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Abstract String similarity search and join are two impor-

tant operations in data cleaning and integration, which ex-

tend traditional exact search and exact join operations in

databases by tolerating the errors and inconsistencies in the

data. They have many real-world applications, such as spell

checking, duplicate detection, entity resolution, and webpage

clustering. Although these two problems have been exten-

sively studied in the recent decade, there is no thorough sur-

vey. In this paper, we present a comprehensive survey on

string similarity search and join. We first give the problem

definitions and introduce widely-used similarity functions to

quantify the similarity. We then present an extensive set of

algorithms for string similarity search and join. We also dis-

cuss their variants, including approximate entity extraction,

type-ahead search, and approximate substring matching. Fi-

nally, we provide some open datasets and summarize some

research challenges and open problems.

Keywords string similarity, similarity search, similarity

join, top-k

1 Introduction

Selection and join are two important operations in traditional

databases to help users query the data. The underlying data,

however, are rather dirty in real world, due to the typograph-

ical errors and data inconsistencies (e.g., the same entity

has different representations). The exact selection and join

operations cannot return answers if the data are not exactly
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matched. To address this problem, approximate selection and

join (aka similarity search and join) are proposed to extend

exact selection and exact join by tolerating errors and incon-

sistencies, and they have many real-world applications, in-

cluding data cleaning, data integration and data clustering.

Given a set of objects and a query object, similarity search

aims to find similar objects to the query. String similarity

search has many real-world applications, such as data clean-

ing and spell checking. For example, in spell checking, given

a set of words and a query word, string similarity search

wants to find similar words to the query [1–9]. Many in-

formation systems utilize this feature to enhance the usabil-

ity and provide user-friendly functionalities, e.g., Microsoft

Word, Gmail, and Google search engine.

Given two sets of objects, similarity join aims to find all

similar pairs from the two collections. String similarity join

also has many real-world applications, such as data integra-

tion, entity resolution, near duplicate detection, and cluster-

ing [10–21]. For example, assume we want to build an aca-

demic publication search system, there are many database

sources on publications, such as DBLP, DBLife, and Cite-

Seer. The entity may have inconsistencies (typographical er-

rors or difference representations) between records in differ-

ent sources. For instance, “entity resolution”, “entity match-

ing”, “entity alignment”, “deduplication”, and “record link-

age” should refer to the same entity, although they have

different representations. To tolerate the inconsistencies, we

need to utilize the similarity join operations to integrate the

data from multiple data sources.

There are several challenges in string similarity join and

search. The first is how to quantify the similarity between

two objects. Similarity functions are proposed to evaluate the

similarity between the data. There are three main types of
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similarity functions: 1) character-based similarity functions,

2) token-based similarity functions, and 3) hybrid similarity

functions. The first evaluates the similarity by transforming

an object to another based on character transformations. The

second tokenizes each object as a set and utilizes the set simi-

larity to quantify the similarity. The third hybrids the first and

the second, which also models an object as a set of tokens and

allows fuzzy matching between the tokens. We will provide a

comprehensive survey on various similarity functions.

The second is how to efficiently support similarity join and

search, and achieve high performance and scalability. A well-

known method is to employ a filter-and-verification strategy

which includes two steps. The filter step utilizes a lightweight

filtering technique to prune larger numbers of dissimilar pairs

with a little cost, and the verification step verifies the candi-

date pairs that are not pruned by the filter step. Most of ex-

isting algorithms focus on the filter step and the optimization

goal is to make a tradeoff between filtering power and filter-

ing cost, where the filtering power refers to the percentage

of pruned pairs and filtering cost denotes the cost of use the

filter to prune dissimilar pairs. Obviously, the larger the prun-

ing power is, the larger numbers of pairs will be pruned; but

the filtering cost will be higher. Thus it is important to make

a tradeoff between them.

Although string similarity search and join have been exten-

sively studied in decade, there is no thorough survey. In this

paper, we present a comprehensive survey on string similar-

ity search and join. We first give the problem definitions and

then introduce similarity functions to quantify the similarity.

Next, We present an extensive set of algorithms for string

similarity search and join. We also discuss their variants, in-

cluding approximate entity extraction, type-ahead search, and

approximate substring matching. Finally, we provide some

open datasets and summarize some research challenges and

open problems.

The remainder of paper is organized as follows. In Sec-

tion 2, we formally define the string similarity search and

join problems and introduce their variants. We discuss the

similarity search and join algorithms in Sections 3 and 4, re-

spectively. The algorithms to their variants are introduced in

Section 5. In Section 6, we provide several open datasets. Fi-

nally, we conclude our work and discuss research challenges

and open problems in Section 7.

2 Problem formulation

In this section, we first introduce the similarity functions for

quantifying the string similarity, and then formally define

similarity search and join problems.

2.1 Similarity functions

Similarity functions are widely used to evaluate whether two

strings are similar. Given two strings, we can use a similar-

ity function to compute their similarity. If the similarity ex-

ceeds a given threshold, the two strings are said to be similar.

The similarity functions can be broadly classified into three

categories: token-based similarity, character-based similarity,

and hybrid similarity.

• Token-based similarity The token-based similarity mod-

els each string as a set of tokens. These similarity functions

measure the similarity of two strings based on the common

tokens shared by their corresponding token sets. Consider

two strings r and s. We also use them to denote their corre-

sponding token sets if there is no ambiguity. Let r ∩ s denote

the overlap of r and s, and |r| denote the size of r.

The overlap similarity (OLP) takes the size of the overlap

of their token sets as their similarity, i.e., OLP(r, s) = |r ∩ s|.
However, this function does not consider the sizes of the two

token sets and similarity score is not normalized into [0,1]. To

address these limitations, Jaccard similarity (JAC), Cosine

similarity (COS ) and Dice similarity (DICE) are proposed.

• Jaccard similarity: JAC(r, s) =
|r ∩ s|
|r ∪ s|

=
|r ∩ s|

|r + |s| − |r ∩ s| ;

• Cosine similarity: COS (r, s) =
|r ∩ s|√|r| · |s| ;

• Dice similarity: DICE(r, s) =
2|r ∩ s|
|r| + |s| .

For example, given two strings r = { f rontier, computer,

science} and s = {computer, science}, their similarity scores

based on above similarity functions are OLP(r, s) = 2,

JAC(r, s) = 2/3, COS (r, s) = 2/
√

6, and DICE(r, s) = 4/5.

All the token-based similarities reply on the overlap, and

thus to compute the token-based similarity, we can first com-

pute the overlap size, and then the similarity can be easily

calculated. To compute the overlap, we can first build a hash

map for each token in a set, e.g., r, and then check whether

each token in another set, e.g., s, appears in the hash map.

If so, we increase the overlap size by 1. In this way, we can

compute the overlap size with time complexity of O(|r| + |s|).
Obviously, the complexity of computing the token-based sim-

ilarity is also O(|r| + |s|).
• Character-based similarity The character-based similar-
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ity takes each string as a sequence of characters. It measures

the similarity by counting the number of different characters

in these two sequences.

The most representative character-based function is edit

distance (ED), which calculates the minimum number of

single-character edit operations (including insertion, deletion

and substitution) when transforming one string to another.

Thus two strings are said to be similar with respect to edit

distance, if the minimum operation number is smaller than a

give threshold.

To calculate edit distance for two strings, a simple method

is to utilize the dynamic-programming algorithm. We can use

a matrix to record the edit distances of prefixes of two strings,

and each cell in this matrix is calculated based on minimum

edit distance of their prefixes. Formally, let r[1, i] denote the

prefix of r with the first i characters, and s[1, j] denote the

prefix of s with the first j characters. Let T denote the matrix

with |r| + 1 columns and |s| + 1 rows, and T (i, j) is the edit

distance of r[1, i] and s[1, j]. To compute the edit distance

between r[1, i] and s[1, j], we consider the transformations

from r[1, i] to s[1, j]. There are three cases:

Case 1 Insertion: We first transform r[1, i] to s[1, j − 1]

and then insert the j-th character of s, i.e., s[ j]. The number

of edit operations is T (i, j − 1) + 1.

Case 2 Deletion: We first transform r[1, i − 1] to s[1, j]

and then delete the i-th character of r, i.e., r[i]. The number

of edit operations is T (i − 1, j) + 1.

Case 3 Match or substitution: We first transform r[1, i−1]

to s[1, j − 1] and then match or substitute r[i] with s[ j]. If

r[i] = s[ j], we use a match operation and the number of edit

operations is T (i−1, j−1). If r[i] � s[ j], we use a substitution

operation and the number of edit operations is T (i−1, j−1)+1.

In this way, we can compute the matrix T as follows.

T (i, j) = min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (i, j + 1) + 1 Insertion;

T (i − 1, j) + 1 Deletion;
⎧
⎪⎪⎨
⎪⎪⎩

T (i − 1, j − 1) Match : r[i] = s[ j],

T (i − 1, j − 1) + 1 Substitution : r[i] � s[ j],
(1)

where T [0, j] = j and T [i, 0] = i.

Obviously T (|s|, |r|) is the edit distance of r and s. The time

complex for calculating their edit distance is O(|s||r|). For in-

stance, consider two strings r = { f ront} and s = { f loat}, their

edit distance is ED(r, s) = 2 as shown in Fig. 1.

Edit distance is a distance function. The smaller the edit

distance is, the more similar the two strings are. To trans-

form it to a similarity function, a character-based similarity

function, edit similarity (EDS), is proposed to measure the

character-based similarity. The edit similarity between two

strings r and s is EDS (r, s) = 1 − ED(r, s)/max(|r|, |s|). For

instance, consider two strings r = { f ront} and s = { f loat}.
Their edit similarity is EDS (r, s) = 3/5.

Fig. 1 Dynamic programming matrix for two strings

Hamming distance counts the number of mismatched char-

acters in every position of two strings. For example, the ham-

ming distance of “karolin” and “kathrin” is 3, because they

have 3 different characters in positions 3, 4, 51) . Hamming

distance is widely used in telecommunication to estimate er-

rors by counting the number of flipped bit in a fixed-length

binary word, so it is also called the signal distance. The time

complexity of compute the hamming distance is O(|s| + |r|).
Chaudhuri et al. [22] proposed a fuzzy edit-distance based

similarity called generalized edit similarity (GES ) which al-

lows approximately matching in the transformations. GES

takes each string as a sequence of tokens. For each token in

one string, GES allows it approximately match a token in an-

other string. In traditional edit distance, if two tokens are not

matched, it uses a substitution with cost of 1. But in GES , it

assigns a cost based on the edit distance and matches each to-

ken to the most similar token in another string. GES does not

follow symmetry property. For example, consider two strings

s1=“wnba nba” and s2=“nba”. As all tokens in s1 are similar

to “nba” in s2, the similarity is GES (s1, s2) = (0.75 + 1)/2 =

0.875. But if we calculate GES (s2, s1), since “nba” in s2 is

most similar with “nba” in s1, GES (s2, s1) = 1.

Furthermore, they provide an approximation of general-

ized edit similarity (AGES) which can ignore the position of

tokens.

• Hybrid-based similarity Wang et al. [23,24] proposed

hybrid similarity functions. They also tokenize each string

as a set of tokens. Different from the token-based similarity

functions, they allow fuzzy matching between tokens. They

use character-based similarity functions to quantify the simi-

larity between tokens. Since the token-based similarities rely

1) If two strings have different sizes, we can append some characters at the end of the short strings to make them have the same length
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on the overlap, they also need to compute the fuzzy overlap.

To this end, they use a bigraph to model two token sets, where

the nodes are tokens. There is an edge between two nodes if

their character-based similarity exceeds a given threshold and

the edge weight is the similarity. Next, they find the maximal

matching in the bigraph as the fuzzy overlap of the two token

sets, where the matching is a set of edges such that any two

edges do not share a common node in the set. Then they can

use the fuzzy overlap to substitute the overlap, and thus can

use the token-based similarity and define the hybrid similarity

between two token sets.

• Fuzzy Overlap: OLP(r, s) = |r∩̄s|;
• Fuzzy Jaccard: JAC(r, s) =

|r∩̄s|
|r + |s| − |r∩̄s| ;

• Fuzzy Cosine: COS (r, s) =
|r∩̄s|√|r| · |s| ;

• Fuzzy Dice: DICE(r, s) =
2|r∩̄s|
|r| + |s| ,

where |r∩̄s| is the weight of the maximal matching in the bi-

graph.

2.2 Threshold-based similarity search & join

Based on the similarity functions, we can formally define the

string similarity search and join problems.

Definition 1 (string similarity search) Given a set of

strings S , a query string Q, and a similarity function Sim and

a similarity threshold τ, the string similarity search problem

aims to find all the strings from S whose similarity scores to

Q based on the similarity function exceeds a given threshold

τ, i.e., {s|s ∈ S and Sim(s,Q) � τ}.

Definition 2 (string similarity join) Given two sets of

strings R and S , a similarity function Sim and a threshold τ,

string similarity join is to find a set of string pairs whose sim-

ilarity scores are not smaller than τ, i.e., {(r, s)|r ∈ R, s ∈ S

and Sim(r, s) � τ}.

Both of these two problems need a similarity threshold τ.

For similarity measures, they find the results with similarity

not smaller than the threshold τ; but for distance function,

e.g., edit distance, they find the results with similarity not

larger the threshold τ.

In practice, however, it is rather hard to get an appropriate

threshold, because a large threshold returns a larger numbers

of dissimilar results and a small threshold returns few and

even empty result. To address this problem, the top-k similar-

ity search and join are proposed.

2.3 Top-k similarity search & join

Definition 3 (top-k similarity search) Given a string set S ,

a query Q and a similarity function Sim, and an integer k, the

top-k similarity search is to find k most similar strings from

S that have the largest similarity to Q measured by Sim, i.e.,

A ⊆ S , and ∀s ∈ A, s′ ∈ S − A, Sim(s,Q) � Sim(s′,Q).

Definition 4 (top-k similarity join) Given two string sets

S and R and a similarity function Sim and an integer k, the

top-k similarity join problem aims to find the k most similar

string pairs form S and R which have the highest similarity

score based on Sim, i.e., A ⊆ S ∗ R, and ∀(s, r) ∈ A, (s′, r′) ∈
S ∗ R − A, Sim(s, r) � Sim(s′, r′).

2.4 Other variants

Since string similarity search and join have many real ap-

plications, there are some other variants to string similarity

search and join.

• Type-ahead search Type-ahead search, also known as

search-as-you-type, enables instant search that instantly re-

turns results as a user types a query character by character.

For example, when a user types “super” in IMDB2), the sys-

tem shows movies containing this keyword as prefix such as

“supernatural” and “Batman v Superman: Dawn of Justice”.

Obviously, this instant feedback can help the user to navi-

gate the underlying data and easily get the answer. Differ-

ent from “Autocompletion” [25–27] which treats the user’s

query with multiple keywords as a single string, type-ahead

search [28–30] can support multiple-keyword queries. For the

single-keyword queries, it treats the query as a partial key-

word. Support the current query is w. The system returns

strings that contain keywords with a prefix matching or sim-

ilar to w. For the multiple-keyword queries, the last keyword

that the user is typing is taken as a prefix of a keyword, and

the other keywords are taken as the complete keywords. In

the exact search, the system needs to return record contain-

ing all the complete keywords and a keyword with a prefix

matching the partial keyword. In the fuzzy search, the result

needs to contain keywords similar to complete keywords and

a keyword similar to the partial prefix.

•Approximate entity extraction Given a set of entities and

a document, the entity extraction aims to find the substring

from the documents corresponding to the predefined entities.

2) http://www.imdb.com/
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For example, suppose “Named entity recognition is a subtask

of information extraction” is a document from Wikipedia,

and “information extraction” and “entity recognition” are two

entities. Entity extraction can help us find the two predefined

entities. It has many real applications in the fields of informa-

tion retrieval, molecular biology, bioinformatics, and natural

language processing [31–33]. As the documents may contain

errors and an entity may have multiple representations, there

are many recent researches [34–38] focusing on approximate

entity extraction, which aims to identify the substrings from

the documents that are similar to the predefined entities.

• Substring matching Substring matching aims to find all

the substrings from a given set of strings that are similar to

a query. Different from the string similarity search problem,

the results of substring matching need to contain substrings

that are similar to the query, instead of the whole strings. In

other words, no matter how many different tokens there are

between a string and the query, this string could be an an-

swer if one of its substrings is similar to the query. The chal-

lenge of substring matching problem is to quickly identify

the result that contains a substring similar to the query. There

are many algorithms [39–42] based on the efficient filtering-

verification framework or dynamic programming method.

3 Algorithms for string similarity search

In this section, we discuss algorithms on string similarity

search problem. We first introduce algorithms for threshold-

based similarity search, and then present the top-k similarity

search algorithms.

3.1 Threshold-based algorithms

A well-known technique to address the similarity search

problem is count filtering. The basic idea is that if two strings

are similar, they must have at least T common tokens or

q-grams, where q-grams are substrings of a string. For ex-

ample, consider q = 2. The 2-gram set of string “FCS” is

{“FC”, “CS ”}. It is easy to prove that, if two strings r and s

are similar based on the edit distance, they should share at

least max(|r|, |s|)− q+ 1− τ ∗ q q-grams, where τ denotes the

threshold for edit distance [43].

Thus for character-based similarity, we can calculate T as

• Edit distance: T = max(|r|, |s|) − q + 1 − τ ∗ q;

• Hamming distance: T = max(|r|, |s|) − q + 1 − τ ∗ q;

• Edit similarity: T = max(|r|, |s|)− q+ 1− (max(|r|, |s|) ∗
(1 − τ) ∗ q.

For token-based similarity, if two strings are similar, we

can calculate T as follows.

• Jaccard similarity: T =
τ

1 + τ
(|r| + |s|);

• Cosine similarity: T = τ
√|r| · |s|;

• Dice similarity: T =
τ

2
(|r| + |s|).

Then given a query Q, we need to calculate the threshold

T . Since the threshold relies on both the query and the data

string, we need to compute the threshold T that depends only

on Q and can be used for all strings.

For character-based similarity functions, give a query Q,

we calculate T as

• Edit distance: T = |Q| − q + 1 − τ ∗ q;

• Hamming distance: T = |Q| − q + 1 − τ ∗ q;

• Edit similarity: T = |Q| − q + 1 − |Q| ∗ (1 − τ) ∗ q.

For token-based similarity, we can calculate T as follows.

• Jaccard similarity: T =
τ

1 + τ
(|Q| + lmin);

• Cosine similarity: T = τ
√|Q| ∗ lmin;

• Dice similarity: T =
τ

2
(|Q| + lmin),

where lmin is the minimal size for all strings in the data.

• Indexing To check whether a data sting has T common

tokens or q-grams with the query Q, we need to build an ef-

fective index. To achieve this goal, we can build an inverted

index, where the entries are tokens or q-grams, and each en-

try has an inverted list that keeps the strings containing the

token or q-gram.

• Algorithm framework Given a query Q, we first gener-

ate its tokens or q-grams, and then retrieve the inverted lists of
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these tokens or q-grams. Next, it identifies the strings that ap-

pear at least T times on these inverted lists (i.e., containing

at least T common tokens with the query) and takes them as

candidates. Finally, it needs to verify the candidates and re-

moves the false positives. The pseudo code of this framework

is shown in Algorithm 1.

There are several effective list-merge algorithms to identify

the candidates that appear at least T times on the inverted lists

of tokens or q-grams of the query. Algorithms 2–4 show the

pseudo codes of three representative algorithms: ScanCount,

MergeSkip and DevideSkip.

• ScanCount It maintains an |S |-length array where each el-

ement in the array is initialized as 0. Then it scans the inverted

list that contains the tokens of the query. For each record on

these inverted list, ScanCount increases the count in the array

corresponding to the record by one. Finally, the records with

counts larger than the threshold are taken as the candidates.

• MergeSkip MergeSkip requires the string IDs on the in-

verted lists sorted, which is easy to implement when con-

structing the index. It maintains the first element of the in-

verted list lists as a heap. When finding similar strings for

the query, MergeSkip pops the top element from the heap

and increases the count of the string ID corresponding to the

popped string. If the number is larger than a given threshold,

this string can be consider as a candidate and it pushes next

ID on each popped list into the heap. Otherwise, it updates

the heap with new top elements of inverted lists after remov-

ing all the ID smaller than the current top one of the heap. It

repeats these steps until the heap becomes empty.

• DivideSkip DivideSkip is the improved algorithm of

MergeSkip. After generating strings’ ID list, it sorts them

based on their length and partitions them into two groups.

One is a set of l longest lists and the other lists are assigned

into the short list group. For the group with shorter list, Di-

videSkip directly uses MergeSkip to find strings appearing

T − l times as candidates, where T denotes the threshold of

DivideSkip. Then for each record in the candidates, this algo-

rithm checks whether it appears in the longer group and the

total number of occurrences is larger than T . All the results

satisfying these conditions are taken as the final candidates.

Comparing these three methods, ScanCount needs to pro-

cess all the inverted list containing the tokens in the query.

Therefore, for the inverted list with many records, it may not

achieve high performance. MergeSkip can prune many irrele-

vant records by utilizing a heap to count the occurrence num-

ber of tokens for the query. The most efficient algorithm is

DivideSkip which improves MergeSkip by avoiding scanning

long inverted lists.

3) http://fastss.csg.uzh.ch



Minghe YU et al. String similarity search and join: a survey 405

• FastSS3) FastSS utilizes a neighborhood generation based

method to support similarity search for edit distance. Given

a threshold τ, for each string, it generates its neighborhoods

by deleting i characters for i ∈ [0, τ]. Thus suppose the string

length is l. It has
∑τ

i=1

(
l
i

)

neighborhoods. It is easy to prove

that two strings are similar, they must have a same neigh-

borhood. In this way, for each data string, FastSS indexes

its neighborhoods using inverted lists. Then given a query,

FastSS also generates its neighborhoods, retrieves the in-

verted lists of these neighborhoods and takes the strings on

the inverted lists as the candidates. Finally, FastSS needs to

verify the candidates.

• V-Gram Li et al. [44,45] proposed variable-length-grams

to support similarity search. The basic idea is that the fix-

length gram may be not efficient, as some grams may be very

frequent and others are infrequent. To address this problem,

we can judiciously select high-quality grams to avoid gen-

erating very frequent grams. They proposed effective tech-

niques to generate variable length grams.

3.2 Top-k similarity search

Obviously, the threshold-based algorithms can be extended

to support top-k similarity search problem by iteratively tun-

ing the threshold τ. Initially, it estimates a threshold τ, and

computes the results based on τ. If there are larger than k re-

sults, it can select k most similar results as the final answer. If

there are smaller than k results, it needs to increase the thresh-

old and recomputes the answer based on the new threshold.

However this method is rather expensive, as it is rather hard

to estimate an appropriate threshold.

To address this problem, there are some works studying

new efficient algorithms for the top-k similarity search prob-

lem. An efficient way is to utilize a priori queue, which al-

ways calculates the “promising strings” that have the most

probability to be in the final results. Obviously, it is rather

challenging to identify the promising strings. To this end,

there are some recent algorithms.

HS-Topk is a hierarchical framework to support top-k simi-

larity search problem with edit distance [46]. The index struc-

ture they used is called “HS-Tree” which is a hierarchical seg-

ment tree index. It first groups the strings by length. Then it

constructs a complete binary tree for each group of strings

where the root is a dummy node. For each node in these bi-

nary trees, it partitions each string in its parent into two dis-

joint segments. The first segment is the prefix of the string

with length �len/2�, where len denotes the length of the string

and the second segment is the suffix with length len/2�. Iter-

atively, this partition is terminated when one of the segment

in this level has the length of 1. That means, the max level

of an HS-Tree is �log2 l�, where l denotes the length of string

with the maximal length. For example, consider a group of

string {“brother”, “brothel”, “broathe”}. The first level nodes

contain the segments “bro” and {“ther”, “thel”, “athe”}, re-

spectively. For the second level, as one of segment “b” that

is partitioned from “bro” is with length 1, the partition is ter-

minated. To make this structure to support top-k similarity

search, the basic idea is to first visit the promising strings

with large probability to be similar to the query by prun-

ing large numbers of dissimilar strings. To efficiently prun-

ing unnecessary strings, two strategies are provided. One is

greedy-match strategy that utilizes HS-tree structure to prune

the strings with consecutive errors; the other one is a batch-

pruning-based strategy which uses the largest edit distance of

current k candidate results to compare with the lower bound

of strings based on counting the number of matched segment

when traversing the HS-tree to prune strings by edit distance.

The details of the strategies is shown in Ref. [46].

Another study on top-k similarity search with edit-distance
constraints is proposed by Deng et al. [47]. It improves
the traditional dynamic-programming algorithm to calculate
edit distance in order to avoid trying large numbers of edit-
distance thresholds to select an appropriate one. Instead of
calculating every entry in the matrix T which is utilized
to compute the edit distance of two strings r and s with
dynamic-programming method, this algorithm only com-

putes part of entries of the matrix. To be specific, this al-

gorithm initializes the entries with 0 edit distance, and then

based on these, it computes the entries with 1 edit distance.

Iteratively the entry T [|r|][|s|] has been computed, and this is

the edit distance of r and s. To avoid using threshold of edit

distance, this algorithm constructs a trie structure in which

each internal node contains a character and the strings are

only stored in the leaf nodes. For instance, let us still con-

sider the two strings “float" and “front" in the example of Sec-

tion 2, the progressive methods on computing the edit dis-

tance are shown in Fig. 2. In Fig. 2, the computation ter-

minates when T [5][5] has been calculated. Obviously, this

method is much more efficient than the traditional method

as it avoids to compute many irrelevant cells in the matrix.

To utilize the dynamic-programming method described be-

fore on the trie structure, it first finds all the nodes in the path

that can be constructed as the prefix of the query for initial-

ization. In other words, it initializes the entries with no edit

distance. Then it traverses from these nodes by increasing the

number of edit distance until k leaf nodes have been accessed
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and these k strings in these leaves are treated as results. More-

over, it presents an efficient method to reduce the number of

nodes in each iteration for further improving the performance

of calculating edit distance.

Fig. 2 Computing edit distance with progressive dynamic programming

AppGram [48] studies the problem of KNN string similar-

ity search with edit-distance constraints. It proposes a filter-

and-verification approach by utilizing approximate q-gram

matchings. To avoid visiting many dissimilar strings and ver-

ifying frequently, in the filter step, AppGram employs the

CA strategy [49] and f-queue strategy which buffers the fre-

quency of the approximate q-grams to support candidate se-

lection. With these two strategies, AppGram uses a count fil-

tering to pre-prune strings, and processes them in parallel

based on the distance. For the strings with small distances,

it uses a queue to prune, and others are used by two filter-

ing strategies. Finally, it utilizes a max heap to maintain top-

k similar strings with the query. With this pipeline method,

AppGram can significantly reduce the overhead cost of em-

ploying multiple filtering techniques.

3.3 Algorithm summary

In this section, we summarize the algorithms discussed above

and compare their advantages and disadvantages in Table 1

[44–48,50].

4 Algorithms for string similarity join

A straightforward method to string similarity join takes each

data string in a set as a query, and uses the query to find sim-

ilar strings in another set. However this method may not be

efficient, as it cannot share the computations on the first set.

To address this problem, many join algorithms have been pro-

posed [51–53].

4.1 Filter-verification framework

A naive method to enumerate every pair from the two sets

is expensive. To settle this problem, a filter-and-verification

framework is proposed. In the filter step, it uses a lightweight

filtering technique to identify a set of candidate pairs and

prune lots of dissimilar pairs. In the verification step, it veri-

fies every candidate pair and remove the false positives. Since

the verification step is trivial, most of existing algorithms fo-

cus on the filter step.

• Filtering Specifically the filter step aims to design effi-

cient filter algorithms for pruning. To balance pruning power

and filtering cost, the algorithms should be “light-weight"

for pruning. A common solution is to utilize the signature-

based technique in the filter step: we generate the signature

for each string and if two strings are similar, they must share

at least one signature. Using this technique, we can utilize

the inverted list to check whether two strings share a com-

mon signature. Therefore, when finding similar strings for a

given string, we use the signatures in this query to find corre-

sponding inverted lists, and the strings on these inverted lists

are taken as candidates of this string. The pairs that have no

common signatures will be pruned.

Table 1 Comparison on similarity search algorithms

Algorithm Technique Advantage Disadvantage Query Function

FastSS3) Inverted list, deletion
Efficient for short strings

and small thresholds
High space complexity Threshold ED

V-Gram [44,45] Variable length q-gram High pruning power High indexing overhead Threshold ED

HS-Topk [46]
Binary tree,

greedy algorithm
Support various queries

Inefficient filter step

for large thresholds

Threshold

top-k
ED

DevideSkip [50] Inverted list, heap
Support various functions

easy to implement
Cannot support top-k Threshold

JAC, COS,

DICE, ED

TopkSearch [47]
Dynamic

programming

Efficient pruning

technique

Inefficient for

long strings
Top-k ED

AppGram [48]
Approximate grams,

queue, heap

Efficient pruning

strategy
High space complexity Top-k ED
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• Verification In the verification step, a naive method is to

directly compute the similarity of all the candidates. To avoid

unnecessary calculation, some algorithms employ effective

techniques and structures such as max heap, prior queue and

dynamic programming to improve the verification. For in-

stance, consider we use the dynamic programming technique

as shown in Section 2 to find results whose edit distance are

smaller than a given threshold τ. Given two strings r and

s, a matrix T with |r| + 1 rows and |s| + 1 columns is used

to compute their edit distance, and the edit distance of this

two strings is the value of T [|r|][|s|]. Obviously, the other el-

ements in T whose values are larger than τ do not need to be

calculated further, as their length difference is already larger

than the threshold. Thus for each row or column, only 2τ + 1

values are required to compute. Therefore, the complexity

can be improved to O(τ(|s| + |r|)).
• Algorithm framework Algorithm 5 shows an example

of signature-based filter-verification framework of RS-Join

which processes string similarity join for two different string

sets. In the initialization, we generate the signature for each

strings in R and construct a set of inverted list IR for signa-

tures in R (Line 3). Then for each string s in another set S , we

generate its signature set S s (Line 5). For the signature in S s,

we find its corresponding inverted list in IR and the strings on

the inverted list are candidates of s. Next, we verify whether

the strings in this list are similar with string s (Line 6–9). If

the string r satisfies Sim(r, s) > τ, we add this string pair into

result set (Line 9).

4.2 Length filtering

Besides using count filtering to prune dissimilar strings, there

are also some other filtering techniques can be used in the fil-

ter step.

Length filtering is a filtering technique that utilizes the

length of strings for pruning. For example, the basic idea of

GramCount [54] is that if two strings are similar, the length

difference of them cannot be large. Thus, we can partition

strings into several groups that the strings in the same group

have the same length. The pruning condition of length fil-

tering for strings from different groups is designed based on

different similarity functions. Given two strings r and s, if

they are similar strings, they should satisfy:

• Jaccard similarity: τ|s| � |r| � |s|
τ

;

• Cosine similarity: τ2|s| � |r| � |s|
τ2

;

• Dice similarity:
τ

2 − τ |s| � |r| �
2 − τ
τ
|s|;

• Edit distance: |s| − τ � |r| � |s| + τ,

where τ denotes the threshold in each similarity function.

Therefore, the strings from the groups with lengths not sat-

isfying these in-equations cannot be similar strings, and we

can safely prune them.

4.3 Prefix filtering

The basic idea of prefix filtering [55] is to utilize a substring

to evaluate their similarity. If the substrings are not similar

enough, we can prune them. Algorithm 6 shows the frame-

work of prefix filtering. First of all, it sorts all the distinct

tokens from the string set based on a global order such as

the alphabetical order, document frequency (DF) order or in-

verse document frequency (IDF) order, and reorders tokens

in each string with this global order (Lines 3 and 4). After

this initialization, we compare the prefixes of each string for

two datasets (Lines 5–10). If there is an intersection between

them, these two strings could be a result (Line 10). The prefix

is selected based on similarity functions. With the functions

shown in Section 2, consider a string s and a similarity func-

tion threshold τ, the length of prefix for each function can be

computed as follows:

• Overlap similarity: p = |s| − τ + 1;

• Jaccard similarity: p = �(1 − τ) ∗ |s|� + 1;

• Cosine similarity: p = �(1 − τ2) ∗ |s|� + 1;

• Dice similarity: p = �(1 − τ

2 − τ ) ∗ |s|� + 1;

• Edit distance: p = q ∗ τ + 1.

There are many recent studies on string similarity based on

the prefix filtering [56,61], and their goals are to shorten the

prefix. We can classify these studies based on the similarity

functions they support.
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4.3.1 Algorithms for Jaccard, Consine and Dice

PPJoin [59] extends the prefix filtering technique to support

token-based similarity join and shortens the prefix filtering

by estimating the low bound of the union size and the up-

per bound of intersection set of two sets. In PPJoin, dif-

ferent string pairs have different thresholds of common to-

ken number (upper bound) which are generated based on the

similarity threshold and the sizes of two sets. For example,

given two sets r and s, and a threshold τ, we take Jaccard

similarity (JAC) as an example to measure string similar-

ity. That means if the two strings are similar, they should

satisfy JAC(r, s) =
|r ∩ s|
|r ∪ s| � τ. So their upper bound is

τ

τ + 1
· (|r| + |s|), and we can use this threshold to implement

prefix filtering on r and s. For the other similarity function

such as Cosine similarity and Dice similarity, they can use

similar regulations to generate thresholds and implement pre-

fix filtering. They also use some other techniques to do early

termination.

To estimate a tighter upper bound, PPJoin utilizes other fil-

tering in the suffix of strings. It first chooses the middle token

in the suffix of one string and uses it to do a binary search on

the other string. With this position, it can get a new tighter

upper bound. For instance, consider the suffixes in Fig. 3 and

“?” denotes the unknown token. After getting the middle to-

ken Q from suffix rs, it locates the position of Q in the other

suffix ss. As all the tokens are sorted, the tokens only on the

same side may be the same. Therefore, these two suffixes can

only share at most 2 + 1 + 3 = 6 tokens. If we do not have

the suffix filtering, we suppose all the tokens of rs are in the

suffix ss, which means they share seven common tokens. Ob-

viously, suffix filtering can help PPJoin to get tighter upper

bound to improve pruning power.

Fig. 3 Suffix filtering example

4.3.2 Algorithms for edit distance

• ED-Join Xiao et al. proposed an algorithm called Ed-

Join [58] to shorten the prefix length for edit distance. In

the filter step, Ed-Join employs two optimized filtering tech-

niques to reduce the number of candidates obtained from an-

alyzing the locations and contents of dissimilar string pairs.

The location-based filtering can remove unnecessary q-grams

to reduce the length of prefix. The content-based filtering is

based on contents which utilizes a probing window to detect

clustered mismatched substrings. For example, consider the

two strings s = c1, c2, c3, c4, c5, c6 and t = c1, c2, e1, e2, c5, c6.

Suppose q = 2 and the edit distance threshold τ = 1. Suppose

the probing window covers the underlined substrings. Since

there are already two different characters, the two strings can-

not be similar and Ed-Join can prune this string pair.

• QChunk QChunk [56,62] is an algorithm which supports

edit distance for string similarity join. In this algorithm, they

extract q-grams and q-chunks from data and query strings.

Q-chunks are the set of q-length substrings which start from

1 + i ∗ q positions (0 � i � (|s| − 1)/q) for a string s. In other

word, q-chunks are the disjoint q-grams of s. To make the

last q-chunk has exactly q characters, we can use some spa-

tial character such as $ to fill the vacancy. For example, the

q-chunk set of “FCS" is {“FC”, “S $”}. Let gq and cq denote

the set of q-grams and q-chunks, respectively. QChunk algo-

rithm proves that if two strings r and s are similar, that is,

ED(r, s) � τ, they should satisfy two properties:

1) |gq(r) ∩ cq(s)| �  |s|
q
� − τ, and

2) |cq(r) ∩ gq(s)| �  |r|
q
� − τ.

Based on these two properties, QChunk provides an algo-

rithm with two phases to prune dissimilar string pairs and

implements string similarity join. It first generates the can-

didates with two strategies. The first strategy is to generate

candidates by indexing q-grams of r and utilizing q-chunks

of s to match the indexed q-grams, and the other is to in-

dex q-chunks of r and use q-grams of s to generate candi-

dates. These two strategies are applied into prefix filtering by

QChunk for string similarity join. The second phase is to use

an effective technique to further reduce the number of candi-

dates. The detail of QChunk can be found in Ref. [56].

• Adapt prefix filtering Wang et al. [63] improved the pre-
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fix filtering by selecting more tokens into the prefix. Recall

the prefix filtering, it selects the first p tokens as the prefix,

and if two strings are similar, their prefixes share at least one

common signature. If we select one more token into the pre-

fix, then if two strings are similar, their prefixes share at least

2 common tokens. Similarly, if we select c more tokens into

the prefix, then if two strings are similar, their prefixes share

at least c+1 common tokens. Obviously, a large c reduces the

number of candidates, but it has high filtering cost. Thus it is

important to select an appropriate c. However it is rather chal-

lenging to select s as it is hard to accurately estimate the can-

didate number for a given c. To address this problem, Wang

et al. proposed effective indexes and techniques to select an

appropriate c.

• Pivotal prefix Deng et al. [64] proposed the pivotal pre-

fix to shorten the prefix length. The basic idea is that for

two strings, we can select different length of prefixes like

QChunk. If we can shorten the prefix length, we can im-

prove the performance. They studied how to reduce the pre-

fix length with dynamic-programming algorithm and use an

alignment filter to prune strings with consecutive errors, so

that their algorithm can prune large numbers of dissimilar

strings. The details of this algorithm is shown in Ref. [64].

4.4 Verification algorithms

It is efficient to verify a candidate for token-based similarity,

but it is expensive for edit distance as discussed in Section 1.

To address this problem, Li et al. [65,66] proposed progres-

sive methods to verify the candidate for edit distance. The

basic idea is that we can compute the exact edit distance of

prefixes and then estimate the edit distance for suffixes using

length filtering (or other filtering techniques). If the estimated

edit distance is larger than the threshold, the candidate cannot

be similar and we can prune the candidate.

Li et al. proposed a prefix tree to support string similarity

join and search on multi-attribute data [67]. In the filter step,

to holistically prune dissimilar results, they respectively pro-

pose a cost-based method and a budget-based method with

high-quality prefix trees for similarity search and join prob-

lems. In the verification step, they design a hybrid verification

algorithm to improve verification performance. It first sorts

the filters of each attribute by their filtering performance.

Then for each candidate generated by the prefix trees, this

algorithm uses these filters to verify whether it could be a re-

sult, and updates the expected cost. If it can pass all these

ordered filters, this candidate is added into the result set. Re-

peatedly, this algorithm can generate the final results. In addi-

tion, this algorithm can be extended to support other filtering

techniques, including count filtering, length filtering, content

filtering, and prefix filtering.

4.5 Other threshold-based algorithms

In this subsection, we introduce some other algorithms utiliz-

ing other indexing structures to support threshold-based sim-

ilarity join.

•M-tree M-tree [68] is a classic tree-based index structure

for metric-space similarity. In an m-tree, the distance between

two different level nodes represents their similarity, and nodes

with the same parent are divided by minimum “overlap”. In

addition, the strings are only stored in the leaf nodes and the

internal nodes are used for pruning. The most important part

of m-tree is the internal node. In an internal node N, it stores

a landmark string Nm and a covering radius Nr. These two pa-

rameters represent all the children in the subtree rooted by N

which have a distance to Nm no larger than Nr. Utilizing this

structure, we can utilize the triangle inequality when travers-

ing an m-tree to find similar strings for the query. Given a

string query Q, a threshold τ and a function d(∗, ∗) for com-

puting the distance between two strings, when we visit an

internal node i, if d(im,Q) > ir + τ, node i can be pruned.

Otherwise, we access its children. Iteratively, we can find all

similar strings for the query. Different M-trees have different

pruning power, so it is important to select a high-quality M-

tree. There are several algorithms to improve it for similarity

search problem [69,70].

• Trie-Join The trie structure is widely applied in string

similarity problems [36,71,72]. Consider a token-based sim-

ilarity. Before constructing a trie structure, it first fixes all

the tokens from the dataset in a global order (e.g., the al-

phabetical order), and then uses this order to reorder tokens

in each string. Finally, it constructs a trie structure. In the trie

structure, each node stores a token (except the root), and each

string from dataset corresponds to a unique path from the root

to a leaf node. Strings with a common prefix share the same

ancestors. For the character-based similarity, it has the same

process to build a tree structure and the only difference is that

the tree nodes are characters.

Trie-join [71,72] utilizes the trie structure to solve string

similarity join problem. First it provides a definition called

“active node”. A node n in the trie is called an active node

of a string s if their edit distance is not larger than the given

threshold τ. In other words, all the descendants of n will be

similar with s and all the other nodes cannot be similar to

s. Therefore, the basic idea of Trie-join is if an active node
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r of s is a leaf node, < r, s > can be a similar string pair.

To efficiently find string pairs based on this idea, Trie-Join

incrementally constructs the trie structure and constructs the

active node set for a node utilizing that of its parent, which

can avoid repeated calculation when computing the active

nodes among sibling nodes. To further improve the algorithm,

Trie-join presents a partition-based method, which partitions

strings into two parts and the threshold τ can reduce to τ/2.

With the two tries of these two parts of strings, it can effi-

ciently find join results for large edit-distance thresholds.

• Pass-Join Pass-Join [65,66] utilizes the pigeon-hole prin-

ciple to settle similarity join problem with edit-distance sim-

ilarity. The basic idea is that given two strings r and s and an

edit distance threshold τ, it splits r into τ + 1 segments such

that s is similar with r only if one of segments of r is a sub-

string of s. For example, consider two strings “orange” and

“apple” and the threshold is 2. We can split the first string

as {“or”, “an”, “ge”}. As there is no segment of “orange”

matching any substrings of “apple”, these two strings can-

not be similar. Based on this theory, Pass-Join creates a set

of inverted indices for the τ + 1 segments. Then for each

string, it selects some of its substrings and utilizes them to

find candidate pairs using the inverted indices. Finally, it ver-

ifies the candidate to generate results. To select substrings

with the minimum size, Pass-Join develops efficient tech-

nique that the number of selected substrings can be reduced

to �(r2 − Δ2)/2�+τ+1, where Δ =
∣
∣
∣|r|− |s|∣∣∣ denotes the length

difference between r and s.

Pass-Join can also support other similarity functions. For

the token-based similarity functions, we can transform the

threshold to the lower bound of common tokens between two

strings and utilize this bound to generate the threshold. Us-

ing the functions described in Section 2, the thresholds for

Jaccard, Cosine and Dice Similarity are τ = �l ∗ (1 − α)/α�,
τ = �l ∗ (1 − α2)/α2�, and τ = �l ∗ [2(1 − α)]/α�, respectively,

where α denotes the original threshold in each function.

• PARTENUM Arasu et al. presented a partition-

enumeration-based algorithm for set similarity join [73]. In

this algorithm, it combines partition-based and enumeration-

based method to solve the problem. For the partition-based

method, each vector is divided into τ + k pieces, where τ

is a threshold and k is a constant. The two vectors having

a hamming distance no larger than τ must have at least k

common pieces. Based on the partition-based method, the

scheme of the enumeration-based method is that for each

vector v, it picks k partitions in every possible way, and for

each selection, it generates a signature by partitioning v into

these k pieces. With the two methods, for a given vector v,

PARTENUM partitions it into (τ + 1)/2 segments and gener-

ates a set of signatures of each segment based on enumera-

tion scheme with a new threshold k = 1. Therefore, in the

PARTENUM algorithm, the partition-based method reduces

generating signatures for vectors of smaller dimensions; for a

smaller threshold, the enumeration-based method makes the

number of signatures generated become more tractable for a

smaller threshold.

4.6 Top-k similarity join

Xiao et al. [74] extended the prefix filtering to support top-k

similarity join. It also first sorts the tokens in all strings in

a global order. Then for each token set, it assigns each to-

ken with a weight which is the largest possible similarity of

other sets to this set, in the case that they do not share the

tokens before this token. For example, consider “FCS, Jour-

nal, Computer Science”. The weights of the four tokens are

1, 0.75, 0.5, 0.25. If another set shares “Journal” with this set

but without sharing “FCS”, the maximum similarity is 0.75.

In this way, it first accesses the first token and uses the weight

as an upper bound. Then it always first visits the tokens with

largest upper bounds. It uses a priority queue to store the cur-

rent top-k candidates. If the similarity of the top-k candidates

is larger than the largest upper bound, the algorithm can ter-

minate.

• Bed-Tree Bed-tree is proposed to support both top-k and

threshold-based similarity join problem with a B+-tree struc-

ture [75]. It first transforms strings to integer values with

some mapping functions which can support to construct a B+-

tree. When comparing two trees to find similar string pairs,

for the two internal nodes accessed, the children node pairs

which contain the strings with edit distance smaller than the

current threshold can be further accessed. Iteratively, it termi-

nates when visiting the leaf nodes, and verifies the strings on

these nodes to check whether they could be the top-k results.

Based on this general theory of using B+-tree, to support sim-

ilarity join problem, Bed-tree uses several mapping functions

to transform strings to integer values including dictionary or-

der, gram counting order and gram location order. The trans-

formations based on these three orders are described in Ref.

[75].

4.7 Parallel similarity join

In some applications, the datasets are rather large, e.g., clus-

tering web pages in search engines, so we need to use par-

allel techniques. To this end, there are some studies on sim-

ilarity joins with map-reduce [76–80]. Most of them utilize
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the prefix to generate the key-value pairs. Deng et al. [76]

proposed Mass-Join and utilized the segments to generate the

key-value pairs. As the number of segments is smaller than

that of grams, Mass-Join has better performance.

4.8 Using prefix filtering to improve similarity search

The prefix filtering technique can also be used to support the

similarity search problem with a minor change. The differ-

ence between similarity search and join is that for join, we

are given a threshold; but for similarity search, each query

has its own threshold and we need to use an index to sup-

port all the thresholds. To address this problem, Wang et al.

proposed a delta-index-based method [63]. They group the

strings based on their lengths. In the same group, they build

a delta index: for the first token, they build an inverted index

and keep the maximal weight like the top-k join method; sim-

ilarly they build an inverted index for other tokens. It is easy

to prove that the sum of these delta indexes has the same size

of the traditional inverted index on all tokens. Then given a

query, they utilize the indexes with the similarity larger than

the threshold to compute the answers.

4.9 Algorithm summary

To further illustrate similarity join algorithms, we summarize

their techniques and compare their advantages and disadvan-

tages in this section. Table 2 shows the details of summary

and comparison.

5 Other variants

In this section, we introduce the algorithms for other variants

for string similarity problems.

5.1 Type-ahead search

Li et al. [26,81,82] and Chaudhuri et al. [27] studied the type-

ahead search problems. They utilize the trie structure to index

the strings. Then given a query, they find the trie nodes that

are similar to the query, called active nodes. The leaf descen-

dants of the active nodes are the answers of the query. They

study how to efficiently and incrementally identify the active

nodes. Xiao et al. [83] recently proposed to use suffix to in-

dex the trie structure to improve the performance, at the cost

of involving large indexes.

Li et al. [81] studied how to return top-k answers. They
rank an answer by combing the edit distance to the query and
the weight of each record. For the two basic list-accessing
methods: random access and sort access, they develop a
forward-list-based method and a heap-based method with
list-materialization techniques for supporting these two ac-
cess methods, respectively. The forward-list-based method

utilizes a trie of keywords extracted from all records, an in-
verted list for the correspondence of records and keywords,
and a forward index of records and keywords in it with its
weight, to gradually narrow the candidates of results down.
To support sort access, it uses a sorted list for complete key-

words. For the partial keywords, it uses a max heap to or-

der the records from inverted list of leaf nodes which has an

ancestor path of this partial keywords. Then they can merge

these two parts to get top-k results with the maximal weight.

To further improve the performance, this algorithm utilizes

a materialized list to reduce the number of lists in the max

heap, and decreases the cost of push/pop operations on the

heap. Moreover, they improve the efficiency of sort access by

using a list-pruning technique for fuzzy type-ahead search.

Li et al. [84] also provide an algorithm that utilizes SQL

for type-ahead search. This algorithm can support both sin-

gle and multiple keyword queries. The algorithm maintains

three tables to support type-ahead search. The first one is an

inverted list of records and their keywords. The second table

stores the sorted keywords in the alphabet order, and each

keyword is assigned with an ID. Then it generates all the pre-

fixes of each keyword, and construct, a new table to store pre-

fixes and their ranges of keywords containing them. Utilizing

Table 2 Comparison on similarity join algorithms

Algorithm Technique Advantage Disadvantage Query Function

GramCount [54] Length filter The first gram based work High complexity Threshold JAC, COS, DICE, ED

QChunk [56] Disjoint grams High pruning power Inefficient for long strings Threshold ED

ED-Join [58] Content filter Shorten the prefix Cannot support JAC Threshold ED

PPJoin [59] Prefix & suffix filter Efficient filter technique Cannot support ED Threshold JAC, COS, DICE

Pass Join [65,66] Partition High pruning power – Threshold JAC, COS, DICE, ED

M-tree [68] Index tree, cluster Metric space Inefficient than others Threshold JAC, COS, DICE, ED

Trie-Join [71,72] Trie Efficient for short strings Expensive for long strings Threshold JAC, COS, DICE, ED

Topk-Join [74] Prefix filter priori queue Efficient for short strings High space complexity Top-k JAC, COS, DICE, ED

Bed-Join [75] B+-tree Small index Poor filter power Top-k ED

PartEnum [73] Partition efficient for small threshold High time complexity Threshold JAC, COS, DICE, ED
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these three tables, when a user is typing a query, the algo-

rithm, for each keyword, utilizes the prefix table to find the

range of keywords and uses the inverted list to get the records

containing these keywords.

For the fuzzy search, it proposes a new neighborhood-

generation-based method. The basic idea is that two strings

are similar only if they have common neighbors obtained by

deleting characters from the strings. With a word-level incre-

mental method that uses the previously computed result for

searching next keyword, this algorithm can efficiently sup-

port multiple-keyword queries.

5.2 Approximate entity extraction algorithm

Wang et al. [35] proposed a neighborhood based method to

support entity extraction. They first generate the neighbor-

hoods for each entity and use the inverted lists to index the

neighborhoods. Then they scan the document and utilize the

neighborhoods to identify the candidates. They also discuss

how to reduce the neighborhood number.

Faerie [23,38,85,86] is a unified framework for support-

ing multiple similarity functions for approximate dictionary-

based entity extraction. Their basic idea is that many sub-

strings in the document have overlap and it can avoid re-

dundant computation by sharing the calculation across the

overlaps. In this unified framework, it considers each entity

and document as a set of tokens where the token is a q-gram

of a string. With these token sets, it transforms the similar-

ity/dissimilarity as the overlap similarity. Therefore, consider

two strings r and s. The conditions for making these two

string similar with transformed similarity functions are:

• Jaccard similarity: |r ∩ s| � (|r| + |s|) ∗ τ

1 + τ
�;

• Cosine similarity: |r ∩ s| �
√

|r|̇|s| ∗ τ;
• Dice similarity: |r ∩ s| � (|r| + |s|) ∗ τ

2
�;

• Edit distance: |r ∩ s| � max(|r|, |s|) − τ ∗ q;

• Edit similarity: |r∩s| � max(|r|, |s|)+q−1−max(|r|, |s|)∗
(1 − τ) ∗ q�,

where τ denotes the original threshold in each other similarity

function.

With these transformed functions, Faerie presents a heap-

based filtering algorithm to utilize the shared computation

across overlaps, which constructs a single heap on top of in-

verted lists of tokens in the document and scans every in-

verted list only once. The entity and the substrings of the

document with the occurrence number no smaller than the

lower bound of the overlap similarity that are calculated by

a binary-search-based technique, could be a candidate. Even-

tually, it can generate results by verifying the candidates.

Deng et al. [36] develop a trie-based method to solve ap-

proximate entity extraction problem. In this algorithm, it first

partitions each entity into different disjoint segments and con-

structs a trie structure for these segments. Therefore, for the

substrings in the document, it can use this trie to find ap-

proximate matching entities based on the fact that if a sub-

string of document approximately matches this entity, it must

contain at least one segment of the entity [87]. It develops a

search-and-extension method for identifying answers, which

fist generates the candidate entities when traversing the trie,

and then verifies them to check whether they are results. To

avoid involving large numbers of segments, it uses a length-

based pruning and even-partition weight as an upper bound to

improve performance. Different from Faerie which needs to

involve large index size for the gram-based index structure,

segments in this algorithm are disjoint, so it has less space

complex than Faerie.

5.3 Substring matching algorithm

Kim et al. [39] present an algorithm for top-k approximate

substring matching to find k strings containing substrings that

are most similar to the query for edit distance. In this algo-

rithm, it develops a dynamic programming method to evalu-

ate the lower bound of substrings’ similarity, improves the

method with skipping irrelevant strings, and efficiently lo-

cates the substrings with a q-gram inverted list. With the

lower bound lb, it generates common positional q-gram list

for each strings by reading the posting lists of q-grams in

query string sequentially in increasing order of string IDs,

and calculates first k strings’ similarity as current results.

Then, for the other strings, if the lower bound of similarity

between a string and the query is smaller than the kth small-

est string in the results, it computes the actual similarity value

to verify whether this is a result. When the edit distance of the

kth string of results becomes at most lb, it updates lb and se-

lects a distinct q-gram set with size lb in which each q-gram

has no overlap, so that it can skip computing the edit distance

of query and strings which has no q-gram in this set. There-

fore, whenever the edit distance of the kth smallest string in

the result decreases, it constructs a new q-gram set to skip

computation. Repeatedly, after all the strings in the dataset

have been computed or skipped, it can generate the final re-

sults.

Ge et al. [41] studied the approximate substring matching

over uncertain strings. As uncertainty usually incurs consid-
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erable large index, it generates a q-gram index which guaran-

tees that the increased index due to uncertainty can be small

and tunable, since q is a system parameter and is usually

small [88]. For this index, it proposes a multilevel filtering

technique based on measuring signature distance. It uses a ta-

ble to store signatures. After scanning this tree and generating

candidates, it verifies the candidates based on the upper and

lower bounds that are calculated by their algorithm to get an-

swers. Based on the q-gram index and verification technique,

this algorithm can significantly reduce the cost.

6 Open datasets

To compare the string similarity search and join algorithms,

we need to use appropriate datasets. We introduce some open

datasets that were widely used in previous work. The details

of these datasets are shown in Tables 3 and 4.

• Querylog4) is a set of query log strings and the average

length is 18.9.

• Word5) is a set of real English words with 8.7 average

length.

• Geome6) is a dataset of human gene sequences.

• DBLP7) is a real dataset for publication, and consists of

title, authors and its provenance.

• PubMed8) is a title set in which each title is obtained

from medical publications.

• Trec9) is a set of documents from the well-known

benchmark in information retrieval.

• Enron10) includes a set of emails with titles and bodies.

• Wiki11) includes a set of English wikipedia webpages.

The first three datasets can be used for character-based

similarity, and the last five datasets can be used for token-

based similarity.

Table 3 Datasets for character-based similarity

Dataset Cardinality Avg Len Max Len Size/M

Word 122 823 8.7 29 1.2

Querylog 500 000 18.9 500 9.7

Genome 250 000 100 100 25

Table 4 Datasets for token-based similarity

Dataset Cardinality Avg Tok Max Tok Size

DBLP 1 088 728 10.73 43 7.5G

PubMed 504 881 5.48 26 4.4G

Trec 347 949 75 273 103M

Enron 245 567 135 3 162 129M

Wiki 4 000 000 213 36 907 3.2G

Jiang et al. provided a good experimental study on string

similarity joins [89]. There was also a competition on string

similarity search join and search organized by EDBT 2013

[90,91]. Many open datasets and experimental results were

provided in these studies.

7 Conclusion and open problems

In this paper, we provide a comprehensive survey on string

similarity search and join. We formalize the problems of

string similarity search and join and other variants. For the

string similarity search and join problems, we introduce the

filtering-and-verification framework. For similarity search,

we introduce the list-merge algorithms. For similarity join,

we introduce the prefix filtering technique. We also discuss

other effective techniques. For the other variants including

type-ahead search, approximate entity extraction and approx-

imate substring matching, we also discuss recent studies to

these problems. Finally, some open datasets are provided.

There are also many open problems.

1) New similarity measures

Although edit distance and Jaccard are widely used, they

may not be power enough in real applications, especially in

big data era. Therefore, it is very important to learn new sim-

ilarity measures based on some given matching examples.

2) Crowdsourced similarity join and search

In many applications, similarity measures may not work

well, and it is rather hard to identify similar pairs because

we need to utilize human recognition techniques to judge

whether two strings are similar. Alternatively, we can ask the

human to determine whether two strings are similar. Thus

crowdsourced similarity join and search is a new research di-

rection.

3) Using knowledge base to improve the similarity search

4) http://www.gregsadetsky.com/aol-data/
5) http://dbgroup.cs.tsinghua.edu.cn/ligl/simjoin/
6) http://www.1000genomes.org/
7) http://dblp.uni-trier.de/xml/
8) http://www.ncbi.nlm.nih.gov/pubmed
9) http://trec.nist.gov/data/t9_filtering.html
10) http://www.cs.cmu.edu/ enron/
11) http://dumps.wikimedia.org/
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and join
Existing studies only consider the textual similarity but do

not consider the semantics behind the data. Obviously, the se-

mantics is rather important in evaluating the similarity. Thus

we can utilize the knowledge base to quantify the similar-

ity, and it is rather challenging to define knowledge-aware

similarity and devise efficient algorithms to support this new

similarity.
4) Similarity join and search on multiple attribute data
Most of existing algorithms focus on single attribute data.

However in practice, the data have multiple attributes, e.g.,

structured data. It is important to support similarity search on

multiple attribute data.
5) Similarity search and join systems
Most of existing methods employ a standalone way to

study the search and join algorithms, but do not push the

techniques into RDBMS. If we can deploy the techniques into

RDBMS, it can benefit many applications using RDBMS.
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