SDN

• B4: Experience with a globally deployed software defined WAN – Jain et.al. SIGCOMM 2013

• SWAN: Achieving high utilization with software defined WAN, Hong et al., SIGCOMM 2013

• OPenSketch: Minlan YU et.al., NSDI 2013

• Ack: Slides from Conference presentations
B4: Experience with a Globally-Deployed Software WAN
B4: Google’s Software Defined WAN
B4: Google’s Software Defined WAN

• Google’s private WAN connecting its data centers
 – Elastic bandwidth demands
 • Can tolerate periodic failures with temporary BW reduction
 – Small number of sites
 • Allows special optimization
 – Complete control of end application
 • Application priorities and control bursts
 – Cost Sensitivity
 • Unsustainable cost projection with traditional approach (2-3x cost of a fully utilized WAN).
B4 SDN architecture

• Switch hardware (Google custom designed with commodity silicon)
 – Forwards traffic
 – No complex control software

• OpenFlow controllers (OFC – ONIX based)
 – Maintain network state based on network control application directive and switch events
 – Instruct switches to set forwarding entries

• Central application
 – Central control of the entire network
B4 architecture overview
Traditional WAN routing

- Treat all bits the same
- 30% ~ 40% average utilization
- Cost of bandwidth, High-end routing gear
Traffic priority

- User data copies to remote data centers for availability/durability (lowest volume, most latency intensive, highest priority)
- Remote storage access for computation over distributed data sources
- Large-Scale data push synchronizing state across multiple data centers (highest volume, least latency intensive, lowest priority)

- Centralized traffic Engineering (TE)
 - Near 100% utilization
 - Fast, global convergence for failures.
B4 design decisions

- B4 routers built from merchant switch silicon
 - APPS trade bandwidth for fault tolerance
 - Edge control \rightarrow reduced the buffer size, number of B4 site \rightarrow small forwarding table
 - Low router cost \rightarrow scale network capacity
- Drive links to 100% utilization
 - Effective use of expensive long haul transport
 - High average bandwidth over predictability: largest bandwidth consumers can adapt to bandwidth availability
- Centralized traffic engineering
 - Multipathing
 - Application classification and priority
 - Improved over traditional TE schemes
 - Faster, deterministic global convergence for failures
- Separate hardware from software
 - Customized routing
 - Rapid iterating of software protocols
 - Easier to protect against common case software failures
 - Agnostic to range of hardware deployment
Centerlized TE: convergence after failure

- Flows: R1->R6: 20; R2->R6: 20; R4->R6: 20
Centerlized TE: convergence after failure

- Flows: R1→R6: 20; R2→R6: 20; R4→R6: 20
Centerlized TE: convergence after failure

- Flows: $R1 \to R6: 20; \ R2 \to R6: 20; \ R4 \to R6: 20$

- R5-R6 link fails
 - R1, R2, R4 autonomously find next best path
Centerlized TE: convergence after failure

- Flows: R1->R6: 20; R2->R6: 20; R4->R6: 20

- R5-R6 link fails
 - R1, R2, R4 *autonomously* try for next best path
 - R1, R2, R4 push 20 altogether
Centerlized TE: convergence after failure

- Flows: R1->R6: 20; R2->R6: 20; R4->R6: 20

- R5-R6 link fails
 - R1, R2, R4 autonomously try for next best path
 - R1 wins, R2, R4 retry for next best path
 - R2 wins this round, R4 retries again
Centerlized TE: convergence after failure

- Flows: R1->R6: 20; R2->R6: 20; R4->R6: 20

- R5-R6 link fails
 - R1, R2, R4 autonomously try for next best path
 - R1 wins, R2, R4 retry for next best path
 - R2 wins this round, R4 retries again
 - R4 finally gets third best path!
Centerlized TE: convergence after failure

- **Simple topology**

- **Flows:**
 - R1->R6: 20; R2->R6: 20; R4->R6: 20

- R5-R6 fails
 - R5 informs TE, which programs routers in one shot
Centerlized TE: convergence after failure

- Simple topology

- Flows:
 - R1->R6: 20; R2->R6: 20; R4->R6: 20

- R5-R6 link fails
 - R5 informs TE, which programs routers in one shot
 - Leads to faster realization of target optimum
Advantage of Centralized TE

- Better network utilization with global pictures
- Converges faster to target optimum on failure
- Allows more control and specifying intend
 - Deterministic behavior simplifies planning vs. overprovisioning for worst cast variability
- Can mirror production event streams for testing
- Controller uses modern server hardware – better performance (50x!)
Background: Inter-DC WANs

Inter-DC WANs are critical

Inter-DC WANs are highly expensive
Two key problems

Poor efficiency
average utilization over time of busy links is only 30-50%

Poor sharing
little support for flexible resource sharing

Why?
One cause of inefficiency:
lack of coordination
One cause of inefficiency: lack of coordination

![Graph showing background and non-background traffic over time.](image)

- **Norm. traffic rate**
- **Background traffic**
- **Non-background traffic**

Time (~ one day)
Local, greedy resource allocation hurts efficiency

flow arrival order: A, B, C
each link can carry at most one flow

<table>
<thead>
<tr>
<th>Flow</th>
<th>Src → Dst</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 → 6</td>
</tr>
<tr>
<td>B</td>
<td>3 → 6</td>
</tr>
<tr>
<td>C</td>
<td>4 → 6</td>
</tr>
</tbody>
</table>
Local, greedy resource allocation hurts efficiency

flow arrival order: A, B, C
each link can carry at most one flow

<table>
<thead>
<tr>
<th>Flow</th>
<th>Src → Dst</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 → 6</td>
</tr>
<tr>
<td>B</td>
<td>3 → 6</td>
</tr>
<tr>
<td>C</td>
<td>4 → 6</td>
</tr>
</tbody>
</table>
Local, greedy resource allocation hurts efficiency

flow arrival order: A, B, C
each link can carry at most one flow

MPLS-TE

Optimal
System flow

[global optimization for high utilization]

SWAN controller

traffic demand → rate allocation

Hosts

network configuration → topology, traffic

WAN switches
Software-Defined Traffic Measurement with OpenSketch

Lavanya Jose
Stanford University

Joint work with Minlan Yu and Rui Miao at USC
Management is Control + Measurement

- Control
 - Access Control
 - Routing

- Measure
 - DDoS
 - Flow Size Distribution
Questions we want to ask

1. Who’s sending a lot to 10.0.2.0/16? (Heavy Hitters)
2. How are flow sizes distributed?
3. Is someone doing a port scan?
4. Is someone being DDoS-ed?
5. Who’s getting traffic from blacklisted IPs?
6. How many people downloaded files from 10.0.2.1?
Sketches as building blocks

- Sketch
- Data structure
- Support approx. computing some function of data
- Much smaller than actual data
- Streaming, small per-item processing cost
- Provable space-accuracy tradeoffs
Sketches as building blocks

e.g., Count Min sketch
to store counts of frequent source IP addresses

Source IP address: 23.43.12.1

(Cormode 2005)
Sketches as building blocks

e.g., Count Min sketch
to store counts of frequent source IP addresses

packets from 23.43.12.1?

query

estimate

pick min.

(Cormode 2005)
Bitmap Sketch with the Pipeline

to store number of different destination port numbers

different destination port numbers?

query

1 0 1 0 0 1 0 0 1 0

estimate

6/10

Six counters out of ten are 0.

(Whang 1990)

estimate

$N = -10 \ln(6/10) = 5$
3-stage pipeline

Packet

Hash

Classify

Count

header fields

pick fields to hash

hash values

pick field to match

hash values

compute counter addresses

header fields

header fields
3-stage pipeline

1. Who’s sending a lot to 10.0.2.0/16? (Heavy Hitters)
2. How are flow sizes distributed?
3. Is someone doing a port scan?

- Identifying heavy “keys”
- Counting, storing statistics
- Picking packets to measure

- Hash
- Classify
- Count
Similar functions, diverse configurations

- Count Min: 3
- Bloom Filters: 7-8
- Fixed size reversible sketch: 5
- Can share hash functions

Hash

4-8 simple hash functions per question
Similar functions, diverse configurations

- Match a prefix/value: 1 rule
- Match a set of values: Bloom Filters

Classify

30-40 TCAM entries per question maximum
Similar functions, diverse configurations

Count

From simulation and worst case bounds for different tasks

up to 8MB SRAM
Conclusion

• Current switches good for flow statistics
• But they don’t answer basic measurement questions
• Like identify heavy hitters, detect DDoS attacks, port scans, traffic from blacklisted IP address etc.
Takeaway

• Hash, classify and count pipeline in the Data Plane

• And sketch based building blocks in the Control Plane

• Make measurement in switches efficient and easy