SDN

- B4: Experience with a globally deployed software defined WAN – Jain et.al. SIGCOMM 2013
- SWAN: Achieving high utilization with software defined WAN, Hong et al., SIGCOMM 2013
- OPenSketch: Minlan YU et.al., NSDI 2013
- Ack: Slides from Conference presentations

B4: Experience with a Globally-Deployed Software WAN

- Google’s private WAN connecting its data centers
 - Elastic bandwidth demands
 - Can tolerate periodic failures with temporary BW reduction
 - Small number of sites
 - Allows special optimization
 - Complete control of end application
 - Application priorities and control bursts
 - Cost Sensitivity
 - Unsustainable cost projection with traditional approach (2-3x cost of a fully utilized WAN).
B4 SDN architecture

- Switch hardware (Google custom designed with commodity silicon)
 - Forwards traffic
 - No complex control software
- OpenFlow controllers (OFC – ONIX based)
 - Maintain network state based on network control application directive and switch events
 - Instruct switches to set forwarding entries
- Central application
 - Central control of the entire network

Traditional WAN routing

- Treat all bits the same
- 30% ~ 40% average utilization
- Cost of bandwidth, High-end routing gear

Traffic priority

- User data copies to remote data centers for availability/durability (lowest volume, most latency intensive, highest priority)
- Remote storage access for computation over distributed data sources
- Large-Scale data push synchronizing state across multiple data centers (highest volume, least latency intensive, lowest priority)
- Centralized traffic Engineering (TE)
 - Near 100% utilization
 - Fast, global convergence for failures.
B4 design decisions

- B4 routers built from merchant switch silicon
 - APIS trade bandwidth for fault tolerance
 - Edge control + reduced the buffer size, number of B4 site ➔ small forwarding table
 - Low router cost ➔ scale network capacity
- Drive links to 100% utilization
 - Effective use of expensive long haul transport
 - High average bandwidth over predictability: largest bandwidth consumers can adapt to bandwidth availability
- Centralized traffic engineering
 - Multipathing
 - Application classification and priority
 - Improved over traditional TE schemes
 - Faster, deterministic global convergence for failures
- Separate hardware from software
 - Customized routing
 - Rapid iterating of software protocols
 - Easier to protect against common case software failures
 - Agnostic to range of hardware deployment

Centerlized TE: convergence after failure

- Flows: R1→R6: 20; R2→R6: 20; R4→R6: 20
 - 4th shortest path
 - 3rd shortest path
 - 2nd shortest path

- R5-R6 link fails
 - R1, R2, R4 autonomously find next best path
Centerlized TE: convergence after failure

- Flows: R1->R6: 20; R2->R6: 20; R4->R6: 20

- R5-R6 link fails
 - R1, R2, R4 autonomously try for next best path
 - R1, R2, R4 push 20 altogether

Centerlized TE: convergence after failure

- Flows: R1->R6: 20; R2->R6: 20; R4->R6: 20

- R5-R6 link fails
 - R1, R2, R4 autonomously try for next best path
 - R1 wins, R2, R4 retry for next best path
 - R2 wins this round, R4 retries again

Centerlized TE: convergence after failure

- Flows: R1->R6: 20; R2->R6: 20; R4->R6: 20

- R5-R6 link fails
 - R1, R2, R4 autonomously try for next best path
 - R1 wins, R2, R4 retry for next best path
 - R2 wins this round, R4 retries again
 - R4 finally gets third best path

Centerlized TE: convergence after failure

- Simple topology
 - Central TE

- Flows:
 - R1->R6: 20; R2->R6: 20; R4->R6: 20
 - R5-R6 fails
 - R5 informs TE, which programs routers in one shot
Centered TE: convergence after failure

- Simple topology

- Flows:
 - R1->R6: 20; R2->R6: 20; R4->R6: 20
 - R5-R6 link fails
 - R5 informs TE which programs routers in one shot
 - Leads to faster realization of target optimum

Advantage of Centralized TE

- Better network utilization with global pictures
- Converges faster to target optimum on failure
- Allows more control and specifying intend
 - Deterministic behavior simplifies planning vs. overprovisioning for worst case variability
- Can mirror production event streams for testing
- Controller uses modern server hardware – better performance (50x!)

Background: Inter-DC WANs

Two key problems

- Poor efficiency
 - Average utilization over time of busy links is only 30-50%
- Poor sharing
 - Little support for flexible resource sharing

Why?
One cause of inefficiency: lack of coordination

Local, greedy resource allocation hurts efficiency

flow arrival order: A, B, C
each link can carry at most one flow
Local, greedy resource allocation hurts efficiency

flow arrival order: A, B, C
each link can carry at most one flow

System flow
[global optimization for high utilization]

Management is Control + Measurement
control
- Access Control
- Routing
measure
- DDoS
- Flow Size Distribution

Software-Defined Traffic Measurement with OpenSketch

Lavanya Jose
Stanford University

Joint work with Minlan Yu and Rui Miao at USC
Questions we want to ask

1. Who’s sending a lot to 10.0.2.0/16? (Heavy Hitters)
2. How are flow sizes distributed?
3. Is someone doing a port scan?
4. Is someone being DDoS-ed?
5. Who’s getting traffic from blacklisted IPs?
6. How many people downloaded files from 10.0.2.1?

Sketches as building blocks

- Sketch
- Data structure
- Support approx. computing some function of data
- Much smaller than actual data
- Streaming, small per-item processing cost
- Provable space-accuracy tradeoffs
Bitmap Sketch with the Pipeline

to store number of different destination port numbers

different destination port numbers?

query

estimate 6/10

estimate \(N = -10 \ln(6/10) = 5 \)

Six counters out of ten are 0.

(Meng 1999)

3-stage pipeline

1. Who’s sending a lot to 10.0.2.0/16? (Heavy Hitters)
2. How are flow sizes distributed?
3. Is someone doing a port scan?

Similar functions, diverse configurations

- Count Min: 3
- Bloom Filters: 7-8
- Fixed size reversible sketch: 5
- Can share hash functions
Similar functions, diverse configurations

Classify
- Match a prefix/ value: 1 rule
- Match a set of values: Bloom Filters

Count
- From simulation and worst case bounds for different tasks
- Up to 8MB SRAM

Conclusion
- Current switches good for flow statistics
- But they don’t answer basic measurement questions
- Like identify heavy hitters, detect DDoS attacks, port scans, traffic from blacklisted IP address etc.

Takeaway
- Hash, classify and count pipeline in the Data Plane
- And sketch based building blocks in the Control Plane
- Make measurement in switches efficient and easy