDMATCH(nc, q, j+1)
operation to find those entries with matching characters.
(2) Insertion: For each child nc of node n, we can insert
character of nc after q[j]. If ⟨nc, j⟩ ̸∈ H, we add ⟨nc, j⟩ into
Tx+1. We also call the operation FINDMATCH(nc, q, j) .
(3) Deletion: We can delete q[j+1] from q. If ⟨n, j+1⟩ ̸∈ H,
we add ⟨n, j+1⟩ into Tx+1. We also need to call the operation
FINDMATCH(n, q, j + 1).

We can prove that Tx computed by our method satisfies
completeness and correctness as formalized in Lemma 2.

†To make each tire leaf node corresponds to a string and vice versa is to add a special
mark to the end of each string. For simplicity we do not show the mark in the figure.
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Fig. 2. A trie structure for the strings in Table I

Lemma 2: The set Tx computed by our method satisfies (1)
completeness: If ED(n, q[1, j]) = x, ⟨n, j⟩ is in Tx; and (2)
correctness: If ⟨n, j⟩ is in Tx, ED(n, q[1, j]) = x.

Example 4: Table III illustrates how to compute top-3 re-
sults of query “srajit”. First, we add ⟨n0, 0⟩ into T0. Then
we call FINDMATCH(n0, q, 0) and add ⟨n1, 1⟩ into T0 as n1

matches q[1]. Next we extend each entry in T0 to generate T1.
For ⟨n0, 0⟩, we want to add ⟨n1, 1⟩, ⟨n21, 1⟩ (substitution),
⟨n1, 0⟩, ⟨n21, 0⟩ (insertion), and ⟨n0, 1⟩ (deletion). As ⟨n1, 1⟩
is in T0, we do not add it into T1. For ⟨n1, 1⟩ in T0, we want
to add ⟨n2, 2⟩ ⟨n6, 2⟩ ⟨n11, 2⟩ (substitution), ⟨n2, 1⟩ ⟨n6, 1⟩
⟨n11, 1⟩ (insertion), and ⟨n1, 2⟩ (deletion) into T1. For ⟨n1, 2⟩,
as its child n2 matches q[3], we use the FINDMATCH operation
to add ⟨n2, 3⟩ into T1. Similarly we compute T1 and T2.
As there are 3 answers in T2, we terminate and return n20

(“surajit”) with edit distance 1, and n5 (“sarit”) and n10

(“seraji”) with edit distance 2.

Complexity: Given a query string q, an integer k and a string
set S, suppose the maximum edit distance between the top-
k results and q is τ . For any entry ⟨n, j⟩ ∈ Tx, we have∣∣|n| − j

∣∣ ≤ ED(n, s[1, j]) ≤ x. Thus for each node n, we
have |n| − x ≤ j ≤ |n| + x. Let |T | denote the number of
trie nodes in the first |q| + τ levels. We have |Tx| ≤ (2x +
1)|T |. In practice, we can prune many trie nodes, and |Tx|
is much smaller than (2x+ 1)|T |. Thus the worst-case space
complexity is O

(
τ × |T |

)
. For any entry ⟨n, j⟩ ∈ ∪τx=0Tx,

we compute it from at most three entries, thus the worst-case
time complexity is O

(
| ∪τx=0 Tx| = τ × |T |

)
.

IV. PIVOTAL ENTRY BASED METHOD

In this section, we propose a method to reduce the size of
Ex in order to improve the performance of computing the edit
distance between two strings (Section IV-A) and then extend
this technique to support similarity search (Section IV-B).

A. Using Pivotal Entries to Compute Edit Distance

Based on the complexity analysis in Section III-A, if we
can reduce the size of Ex, we can improve the performance.
Here we discuss how to reduce the size of Ex. Consider an
entry ⟨i, j⟩ in Ex. The goal of keeping ⟨i, j⟩ in Ex is to add
⟨i+1, j⟩, ⟨i, j+1⟩, and ⟨i+1, j+1⟩ into Ex+1. If ⟨i+1, j+1⟩
is also in Ex, we can remove ⟨i, j⟩ from Ex. The main reason
is as follows. First, ⟨i + 1, j + 1⟩ is already in Ex, thus it
cannot be added into Ex+1. Second we prove that ⟨i+1, j⟩ and
⟨i, j+1⟩ are not needed to add into Ex+1. Consider ⟨i+1, j⟩. If

4



TABLE III
AN EXAMPLE FOR TOP-3 SIMILARITY SEARCH “srajit” ON S USING THE PROGRESSIVE SEARCH FRAMEWORK

(a) T0 = ⟨n0, 0⟩ ∪ FINDMATCH(0, 0) = {⟨n0, 0⟩, ⟨n1, 1⟩}
(b) Computing T1 based on T0

T0 ⟨n0, 0⟩ ⟨n1, 1⟩

EXTENSION

Substitution Insertion Deletion Substitution Insertion Deletion
⟨n1, 1⟩ ⟨n21, 1⟩ ⟨n1, 0⟩ ⟨n21, 0⟩ ⟨n0, 1⟩ ⟨n2, 2⟩ ⟨n6, 2⟩ ⟨n11, 2⟩ ⟨n2, 1⟩ ⟨n6, 1⟩ ⟨n11, 1⟩ ⟨n1, 2⟩

⟨n3, 2⟩ ⟨n7, 2⟩ ⟨n8, 3⟩ ⟨n9, 4⟩ ⟨n10, 5⟩ ⟨n2, 3⟩
⟨n16, 2⟩ ⟨n17, 3⟩ ⟨n18, 4⟩ ⟨n19, 5⟩ ⟨n20, 6⟩

T1
⟨n21, 1⟩ ⟨n1, 0⟩ ⟨n21, 0⟩ ⟨n0, 1⟩ ⟨n2, 2⟩ ⟨n6, 2⟩ ⟨n11, 2⟩ ⟨n2, 1⟩ ⟨n6, 1⟩ ⟨n11, 1⟩ ⟨n3, 2⟩ ⟨n7, 2⟩ ⟨n8, 3⟩

⟨n9, 4⟩ ⟨n10, 5⟩ ⟨n16, 2⟩ ⟨n17, 3⟩ ⟨n18, 4⟩ ⟨n19, 5⟩ ⟨n20, 6⟩ ⟨n1, 2⟩ ⟨n2, 3⟩
(c) Computing T2 based on T1

T1 ⟨n21, 1⟩ ⟨n0, 1⟩ ⟨n1, 0⟩ ⟨n21, 0⟩ ⟨n2, 2⟩ ⟨n6, 2⟩ ⟨n11, 2⟩ ⟨n1, 2⟩ ⟨n2, 1⟩ ⟨n6, 1⟩ ⟨n11, 1⟩

EXTENSION
Substitution ⟨n22, 2⟩ ⟨n1, 2⟩

⟨n21, 2⟩
⟨n2, 1⟩
⟨n6, 1⟩
⟨n11, 1⟩

⟨n22, 1⟩ ⟨n3, 3⟩ ⟨n7, 3⟩ ⟨n12, 3⟩
⟨n16, 3⟩
⟨n13, 4⟩

⟨n2, 3⟩
⟨n6, 3⟩
⟨n11, 3⟩

⟨n3, 2⟩ ⟨n7, 2⟩ ⟨n12, 2⟩
⟨n16, 2⟩

Insertion ⟨n22, 1⟩
⟨n23, 2⟩

⟨n1, 1⟩
⟨n21, 1⟩

⟨n2, 0⟩
⟨n6, 0⟩
⟨n11, 0⟩

⟨n22, 0⟩ ⟨n3, 2⟩ ⟨n7, 2⟩ ⟨n12, 2⟩
⟨n16, 2⟩

⟨n2, 2⟩
⟨n6, 2⟩
⟨n11, 2⟩

⟨n3, 1⟩ ⟨n7, 1⟩ ⟨n12, 1⟩
⟨n16, 1⟩

Deletion ⟨n21, 2⟩ ⟨n0, 2⟩ ⟨n1, 1⟩ ⟨n21, 1⟩ ⟨n2, 3⟩ ⟨n6, 3⟩ ⟨n11, 3⟩ ⟨n1, 3⟩ ⟨n2, 2⟩ ⟨n6, 2⟩ ⟨n11, 2⟩

T2
⟨n22, 2⟩ ⟨n21, 2⟩ ⟨n22, 1⟩ ⟨n23, 2⟩ ⟨n0, 2⟩ ⟨n2, 0⟩ ⟨n6, 0⟩ ⟨n11, 0⟩ ⟨n22, 0⟩ ⟨n3, 3⟩

⟨n7, 3⟩ ⟨n6, 3⟩ ⟨n12, 3⟩ ⟨n16, 3⟩ ⟨n11, 3⟩ ⟨n12, 2⟩ ⟨n13, 4⟩ ⟨n1, 3⟩ ⟨n3, 1⟩ ⟨n7, 1⟩ ⟨n12, 1⟩ ⟨n16, 1⟩

T1 ⟨n2, 3⟩ ⟨n3, 2⟩ ⟨n7, 2⟩ ⟨n8, 3⟩ ⟨n9, 4⟩ ⟨n10, 5⟩ ⟨n16, 2⟩ ⟨n17, 3⟩ ⟨n18, 4⟩ ⟨n19, 5⟩ ⟨n20, 6⟩

EXTENSION
Substitution ⟨n3, 4⟩

⟨n4, 5⟩
⟨n5, 6⟩

⟨n4, 3⟩ ⟨n8, 3⟩ ⟨n9, 4⟩ ⟨n10, 5⟩ ⟨n17, 3⟩ ⟨n18, 4⟩ ⟨n19, 5⟩ ⟨n20, 6⟩

Insertion ⟨n3, 3⟩ ⟨n4, 2⟩ ⟨n8, 2⟩ ⟨n9, 3⟩ ⟨n10, 4⟩ ⟨n17, 2⟩ ⟨n18, 3⟩ ⟨n19, 4⟩ ⟨n20, 5⟩
Deletion ⟨n2, 4⟩ ⟨n3, 3⟩ ⟨n7, 3⟩ ⟨n8, 4⟩ ⟨n9, 5⟩ ⟨n10, 6⟩ ⟨n16, 3⟩ ⟨n17, 4⟩ ⟨n18, 5⟩ ⟨n19, 6⟩

T2
⟨n3, 4⟩ ⟨n2, 4⟩ ⟨n5, 6⟩ ⟨n4, 3⟩ ⟨n4, 2⟩ ⟨n8, 2⟩ ⟨n8, 4⟩ ⟨n9, 3⟩

⟨n18, 3⟩ ⟨n19, 4⟩ ⟨n20, 5⟩ ⟨n9, 5⟩ ⟨n10, 6⟩ ⟨n10, 4⟩ ⟨n16, 3⟩ ⟨n17, 2⟩ ⟨n17, 4⟩ ⟨n18, 5⟩ ⟨n19, 6⟩

D[i+1][j] < x+1, it will not be in Ex+1. If D[i+1][j] = x+1,
we have D[i + 2][j + 1] = x + 1 as stated in Lemma 3. As
D[i+1][j] = D[i+2][j +1], we keep D[i+2][j +1] and do
not keep ⟨i+ 1, j⟩ in Ex+1 (Here we only show the idea and
the details will be discussed later). Similarly, we do not need
to add ⟨i+ 1, j⟩ into Ex+1.

Lemma 3: Consider D[i][j] = D[i+1][j+1] = x. If D[i+
1][j] = x+1, we have D[i+2][j+1] = x+1. If D[i][j+1] =
x+ 1, we have D[i+ 1][j + 2] = x+ 1.

Iteratively, if ⟨i + 1, j + 1⟩, . . ., ⟨i + ∆, j + ∆⟩ are in Ex

and ⟨i + ∆+ 1, j + ∆+ 1⟩ are not in Ex, we only keep the
last one ⟨i+∆, j+∆⟩ in Ex. Next we formalize our idea. For
ease of presentation, we first extend D[i][j] in Equation 1 to
support i > |r| or j > |s| as follows.

If i > |r| or j > |s|,

D[i][j] = min(D[i][j−1]+1, D[i−1][j]+1, D[i−1][j−1]+1);

If i ≤ |r| and j ≤ |s|,

D[i][j] = min(D[i][j−1]+1, D[i−1][j]+1, D[i−1][j−1]+δ),

where δ = 0 if r[i] = s[j]; otherwise δ = 1. If D[i][j] =
D[i+∆][j+∆], we call ⟨i, j⟩ is dominated by ⟨i+∆, j+∆⟩.

Then we introduce a concept called pivotal entry.
Definition 2 (Pivotal Entry): An entry ⟨i, j⟩ in Ex is called

a pivotal entry, if D[i+ 1][j + 1] ̸= D[i][j].
Obviously ⟨|r|, |s|⟩ is a pivotal entry. Let Ep

x denote the set
of pivotal entries in Ex. If ⟨|r|, |s|⟩ ∈ Ep

x, ED(r, s) = x. To
compute the edit distance of r and s, we iteratively compute
Ep
x from x = 0. If ⟨|r|, |s|⟩ ∈ Ep

x, we return x as their edit
distance. For example, in Figure 3, ⟨0, 0⟩ is not a pivotal entry
as D[1][1] =D[0][0]. ⟨1, 1⟩ is a pivotal entry and Ep

0 = {⟨1, 1⟩}.
Although ⟨2, 1⟩, ⟨3, 2⟩, ⟨4, 3⟩, ⟨5, 4⟩ are in E1, they are not
pivotal entries, as they are dominated by ⟨6, 5⟩. We have Ep

1

= {⟨1, 2⟩, ⟨2, 2⟩, ⟨6, 5⟩ } and Ep
2 = {⟨1, 3⟩, ⟨2, 3⟩, ⟨6, 6⟩ }.

0

0 1 2

1 1 2

1 2

1

1

1 2

Fig. 3. Using pivotal entries (highlighted ones) to compute edit distance

Algorithm to Compute Ep
x: To compute Ep

0, we extend
the FINDMATCH operation and propose a new operation
FINDPIVOTAL, which finds the maximal value m such that
r[1,m]=s[1,m] by checking whether r[i]=s[i] for i ∈ [1,m].

Next we discuss how to compute Ep
x+1 based on Ep

x. We first
prove that there are at most 2x+1 pivotal entries in Ep

x. First,
for any entry ⟨i, j⟩, if |i − j| > x, we have D[i][j] > x (As
the edit distance between r[1, i] and s[1, j] is not smaller than
their length difference, i.e., D[i][j] ≥ |i − j|). Thus for any
entry ⟨i, j⟩ in Ex, we have −x ≤i−j≤ x. Second, let Ep

x[y]
denote the set of entries whose i-value minus j-value is y,
i.e., y = i−j. For any y∈[−x, x], there is at most one pivotal
entry in Ep

x[y]. We can prove it by contradiction. Suppose there
are two entries ⟨i, j⟩ and ⟨i′, j′⟩ in Ep

x[y]. Without loss of
generality, suppose i′ > i. As D[i][j] = D[i′][j′] = x, we
can prove that for 0 ≤ △ ≤ i′ − i, D[i + △][j + △] = x,
as formalized in Lemma 4. Thus ⟨i, j⟩ is not a pivotal entry,
which contradicts with the assumption.

Lemma 4: Given any two entries ⟨i, j⟩ and ⟨i′, j′⟩ in Ep
x[y]

(i < i′), ∀△ ∈ [0, i′ − i], D[i+△][j +△] = x.

Based on Lemma 4, we prove that Ep
x[y] has at most one

pivotal entry and Ep
x has at most 2x + 1 pivotal entries, as

formalized in Lemma 5.

Lemma 5: Ep
x[y] (−x ≤ y ≤ x) has at most one pivotal

entry and Ep
x has at most 2x+ 1 pivotal entries.
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Based on Lemma 5, we only keep 2x + 1 entries in Ep
x.

For each entry Ep
x[y], it may be computed from three entries,

and we only need to keep the entry with the maximal i-value.
Using this property, next we propose an extension operation
called PIVOTALEXTENSION to compute Ep

x+1 based on Ep
x.

For any entry ⟨i, j⟩ = Ep
x[|i−j|] ∈ Ep

x
‡, PIVOTALEXTENSION

applies the following operations.

(1) Substitution: We can substitute r[i+ 1] for s[j + 1], and
⟨i+1, j+1⟩ may be a pivotal entry. As D[i+2][j+2] may be
equal to D[i+ 1][j + 1], we use the FINDPIVOTAL operation
to find entry ⟨i′, j′⟩ =FINDPIVOTAL(i+1, j+1). If there is no
entry in Ep

x+1[i−j], we add ⟨i′, j′⟩ into Ep
x+1[i−j]; otherwise

suppose ⟨i′′, j′′⟩ has been added into Ep
x+1[i−j]. If i′>i′′, we

use ⟨i′, j′⟩ to update ⟨i′′, j′′⟩ and Ep
x+1[i−j]=⟨i′, j′⟩.

(2) Insertion: We can insert r[i+ 1] after s[j], and ⟨i+ 1, j⟩
may be a pivotal entry. As D[i + 2][j + 1] may be equal to
D[i + 1][j], we use the FINDPIVOTAL operation to find the
entry ⟨i′, j′⟩ =FINDPIVOTAL (i+1, j) . If there is no entry in
Ep
x+1[i+1− j], we add ⟨i′, j′⟩ into Ep

x+1[i+1− j]; otherwise
suppose ⟨i′′, j′′⟩ has been added into Ep

x+1[i+1−j]. If i′ > i′′,
we use ⟨i′, j′⟩ to update ⟨i′′, j′′⟩ and Ep

x+1[i+1−j] = ⟨i′, j′⟩.
(3) Deletion: We can delete s[j + 1] from s, and ⟨i, j + 1⟩
may be a pivotal entry. As D[i + 1][j + 2] may be equal to
D[i][j + 1], we use the FINDPIVOTAL operation to find the
entry ⟨i′, j′⟩ =FINDPIVOTAL (i, j +1). If there is no entry in
Ep
x+1[i−(j+1)], we add ⟨i′, j′⟩ into Ep

x+1[i−(j+1)]; otherwise
suppose ⟨i′′, j′′⟩ has been added into Ep

x+1[i−(j+1)]. If i′>i′′,
we use ⟨i′, j′⟩ to update ⟨i′′, j′′⟩ and Ep

x+1[i−(j+1)]=⟨i′, j′⟩.
Iteratively, we can compute Ep

x+1
§. Lemma 6 proves that

our method can correctly compute the pivotal set.

Lemma 6: Ep
x computed by our method satisfies (1) com-

pleteness: if ⟨i, j⟩ is a pivotal entry, ⟨i, j⟩ ∈ Ep
x; and (2)

correctness: if ⟨i, j⟩ ∈ Ep
x, ⟨i, j⟩ must be a pivotal entry.

Example 5: Table IV illustrates how to use pivotal entries to
compute the edit distance of “srajit” and “seraji”. First,
Ep
0 = FINDPIVOTAL(−1,−1) = {⟨1, 1⟩}. Then we compute

Ep
1 based on Ep

0. Consider ⟨1, 1⟩ ∈ Ep
0. We add Ep

1[0] = ⟨2, 2⟩
(substitution), Ep

1[1] = ⟨2, 1⟩ (insertion) and Ep
1[−1] = ⟨1, 2⟩

(deletion) into Ep
1. For ⟨2, 1⟩ ∈ Ep

1, we use FINDPIVOTAL
operation to find pivotal entries and set Ep

1[1] = ⟨6, 5⟩. For
⟨2, 2⟩ ∈ Ep

1, we set Ep
1[0] = ⟨2, 2⟩. For ⟨1, 2⟩ ∈ Ep

1, we
set Ep

1[−1] = ⟨1, 2⟩. Then we apply PIVOTALEXTENSION
operation on Ep

1. We add Ep
2[0] = ⟨6, 6⟩ into Ep

2 instead of
⟨2, 2⟩ and ⟨3, 3⟩ which are not pivotal entries. Finally, as
⟨6, 6⟩ ∈ Ep

2, we return 2 as the edit distance.

Complexity: As |Ep
x| ≤ 2x + 1 and each row (colum-

n) has at most |r| (|s|) entries, the space complexity is
O
(
min(τ, |r|, |s|)

)
. The worst-case time complexity is still

O
(
τ×min(|r|, |s|)

)
. Since we can prune many useless entries,

this method can improve the performance.

‡As Ep
x[y] has at most one pivotal entry, we refer to Ep

x[y] as the corresponding
pivotal entry.

§We can keep entries in Ep
x in order sorted by i-values and visit the entries in

descending order to avoid unnecessary operations.

TABLE IV
PIVOTAL ENTRIES TO COMPUTE EDIT DISTANCE(“srajit”,“seraji”)

(a) Ep
0 = {⟨1, 1⟩}

(b) Computing Ep
1 based on Ep

0

Ep
0 Ep

0 [0] = ⟨1, 1⟩

EXTENSION
Substitution Insertion Deletion

Ep
1 [0] = ⟨2, 2⟩ Ep

1 [1] = ⟨2, 1⟩ Ep
1 [−1] = ⟨1, 2⟩

Ep
1 [1] = ⟨6, 5⟩

Ep
1 ⟨1, 2⟩ , ⟨2, 2⟩ , ⟨6, 5⟩

(c) Computing Ep
2 based on Ep

1 . Ep
2={⟨1, 3⟩, ⟨2, 3⟩, ⟨6, 6⟩, ⟨7, 5⟩, ⟨7, 6⟩}

Ep
1 Ep

1 [−1] = ⟨1, 2⟩

EXTENSION
Substitution Insertion Deletion
Ep
2 [−1]=⟨2, 3⟩ Ep

2 [0]=⟨2, 2⟩ Ep
2 [−2]=⟨1, 3⟩

Ep
2 [0]=⟨6, 6⟩

Ep
1 Ep

1 [0] = ⟨2, 2⟩

EXTENSION
Substitution Insertion Deletion
Ep
2 [0]=⟨3, 3⟩ Ep

2 [1]=⟨3, 2⟩ Ep
2 [−1]=⟨2, 3⟩

Ep
2 [0]=⟨6, 6⟩ Ep

2 [1]=⟨7, 6⟩ Ep
2 [−1]=⟨2, 3⟩

Ep
1 Ep

1 [1] = ⟨6, 5⟩

EXTENSION
Substitution Insertion Deletion
Ep
2 [1]=⟨7, 6⟩ Ep

2 [2]=⟨7, 5⟩ Ep
2 [0]=⟨6, 6⟩

B. Using Pivotal Triples to Support Similarity Search

The definition of pivotal entries depends on the two given
strings. Consider a trie node n, a query string q, and an integer
j. Suppose nc and n′

c are two children of n. If ED(n′
c, q[1, j+

1]) ̸= ED(n, q[1, j]), ⟨n, j⟩ is a pivotal entry for strings under
node n′

c. If ED(nc, q[1, j + 1]) = ED(n, q[1, j]), ⟨n, j⟩ is not
a pivotal entry for strings under node nc. Thus pivotal entries
cannot apply to support multiple strings. To address this issue,
we introduce a new concept.

Definition 3 (Pivotal Triple): Given an entry ⟨n, j⟩, one of
n’s children nc, and a query q, triple ⟨n, j, nc⟩ is called a
pivotal triple, if ED(nc, q[1, j + 1]) ̸= ED(n, q[1, j]).

The pivotal triple ⟨n, j, nc⟩ means that for all strings under
node nc, ⟨n, j⟩ is a pivotal entry. Let Tp

x denote the pivotal
triple set of pivotal triples ⟨n, j, nc⟩ such that ED(n, q[1, j]) =
x. We use Tp

x[y] to denote the subset of pivotal triples in
Tp
x with y = |n| − j. For example, consider the trie in

Figure 2 and query “srajit”. Consider node n0 and its child
n1 (“s”) and child n21 (“t”). Let D[n][j] = ED(n, q[1, j]).
As D[n0][0] ̸= D[n21][1], ⟨n0, 0, n21⟩ is a pivotal triple. As
D[n0][0] = D[n1][1], ⟨n0, 0, n1⟩ is not a pivotal triple. Sim-
ilarly ⟨n1, 1, n2⟩, ⟨n1, 1, n6⟩, ⟨n1, 1, n11⟩ are pivotal triples.
Thus Tp

0={⟨n0, 0, n21⟩, ⟨n1, 1, n2⟩, ⟨n1, 1, n6⟩, ⟨n1, 1, n11⟩}.
We still iteratively compute Tp

x from x = 0. For each triple
⟨n, j, nc⟩ in Tp

x, if n is a leaf node and j = |q|, the string
corresponding to n is an answer and we add it into the result
set R. If there are k answers in R, we terminate the iteration.
Iteratively, we can compute the top-k answers efficiently. Next
we discuss how to compute Tp

x.

Algorithm to Compute Tp
x: For x = 0, from the root r,

for each of its children, nc, we find pivotal triples as follows.
Suppose nc is the child of n = r with label q[1] and let
n−nc denote the set of other children of n except nc. For each
node ns ∈ n − nc, as ED(n, q[0]) ̸= ED(ns, q[1]) (q[0] = ϵ),
⟨n, 0, ns⟩ is a pivotal triple and added into Tp

0 [0] (the entry
⟨n, 0⟩ is a pivotal entry for all strings under node ns). For
node nc, as ED(n, q[0]) = ED(nc, q[1]), entry ⟨n, 0⟩ is not a
pivotal entry for strings under node nc. Next for each child
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(b) UPDATETRIPLE/UPDATEQUADRUPLE
Fig. 4. Operations of the pivotal triple based method and the range-based method

of node nc, we repeat the above step to find pivotal triples
under node nc. Iteratively we can compute Tp

0. This is an
iterative method and next we introduce an operation called
FINDTRIPLE to directly compute the pivotal entries by calling
FINDTRIPLE(n = r, 0, nc, q) for every child nc of r.

FINDTRIPLE(n, j, nc, q) is extended from the FINDPIV-
OTAL operation (Figure 4(a)). Let n1 = nc and nm denote
the last matching node, that is the label of nm is q[j + m]
and none of its children has a label of q[j + m + 1]. FIND-
PIVOTAL adds the following possible pivotal triples (we will
use UPDATETRIPLE to remove the non-pivotal triples later).
Algorithm 1 shows the pseudo-code of FINDTRIPLE.
(1) For each node ni (1≤i≤m−1), its child ni+1 matches
q[j + i]. Thus ED(ni, q[1, j + i]) = ED(ni+1, q[1, j + i + 1])
and ⟨ni, j+i, ni+1⟩ is not a pivotal triple. For ns ∈ ni−ni+1,
ns does not match q[j+ i+1] and ⟨ni, j+ i, ns⟩ is a possible
pivotal triple. Thus FINDTRIPLE adds ⟨ni, j + i, ns⟩.
(2) For nm and each of its child ns, ns does not match q[j+
m+ 1] and ⟨nm, j +m,ns⟩ is a possible pivotal triple. Thus
FINDTRIPLE adds ⟨nm, j +m,ns⟩.

For example, consider the query “srajit” and the trie
structure in Figure 2. For the root, as its child n21 does
not match q[1], ⟨n0, 0⟩ is a pivotal entry for node n21. Thus
⟨n0, 0, n21⟩ is a pivotal triple. As the child n1 matches q[1],
⟨n0, 0⟩ is not a pivotal entry for node n1. Thus ⟨n0, 0, n1⟩
is not a pivotal triple. Next for n1, all of its children do not
match q[2], ⟨n1, 1⟩ is a pivotal entry for nodes n2, n6, n11.
Thus ⟨n1, 1, n2⟩, ⟨n1, 1, n6⟩, ⟨n1, 1, n11⟩ are pivotal triples.

Next we discuss how to compute Tp
x+1 based on Tp

x. We
propose a new extension operation TRIPLEEXTENSION. For
each pivotal triple ⟨n, j, nc⟩ in Tp

x[y = |n| − j], TRIPLEEX-
TENSION applies the following operations.

(1) Substitution: For the child nc of node n, we can substitute
the character of nc for q[j + 1]. Thus for each child nd of
nc, ⟨nc, j + 1⟩ may be a pivotal entry for strings under node
nc and we want to add triple ⟨nc, j + 1, nd⟩ into Tp

x+1[y =
|nc| − (j + 1)]. As ⟨nc, j + 1, nd⟩ may affect (or be affected
by) other triples in Tp

x+1[y]. We use function UPDATETRIPLE
(⟨nc, j + 1, nd⟩) to update pivotal triples as follows.
UPDATETRIPLE (Figure 4(b)): We use function FIND-
TRIPLE (nc, j + 1, nd, q) to find possible pivotal triples in
Tp
x+1[y], denoted by T̃p

x+1. For each triple ⟨n′, j′, n′
c⟩ in T̃p

x+1,
let U denote the set of triples ⟨n′′, j′′, n′′

c ⟩ in Tp
x+1[y] such that

|n′′
c | − j′′ = y and n′′

c is a descendant or an ancestor of n′
c.

Algorithm 1: TOPKPIVOTALSEARCH(S, q, k)
Input: S: A string set; q: A query; k: No of answers;
Output:R: A set of top-k answers for S and q;
x = 0 ;1

for each child rc of root r do2

Tp
x = FINDTRIPLE(r, x, rc, q) ;3

if |R| ≥ k then return R ;4

while true do5

Tp
x+1 = TRIPLEEXTENSION (Tp

x, x) ;6

if |R| ≥ k then return R ;7

++ x ;8

Function FINDTRIPLE(n, j, nc, q)
Input: n:A node; q:A query; j:An integer; nc:n’s child
Output: Tp: A set of matching entries;
if nc.label̸=q[j+1] then Tp ←⟨n, j, nc⟩;return Tp ;1

n1 = nc and nm is the last matching node ;2

for i∈[1,m−1] do Tp ←⟨ni, j+i−1, ns∈ni−ni+1⟩;3

if nm is a leaf and |q| = j +m then R ← nm ;4

for each child ns of nm do Tp ←⟨nm, j +m,ns⟩;5

return Tp ;6

Function TRIPLEEXTENSION(Tp
x, x)

Input: Tp
x: A set of entries; x: An integer;

Output: Tp
x+1: A set of entries;

foreach ⟨n, j, nc⟩ ∈ Tp
x do1

for each child node nd of nc do2

Tp
x+1=UPDATETRIPLE(⟨nc, j + 1, nd⟩) ;3

Tp
x+1=UPDATETRIPLE(⟨nc, j, nd⟩) ;4

Tp
x+1 = UPDATETRIPLE (⟨n, j + 1, nc⟩) ;5

return Tp
x+1;6

If U = ϕ, ⟨n′, j′, n′
c⟩ does not affect (and is not affected by)

other triples, and we add ⟨n′, j′, n′
c⟩ into Tp

x+1[y]; otherwise
for each triple ⟨n′′, j′′, n′′

c ⟩, we check whether it affects (or is
affected by) ⟨n′, j′, n′

c⟩ and update Tp
x+1 as follows.

(i) If j′′ > j′, n′′
c must be a descendant of n′

c. For strings
under node n′′

c , ⟨n′′, j′′⟩ is a pivotal entry, and we still keep
triple ⟨n′′, j′′, n′′

c ⟩. Let n1, n2, . . . , nm denote the nodes on the
path from n1 = n′ to nm = n′′. We have ED(n1, q[1, j

′]) =
ED(n2, q[1, j

′ + 1]) = . . . = ED(nm, q[1, j′′]) = x + 1.
Thus ⟨n′, j′, n′

c⟩ is not a pivotal triple and we need to add
the following triples into Tp

x+1[y]: ⟨ni, j
′ + i + 1, ns⟩ for

7



TABLE V
AN EXAMPLE FOR TOP-3 SIMILARITY SEARCH “srajit” ON S USING THE PIVOTAL-BASED SEARCH FRAMEWORK

(a) Tp
0 = {⟨n0, 0, n21⟩, ⟨n1, 1, n2⟩, ⟨n1, 1, n6⟩, ⟨n1, 1, n11⟩}

(b) Computing Tp
1 based on Tp

0

Tp
0 Tp

0 [0] ⟨n0, 0, n21⟩ ⟨n1, 1, n2⟩ ⟨n1, 1, n6⟩ ⟨n1, 1, n11⟩

EXTENSION
Substitution Tp

1 [0]: ⟨n21, 1, n22⟩ ⟨n2, 2, n3⟩ ⟨n6, 2, n7⟩ ⟨n11, 2, n12⟩ ⟨n11, 2, n16⟩ ⟨n20,6, ϕ⟩
Insertion Tp

1 [1]: ⟨n21, 0, n22⟩ ⟨n2, 1, n3⟩ ⟨n3, 2, n4⟩ ⟨n6, 1, n7⟩ ⟨n10, 5, ϕ⟩ ⟨n11, 1, n12⟩ ⟨n11, 1, n16⟩
Deletion Tp

1 [−1]: ⟨n0, 1, n21⟩ ⟨n1, 2, n2⟩ ⟨n2, 3, n3⟩ ⟨n1, 2, n6⟩ ⟨n1, 2, n11⟩

Tp
1

⟨n21, 1, n22⟩ ⟨n2, 2, n3⟩ ⟨n6, 2, n7⟩ ⟨n11, 2, n12⟩ ⟨n0, 1, n21⟩ ⟨n1, 2, n6⟩ ⟨n1, 2, n11⟩
⟨n21, 0, n22⟩ ⟨n11, 1, n12⟩ ⟨n11, 1, n16⟩ ⟨n3, 2, n4⟩ ⟨n2, 3, n3⟩ ⟨n10, 5, ϕ⟩ ⟨n20,6, ϕ⟩

(c) Computing Tp
2 based on Tp

1

Tp
1 Tp

1 [0] ⟨n21, 1, n22⟩ ⟨n2, 2, n3⟩ ⟨n6, 2, n7⟩ ⟨n11, 2, n12⟩ ⟨n20, 6, ϕ⟩

EXTENSION
Substitution Tp

2 [0]: ⟨n22, 2, n23⟩ ⟨n3, 3, n4⟩ ⟨n7, 3, n8⟩ ⟨n12, 3, n13⟩ ⟨n12, 3, n15⟩ ⟨ϕ, 7, ϕ⟩
Insertion Tp

2 [1]: ⟨n22, 1, n23⟩ ⟨n23, 2, n24⟩ ⟨n3, 2, n4⟩ ⟨n7, 2, n8⟩ ⟨n12, 2, n13⟩ ⟨n12, 2, n15⟩ ⟨ϕ, 6, ϕ⟩
Deletion Tp

2 [−1]: ⟨n21, 2, n22⟩ ⟨n2, 3, n3⟩ ⟨n6, 3, 7⟩ ⟨n11, 3, n12⟩ ⟨n20, 7, ϕ⟩

Tp
2

⟨n22, 2, n23⟩ ⟨n3, 3, n4⟩ ⟨n12, 3, n15⟩ ⟨ϕ, 7, ϕ⟩ ⟨n21, 2, n22⟩
⟨n11, 3, n12⟩ ⟨n20, 7, ϕ⟩ ⟨n12, 2, n13⟩ ⟨n12, 2, n15⟩ ⟨ϕ, 6, ϕ⟩ ⟨n23, 2, n24⟩ ⟨n13, 4, n14⟩

Tp
1 Tp

1 [-1] ⟨n0, 1, n21⟩ ⟨n2, 3, n3⟩ ⟨n1, 2, n6⟩ ⟨n1, 2, n11⟩

EXTENSION
Substitution Tp

2 [−1]: ⟨n21, 2, n22⟩ ⟨n3, 4, n4⟩ ⟨n5, 6, ϕ⟩ ⟨n6, 3, n7⟩ ⟨n11, 3, n12⟩ ⟨n11, 3, n16⟩
Insertion Tp

2 [0]: ⟨n21, 1, n22⟩ ⟨n3, 3, n4⟩ ⟨n6, 2, n7⟩ ⟨n11, 2, n12⟩ ⟨n11, 2, n16⟩
Deletion Tp

2 [−2]: ⟨n0, 2, n21⟩ ⟨n2, 4, n3⟩ ⟨n1, 3, n6⟩ ⟨n1, 3, n11⟩
Tp

2 ⟨n11, 3, n16⟩ ⟨n0, 2, n21⟩ ⟨n2, 4, n3⟩ ⟨n1, 3, n6⟩ ⟨n1, 3, n11⟩ ⟨n5, 6, ϕ⟩

Tp
1 Tp

1 [1] ⟨n21, 0, n22⟩ ⟨n3, 2, n4⟩ ⟨n10, 5, ϕ⟩ ⟨n11, 1, n12⟩ ⟨n11, 1, n16⟩

EXTENSION
Substitution Tp

2 [1]: ⟨n22, 1, n23⟩ ⟨n4, 3, n5⟩ ⟨ϕ, 6, ϕ⟩ ⟨n12, 2, n13⟩ ⟨n12, 2, n15⟩ ⟨n16, 2, n17⟩
Insertion Tp

2 [2]: ⟨n22, 0, n23⟩ ⟨n4, 2, n5⟩ ⟨ϕ, 5, ϕ⟩ ⟨n12, 1, n13⟩ ⟨n12, 1, n15⟩ ⟨n16, 1, n17⟩
Deletion Tp

2 [0]: ⟨n21, 1, n22⟩ ⟨n3, 3, n4⟩ ⟨n10, 6, ϕ⟩ ⟨n11, 2, n12⟩ ⟨n11, 2, n16⟩
Tp

2 ⟨n4, 3, n5⟩ ⟨ϕ, 6, ϕ⟩ ⟨n10,6, ϕ⟩ ⟨n22, 0, n23⟩ ⟨n4, 2, n5⟩ ⟨ϕ, 5, ϕ⟩ ⟨n12, 1, n13⟩ ⟨n12, 1, n15⟩ ⟨n16, 1, n17⟩

i ∈ [1,m−1] and ns ∈ ni−ni+1 (ni’s children except ni+1).

(ii) If j′′ ≤ j′, n′′
c must be an ancestor of n′

c. Let
n1, n2, . . . , nm denote the nodes on the path from n1 = n′′ to
nm = n′. We have ED(n1, q[1, j

′′]) = ED(n2, q[1, j
′′ + 1]) =

. . . = ED(nm, q[1, j′]) = x + 1. Thus ⟨n′′, j′′, n′′
c ⟩ is not a

pivotal triple. As for strings under node n′
c, ⟨n′, j′⟩ is a pivotal

entry, we replace triple ⟨n′′, j′′, n′′
c ⟩ with ⟨n′, j′, n′

c⟩. We also
add the following triples into Tp

x+1[y]: ⟨ni, j
′′ + i+1, ns⟩ for

i ∈ [1,m−1] and ns ∈ ni−ni+1 (ni’s children except ni+1).

(2) Insertion: For the child nc of node n, we can insert
character of nc after q[j]. Thus for each child nd of nc, ⟨nc, j⟩
may be a pivotal entry for strings under node nd. We call
function UPDATETRIPLE (⟨nc, j, nd⟩) to add triples.

(3) Deletion: We can delete q[j + 1] from q. Thus ⟨n, j + 1⟩
may be a pivotal entry for strings under node nc. We call
function UPDATETRIPLE (⟨n, j + 1, nc⟩) to add triples.

Iteratively we can compute the pivotal triple set and Al-
gorithm 1 shows the pseudo-code. The correctness of the
algorithm is formalized in Lemma 7.

Lemma 7: Tp
x computed by our method satisfies (1) com-

pleteness: If ⟨n, j, nc⟩ is a pivotal triple, it is in Tp
x; and (2)

correctness: If ⟨n, j, nc⟩ is in Tp
x, it is a pivotal triple.

Example 6: Consider the trie in Figure 2. Table V shows
the example to find top-3 answers of query “srajit”. For
⟨n1, 1, n2⟩ in Tp

0, we do substitution and add ⟨n2, 2, n3⟩. For
insertion, ⟨n2, 1, n3⟩ is not a pivotal entry as n3 matches q[2].
Thus we call FINDPIVOTAL operation and add ⟨n3, 2, n4⟩. For
deletion, we also extend ⟨n1, 2, n2⟩ to ⟨n2, 3, n3⟩. Similarly we
compute all pivotal triples in Table V.

Complexity: Let |B| denote the number of trie nodes at the
(|q|+τ)-th level. As we only keep Tp

x to compute Tp
x+1, the

space complexity is O(τ |B|). As the update operation (e.g.,
using a hash table) takes O(1) time, the worst-case time
complexity is O(τ×|T |). As the method prunes many useless
trie nodes, it improves the performance(Section VI-A).

V. A RANGE-BASED METHOD

As there may be multiple triples with the same entry
⟨n, j⟩, we want to group them to improve the performance.
Consider an entry ⟨n, j⟩ in Ep

x. Node n may have multiple
children such that ⟨n, j, nc⟩ is a pivotal triple. It is expensive
to keep all such triples. For example, ⟨n1, 1⟩ is a pivotal
entry for nodes n2, n6, n11, and we need to keep three triples
⟨n1, 1, n2⟩, ⟨n1, 1, n6⟩, ⟨n1, 1, n11⟩. In addition, it is expensive
to enumerate the nodes in n − nc (the set of children of n
except nc). To address this issue, we propose a range-based
method by grouping trie nodes.

We encode the trie structure as follows. For each leaf node,
we assign an ID in a pre-order, which is also the ID of its
corresponding string. For each internal node n, we maintain an
ID range [ln, un], where ln (un) is the minimum (maximum)
ID of strings under the node. In Figure 2, the ID range of
node n1 is [1, 5] which denotes all strings with a prefix of n1

(“s”) have IDs in [1, 5] and all IDs in [1, 5] have a prefix “s”.
The basic idea of the range-based method is as follows.

Consider node n and its child node nc with label q[j + 1].
The previous method needs to enumerate all nc’s siblings in
n−nc. Instead the range-based method is to use a range [l, u]
to denote the nodes in n− nc and use an integer d to denote
|n|. Suppose the range of node n(nc) is Rn = [ln, un](Rnc =
[lnc , unc ]). As Rnc ⊆ Rn, we use Rn −Rnc = [ln, lnc − 1]∪
[unc + 1, un] to denote the nodes in n− nc. To this end, we
propose a concept, called pivotal quadruple.

Definition 4 (Pivotal Quadruple): A quadruple ⟨[l, u], d, j⟩
is a pivotal quadruple¶, if it satisfies (1) ⟨l, u⟩ is a sub-range of
a d-th level node’s range; (2) for any string s with ID in [l, u],
ED(s[1, d + 1], q[1, j + 1]) ̸= ED(s[1, d], q[1, j]); (3) strings
with ID l − 1 or u+ 1 do not satisfy conditions (1) or (2).

The quadruple ⟨[l, u], d, j⟩ means that for each string s in
range [l, u], ⟨d, j⟩ is a pivotal entry for s and q. Let Tr

x

¶The quadruple should be ⟨l, u, d, j⟩. For clarity, we use ⟨[l, u], d, j⟩.
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TABLE VI
AN EXAMPLE FOR TOP-3 SIMILARITY SEARCH “srajit” ON S USING THE RANGE-BASED METHOD

(a) Tr
0 = FINDMATCH(0, 0) = {⟨[6, 6], 0, 0⟩, ⟨[1, 5], 1, 1⟩}

(b) Tr
1 = {⟨[1, 5], 2, 2⟩, ⟨[6, 6], 1, 1⟩, ⟨[6, 6], 0, 1⟩, ⟨[1, 1], 2, 3⟩, ⟨[2, 5], 1, 2⟩, ⟨[1, 1], 3, 2⟩, ⟨[2, 2], 6, 5⟩, ⟨[3, 4], 2, 1⟩, ⟨[5, 5], 7, 6⟩, ⟨[6, 6], 1, 0⟩}

Tr
0 ⟨[1, 5], 1, 1⟩ ⟨[6, 6], 0, 0⟩

EXTENSION

Substitution E1[0] Insertion E1[1] Deletion E1[−1] Substitution E1[0] Insertion E1[1] Deletion E1[−1]
⟨[1, 5], 2, 2⟩ ⟨[1, 5], 2, 1⟩ ⟨[1, 1], 3, 2⟩ ⟨[1, 5], 1, 2⟩ ⟨[6, 6], 1, 1⟩ ⟨[6, 6], 1, 0⟩ ⟨[6, 6], 0, 1⟩

⟨[2, 2], 6, 5⟩ ⟨[3, 4], 2, 1⟩
⟨[5, 5], 7, 6⟩

⟨[1, 1], 2, 3⟩
⟨[2, 5], 1, 2⟩

Tr
1 ⟨[1, 5], 2, 2⟩, ⟨[6, 6], 1, 1⟩, ⟨[6, 6], 0, 1⟩, ⟨[1, 1], 2, 3⟩, ⟨[2, 5], 1, 2⟩, ⟨[1, 1], 3, 2⟩, ⟨[2, 2], 6, 5⟩, ⟨[3, 4], 2, 1⟩, ⟨[5, 5], 7, 6⟩, ⟨[6, 6], 1, 0⟩

(c) Computing Tr
2 based on Tr

1

Tr
1 Tr

1[−1] ⟨[1, 1], 2, 3⟩ ⟨[2, 5], 1, 2⟩ ⟨[6, 6], 0, 1⟩ Tr
1[0] ⟨[1, 5], 2, 2⟩ ⟨[6, 6], 1, 1⟩

EXTENSION
Substitution E2[−1] ⟨[1, 1], 3, 4⟩ ⟨[1, 1], 5, 6⟩ ⟨[2, 5], 2, 3⟩ ⟨[6, 6], 1, 2⟩ E2[0] ⟨[1, 5], 3, 3⟩

⟨[3, 4], 3, 3⟩
⟨[3, 3], 4, 4⟩

⟨[6, 6], 2, 2⟩

Insertion E2[0] ⟨[1, 1], 3, 3⟩ ⟨[2, 5], 2, 2⟩ ⟨[6, 6], 1, 1⟩ E2[1] ⟨[1, 5], 3, 2⟩ ⟨[6, 6], 2, 1⟩ ⟨[6, 6], 3, 2⟩
Deletion E2[−2] ⟨[1, 1], 2, 4⟩ ⟨[2, 5], 1, 3⟩ ⟨[6, 6], 0, 2⟩ E2[−1] ⟨[1, 5], 2, 3⟩

⟨[4, 4], 3, 3⟩
⟨[6, 6], 1, 2⟩

Tr
2 ⟨[2, 5], 2, 3⟩ ⟨[6, 6], 0, 2⟩ ⟨[1, 1], 2, 4⟩ ⟨[2, 5], 1, 3⟩ ⟨[6, 6], 2, 2⟩ ⟨[1, 1], 3, 3⟩ ⟨[1, 1], 5, 6⟩ ⟨[3, 3], 4, 4⟩ ⟨[4, 4], 3, 3⟩ ⟨[6, 6], 3, 2⟩ ⟨[6, 6], 1, 2⟩

Tr
1 Tr

1[1] ⟨[1, 1], 3, 2⟩ ⟨[2, 2], 6, 5⟩ ⟨[3, 4], 2, 1⟩ ⟨[5, 5], 7, 6⟩ ⟨[6, 6], 1, 0⟩

EXTENSION
Substitution E2[1] ⟨[1, 1], 4, 3⟩ ⟨[2, 2], 7, 6⟩ ⟨[3, 4], 3, 2⟩ ⟨[5, 5], 8, 7⟩ ⟨[6, 6], 2, 1⟩
Insertion E2[2] ⟨[1, 1], 4, 2⟩ ⟨[2, 2], 7, 5⟩ ⟨[3, 4], 3, 1⟩ ⟨[5, 5], 8, 6⟩ ⟨[6, 6], 2, 0⟩
Deletion E2[0] ⟨[1, 1], 3, 3⟩ ⟨[2, 2], 6, 6⟩ ⟨[3, 4], 2, 2⟩ ⟨[5, 5], 7, 7⟩ ⟨[6, 6], 1, 1⟩

Tr
2

⟨[1, 1], 4, 3⟩ ⟨[2, 2], 7, 6⟩ ⟨[3, 4], 3, 2⟩ ⟨[5, 5], 8, 7⟩ ⟨[2, 2], 6, 6⟩
⟨[5, 5], 7, 7⟩ ⟨[6, 6], 2, 0⟩ ⟨[1, 1], 4, 2⟩ ⟨[2, 2], 7, 5⟩ ⟨[3, 4], 3, 1⟩ ⟨[5, 5], 8, 6⟩

denote the set of pivotal quadruples ⟨[l, u], d, j⟩ such that
ED(s[1, d], q[1, j]) = x where s is a string with ID in [l, u].
We use Tr

x[y] to denote the subset of Tr
x with y = d− j.

For example, consider the trie in Figure 2 and query
“srajit”. For any string s in [1,5], D[1][1]̸=D[2][2],
⟨[1, 5], 1, 1⟩ is a pivotal quadruple. As D[0][0]=D[1][1],
⟨[1, 5], 0, 0⟩ is not a pivotal quadruple. Similarly ⟨[6, 6], 0, 0⟩ is
also a pivotal quadruple. Thus Tr

0={⟨[1, 5], 1, 1⟩, ⟨[6, 6], 0, 0⟩}.
We still iteratively compute Tr

x from x = 0. If we find k
results from Tr

x, our algorithm terminates.
Algorithm to Compute Tr

x: For x = 0, from the root r,
for each of its children, nc, we find pivotal quadruples as
follows. Suppose nc is the child of n = r with label q[1]. For
any string s with ID in [ln, un] − [lnc , unc ], ED(s[0], q[0]) ̸=
ED(s[1], q[1]). Thus ⟨[ln, lnc−1], 0, 0⟩ and ⟨[unc +1, un], 0, 0⟩
are pivotal quadruples and added into Tr

0 [0]. Next for node nc,
we repeat the above step to find pivotal quadruples under node
nc. Iteratively we can compute Tr

0. This is an iterative method
and we introduce a function FINDQUADRUPLE(n, j, q) to di-
rectly compute the pivotal entries (using parameters (r, 0, q)).

FINDQUADRUPLE extends FINDTRIPLE by grouping nodes
(Figure 4(a)). Algorithm 2 shows the pseudo-code. It first finds
the matching nodes n1 = n, n2, · · · , nm, where nm is the last
matching node. For each node ni for 1 ≤ i ≤ m − 1, its
child ni+1 matches the query character q[j + i]. Instead of
enumerating each node in ni − ni+1, we group the siblings
of ni+1 into two groups based on ni+1: [lni , lni+1 − 1]
and [uni+1 + 1, uni ]. FINDQUADRUPLE adds ⟨[lni , lni+1 −
1], |ni|, j + i⟩ and ⟨[uni+1 + 1, uni ], |ni|, j + i⟩. Similarly for
nm, FINDQUADRUPLE adds ⟨[lnm , unm ], nm, j +m⟩.

Next we discuss how to compute Tr
x+1 based on Tr

x. We
propose a new operation QUADRUPLEEXTENSION to support
quadruple extensions. For each pivotal quadruple ⟨[l, u], d, j⟩
in Tr

x[y = d− j], it applies the following extensions.
(1) Substitution: For any strings with ID in [l, u], we can
substitute the (d+1)-th character of these strings with q[j+1].
Thus ⟨d+1, j+1⟩ may be a pivotal entry for strings in [l, u],
⟨[l, u], d+1, j+1⟩ is a potential pivotal quadruple and we want

to add it into Tr
x+1. However, there may be some strings with

the (d+2)-th character matching q[j + 2]. For such strings,
⟨d+1, j +1⟩ is not a pivotal entry and ⟨d+2, j +2⟩ may be
a pivotal entry. To address this issue, we propose a function
UPDATEQUADRUPLE (⟨[l, u], d+1, j+1⟩) to find quadruples.

UPDATEQUADRUPLE (Figure 4(b)): Based on the above
observation, we want to find the nodes in the (d+2)-th level
with character q[j + 2] within the range [l, u]. As there may
be multiple such nodes, to accelerate this operation we build
an inverted index I, where each entry is an integer d and a
character c and the corresponding value is a set of d-th level
nodes with label c. Thus we first find all the nodes in the
(d+2)-th level with character q[j + 2] using the index I and
then use a binary search to find the nodes within [l, u]. For
each of these nodes, n, we use the aforementioned function
FINDQUADRUPLE (n, j + 2, q) to find all possible pivotal
quadruples, denoted by T̃r

x+1.
Notice that the quadruples in T̃r

x+1 may affect (or be
affected by) quadruples in Tr

x+1. Thus we need to update
quadruples as follows. For each quadruple ⟨[l′, u′], d′, j′⟩ in
T̃r
x+1, let U denote the set of quadruples ⟨[l′′, u′′], d′′, j′′⟩ in

Tr
x+1[y] such that d′′ − j′′ = y and [l′′, u′′] has an overlap

with [l′, u′]. If U = ϕ, we do not need to update and add
⟨[l′, u′], d′, j′⟩ into Tr

x+1[y]; otherwise for each quadruple
⟨[l′′, u′′], d′′, j′′⟩ in U, we update Tr

x+1 as follows.

(i) j′′ > j′ and d′′ > d′: For any string s in [l′′, u′′], as
ED(s[d′′], q[j′′]) ̸= ED(s[d′′ + 1], q[j′′ + 1]), ⟨d′′, j′′⟩ is still
a pivotal entry and we keep ⟨[l′′, u′′], d′′, j′′⟩. ⟨d′, j′⟩ is not a
pivotal entry as ED(s[d′′], q[j′′]) = ED(s[d′], q[j′]) = x+1 and
j′′ > j′. We add ⟨[l′, l′′ − 1], d′, j′⟩ and ⟨[u′′ + 1, u′], d′, j′⟩.
(ii) j′′≤j′ and d′′≤d′: For any string s in [l′, u′], ⟨d′, j′⟩ is
a pivotal entry as ED(s[d′], q[j′]) ̸= ED(s[d′ + 1], q[j′ + 1]).
⟨d′′, j′′⟩ is not as ED(s[d′], q[j′]) = ED(s[d′′], q[j′′]) = x + 1
and j′′ ≤ j′. We replace ⟨[l′′, u′′], d′′, j′′⟩ with ⟨[l′, u′], d′, j′⟩
and add ⟨[l′′, l′ − 1], d′′, j′′⟩, ⟨[u′ + 1, u′′], d′′, j′′⟩.

(2) Insertion: For any strings with ID in range [l, u], we
can insert the (d+1)-th character after q[j]. Thus ⟨d + 1, j⟩
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Algorithm 2: TOPKRANGESEARCH(S, q, k)
Input: S: A string set; q: A query; k: No of answers;
Output:R: A set of top-k answers for S and q;
x = 0 ;1

Tr
x = FINDQUADRUPLE(r, 0, q) ;2

if |R| ≥ k then return R ;3

while true do4

Tr
x+1 = QUADRUPLEEXTENSION (Tr

x, x) ;5

if |R| ≥ k then return R ;6

++ x ;7

Function FINDQUADRUPLE(n, j, q)
Input: n: A node; j: An integer; q: A query;
Output: Tr: A set of matching ranges;
n1 = n and nm is the last matching node ;1

for ni ∈ {n1, n2, . . . , nm−1} do2

Tr ← ⟨[lni , lni+1 − 1], |ni|, j + i− 1⟩ ;3

Tr ← ⟨[uni+1 + 1, uni ], |ni|, j + i− 1⟩ ;4

if nm is a leaf and |q| = j +m then R ← nm ;5

Tr ← ⟨[lnm , unm ], |nm|, j +m⟩ ;6

return Tr ;7

Function QUADRUPLEEXTENSION(Tr
x, x)

Input: Tr
x: A set of entries; x: An integer;

Output: Tr
x+1: A set of entries;

foreach ⟨[l, u], d, j⟩ ∈ Tr
x do1

Tr
x+1=UPDATEQUADRUPLE (⟨[l, u], d+1, j+1⟩);2

Tr
x+1=UPDATEQUADRUPLE (⟨[l, u], d+ 1, j⟩) ;3

Tr
x+1=UPDATEQUADRUPLE (⟨[l, u], d, j + 1⟩) ;4

return Tr
x+1;5

may be a pivotal entry for strings in [l, u]. We call function
UPDATEQUADRUPLE (⟨[l, u], d+ 1, j⟩) to update quadruples.

(3) Deletion: For any strings with ID in range [l, u], we can
delete q[j +1] from q. Thus ⟨d, j +1⟩ may be a pivotal entry
for strings in [l, u]. We call function UPDATEQUADRUPLE
(⟨[l, u], d, j + 1⟩) to update quadruples.

Iteratively we can compute the pivotal quadruple set and
Algorithm 2 shows the pseudo-code. The correctness of the
algorithm is formalized in Lemma 8.

Lemma 8: Tr
x computed by our method satisfies (1) com-

pleteness: If ⟨[l, u], d, j⟩ is a pivotal quadruple, it is in Tr
x; (2)

correctness: If ⟨[l, u], d, j⟩ is in Tr
x, it is a pivotal quadruple.

Example 7: Consider the trie in Figure 2. Table VI shows
the example to find top-3 answers of query “srajit”. Con-
sider ⟨[6, 6], 1, 1⟩ in Tr

1. For substitution, we add ⟨[6, 6], 2, 2⟩.
For insertion, ⟨[6, 6], 2, 1⟩ is not a pivotal entry as the third
character of string s6=“thrifty” matches q[2]=‘r’. Thus we
apply the FINDQUADRUPLE operation and add ⟨[6, 6], 3, 2⟩.
For deletion, we add ⟨[6, 6], 1, 2⟩. Similarly we compute all
pivotal quadruples as illustrated in Table VI.

Complexity: Let |B′| denote the number of trie nodes at
the (|q|+τ−1)-th level, which is not larger than the number
of trie nodes at the (|q|+τ)-th level |B|. As we only keep
Tr
x to compute Tr

x+1, the space complexity is O(τ × |B′|).

TABLE VII
DATASETS

Datasets Cardinality Avg Len Max Len Min Len
Word 146,033 16.01 35 1

Author 10.27 million 22.02 383 8
Email 6.4 million 26.58 57 7

As the update operation (e.g., using a hash table) takes
O(1) time, the worst-case time complexity is O(τ × |T |).
As the method groups many pivotal triples, it improves the
performance(Section VI-A).

VI. EXPERIMENTAL STUDY

We conducted an extensive set of experimental studies on
three real datasets. The first one is the Author dataset which
is a set of author names and extracted from the publications
in PubMed ∥. The second one is the Word dataset, which is a
set of common English words. The third one is a set of Email
addresses. We randomly selected 100 queries from the datasets
and compared the average elapsed time. Table VII shows the
detailed information of the three datasets. Figure 5 shows the
string length distributions of the three datasets.

We compared our algorithms with state-of-the-art methods,
AQ [23], Bed-Tree [24], and Flamingo [14]. The code of
Bed-Tree was provided by the authors. The code of Flamingo
was download from their website ∗∗. We extended it to support
top-k search by increasing the thresholds (initialized as 0).
As it is a famous threshold-based string similarity search
algorithm, we selected it as a baseline for comparison. AQ
was implemented by ourselves in C++. All the algorithms were
implemented in C++ and compiled using GCC 4.2.4 with -O3
flag. All the experiments were run on a Ubuntu machine with
an Intel Xeon X5670 2.93GHz CPU and 32 GB memory.

A. Evaluation on Our Techniques
In this section, we compare our proposed techniques, the

progressive-based method, the pivotal entry based method, and
the range-based method. We first compared the number of
entries that were needed to compute of the three methods.
Figure 6 shows the results by varying k on the three datasets.

We can see that the pivotal entry based method involved
smaller numbers of entries than the progressive-based method
on the Email dataset and the Author dataset. This is because
the pivotal entry based method only computed pivotal entries
and pruned large numbers of useless entries. For example,
on the Email dataset, for k = 50, the progressive-based
method computed 0.8 billion entries, and the pivotal entry
based method computed 0.6 billion entries. On the Word
dataset, the pivotal entry based method was worse than the
progressive-based method. This is because if an entry is a
pivotal entry for all children, the pivotal entry based method
needed to maintain all such triples which may be expensive.
However the range-based method grouped such triples and
significantly reduced the number of entries.

In addition, the range-based method computed much smaller
numbers of entries than the pivotal entry based method and
the progressive-based method on the three datasets. The main

∥http://www.ncbi.nlm.nih.gov/pubmed/
∗∗http://flamingo.ics.uci.edu/
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Fig. 6. Evaluating Our Techniques - Number of Entries
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Fig. 7. Evaluating Our Techniques - Elapsed Time

reason is that the range-based method grouped large numbers
of pivotal entries and reduced the number of pivotal entries
significantly. For example, on the Email dataset, for k = 100,
the pivotal entry based method and the progressive-based
method involved more than 1 billion entries, and the range-
based method had only 0.1 billion entries. The experimental
results consist with our analysis in Section IV.

Next we compare the average elapsed time of different
methods by varying k. Figure 7 shows the results.

We can see that the range-based method achieved the best
performance and outperformed the other two methods. The
main reason is that, the range-based method pruned many
non-pivotal entries against the progressive-based method and
grouped the pivotal entries to avoid unnecessary computa-
tions. For example, on the Email dataset, for k = 50, the
progressive-based method took 300 milliseconds, the pivotal
entry based method improved the time to 150 milliseconds,
and the range-based method further reduced time to 50 mil-
liseconds. This shows that our range-based pruning technique
can prune large numbers of unnecessary entries and improve
the performance significantly.

B. Comparison with Existing Methods
In this section, we compare our range-based method with

state-of-the-art methods, AQ, Bed-Tree, and Flamingo by
varying different k on the three datasets. As they needed tune
some parameters (e.g., gram length), we reported their best
results. Figure 8 shows the experimental results.

We can see that for small k values (k < 50), AQ had the
worst performance as it is rather time consuming to adaptively
select a good gram length. For large k values, AQ was better
than Flamingo as the search time was larger than the time to
select a good gram length. For example, on the Word dataset,
for k = 25, AQ took 5 milliseconds and other methods took
less than 3 milliseconds. In addition, Bed-Tree was better
than AQ and Flamingo for large k values, as it dynamically
updated the threshold and used the threshold to do pruning.
However it had low pruning power for small k values. This is
because for small k values, it may scan many irrelevant strings
and cannot use a tighter bound to do pruning.

Our method achieved the highest performance and outper-
formed existing methods. This is because Bed-Tree only used
the string level pruning, while our method can utilize the
character-level pruning. That is for a string, Bed-Tree can
only take its edit distance to the query as a threshold. Our
method can progressively compute edit distance and can use
the edit distance of prefixes of a string and the query as
a threshold. Thus our method outperformed Bed-Tree. For
example, on the Email dataset, for each k value, our method
achieved the best performance. For k = 100, Flamingo
took more than 400 milliseconds, Bed-Tree improved the
time to 300 milliseconds, and our method only took less
than 80 milliseconds. The results show the superiority of our
progressive based framework and our pivotal-entry-based and
range-based pruning techniques.
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Fig. 8. Comparison with Existing Methods
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Fig. 9. Scalability of Our Method

C. Scalability
In this section, we evaluate the scalability of our range-

based method. We varied the number of strings and evaluated
our method for finding top-k answers. Figure 9 shows the
results on the three datasets. We can see that with the datasets
increased, our method scaled very well for different k values.
For example, on the Email dataset, for k=100, our method took
27 milliseconds for 1 million strings, and the time increased to
52 milliseconds for 3 million strings and 79 milliseconds for
6 million strings. Note that on the Author dataset the elapsed
time for 10 million strings was smaller than that for 8 million
strings. This is because a large string set may have more
possible answers and thus it may lead to early termination
for finding top-k answers.

VII. CONCLUSION

In this paper, we have studied the problem of top-k string
similarity search. We proposed a progressive framework to
support top-k similarity search. We proposed pivotal entries
to avoid unnecessary computations which can prune large
numbers of useless entries. We extended this technique to
support similarity search. We devised a range-based method
by grouping the pivotal entries which can further reduce the
number of entries. Experimental results show that our method
significantly outperforms existing methods.

REFERENCES

[1] S. Agrawal, K. Chakrabarti, S. Chaudhuri, and V. Ganti. Scalable ad-hoc
entity extraction from text collections. PVLDB, 1(1):945–957, 2008.

[2] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins.
In VLDB, pages 918–929, 2006.

[3] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity
search. In WWW, pages 131–140, 2007.

[4] K. Chakrabarti, S. Chaudhuri, V. Ganti, and D. Xin. An efficient filter
for approximate membership checking. In SIGMOD Conference, pages
805–818, 2008.

[5] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and
efficient fuzzy match for online data cleaning. In SIGMOD Conference,
pages 313–324, 2003.

[6] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for
similarity joins in data cleaning. In ICDE, pages 5–16, 2006.

[7] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan,
and D. Srivastava. Approximate string joins in a database (almost) for
free. In VLDB, pages 491–500, 2001.

[8] M. Hadjieleftheriou, N. Koudas, and D. Srivastava. Incremental main-
tenance of length normalized indexes for approximate string matching.
In SIGMOD Conference, pages 429–440, 2009.

[9] M. Hadjieleftheriou, X. Yu, N. Koudas, and D. Srivastava. Hashed sam-
ples: selectivity estimators for set similarity selection queries. PVLDB,
1(1):201–212, 2008.

[10] S. Ji, G. Li, C. Li, and J. Feng. Efficient interactive fuzzy keyword
search. In WWW, 2009.

[11] T. Kahveci and A. K. Singh. Efficient index structures for string
databases. In VLDB, pages 351–360, 2001.

[12] H. Lee, R. T. Ng, and K. Shim. Extending q-grams to estimate selectivity
of string matching with low edit distance. In VLDB, pages 195–206,
2007.

[13] H. Lee, R. T. Ng, and K. Shim. Power-law based estimation of set
similarity join size. PVLDB, 2(1):658–669, 2009.

[14] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering algorithms for
approximate string searches. In ICDE, pages 257–266, 2008.

[15] G. Li, D. Deng, and J. Feng. Faerie: efficient filtering algorithms for
approximate dictionary-based entity extraction. In SIGMOD Conference,
pages 529–540, 2011.

[16] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A partition-based
method for similarity joins. PVLDB, 5(3):253–264, 2011.

[17] G. Navarro. A guided tour to approximate string matching. ACM
Comput. Surv., 33(1):31–88, 2001.

[18] S. Sarawagi and A. Kirpal. Efficient set joins on similarity predicates.
In SIGMOD Conference, pages 743–754, 2004.

[19] J. Wang, G. Li, and J. Feng. Trie-join: Efficient trie-based string
similarity joins with edit-distance constraints. PVLDB, 3(1):1219–1230,
2010.

[20] W. Wang, C. Xiao, X. Lin, and C. Zhang. Efficient approximate entity
extraction with edit distance constraints. In SIGMOD Conference, 2009.

[21] C. Xiao, W. Wang, and X. Lin. Ed-join: an efficient algorithm for
similarity joins with edit distance constraints. PVLDB, 1(1):933–944,
2008.

[22] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set similarity joins. In
ICDE, pages 916–927, 2009.

[23] Z. Yang, J. Yu, and M. Kitsuregawa. Fast algorithms for top-k
approximate string matching. In AAAI, 2010.

[24] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D. Srivastava. Bed-tree:
an all-purpose index structure for string similarity search based on edit
distance. In SIGMOD Conference, pages 915–926, 2010.

12


	Introduction
	Preliminaries
	Problem Formulation
	Related Works

	A Progressive Framework
	Progressively Computing Edit Distance
	Progressive Similarity Search

	Pivotal Entry Based Method
	Using Pivotal Entries to Compute Edit Distance
	Using Pivotal Triples to Support Similarity Search

	A Range-based Method
	Experimental Study
	Evaluation on Our Techniques
	Comparison with Existing Methods
	Scalability

	Conclusion
	References

