On communication complexity of classification

Shay Moran (Princeton)

Joint with Daniel Kane (UCSD), Roi Livni (TAU), and Amir Yehudayoff (Technion)
Warmup (i): convex set disjointness

• Alice’s input: \(n \) points in \(\mathbb{R}^d \)
• Bob’s input: \(n \) points in \(\mathbb{R}^d \)
• Decide: do the convex hulls of their inputs intersect?

• Extension of sparse set disjointness
Convex Set Disjointness

• Can we model this problem in Yao’s model?
 • obstacle: input domain is infinite…
 • possible solution: discretization

• We extend Yao’s model by allowing the parties to send input points
 • Each input point costs one sample complexity unit

• 1-dim CSD (next slide)
Convex Set Disjointness in 1D

Alice’s input: n points
Bob’s input: n points

1. Alice sends the two endpoints of her input

2. Bob checks whether the intervals intersect and publishes the output

Output: not disjoint

- Communication complexity: $3 = 2$ points + 1 bit (for the output)
- more interesting in higher dimensions (more details later)
Warmup (ii): distributed sample compression schemes

Goal:
output h that is consistent with all examples

X - a domain

H – a class of “$X \rightarrow \{0,1\}$” functions //hypothesis class

e.g. Halfspaces

Alice and Bob are given examples labeled by an unknown $h \in H$

- Alice’s input: $S_a = (x_1, y_1), \ldots, (x_n, y_n)$

- Bob’s input: $S_b = (u_1, v_1), \ldots, (u_n, v_n)$

Goal: output $h : X \rightarrow \{0,1\}$ that is consistent with all examples

One-way protocols are Sample Compression Schemes
One-way protocols =
Sample Compression Schemes

Input = \((x_1, y_1)\ldots(x_n, y_n)\)

Output = \(h\)

\((x_{i_1}, y_{i_1})\ldots(x_{i_d}, y_{i_d})\)

Consistency: \(h(x_i) = y_i\) for \(i=1,\ldots,n\)
(including the examples that were not sent)
Example: Sample Compression Scheme of size d+1 for Halfspaces
Sample Compression Schemes (SCS)

- A (universal) method for deriving generalization bounds in statistical learning theory

- Open question (Littlestone & Warmuth ’86):

 Does every H have SCS of size $\text{VCdim}(H)$

 (best upper bound is exponential in VCdim [M-Yehudayoff ‘15])

- This work: a distributed extension of sample compression schemes

 - **Question:** Can the SCS of size $d+1$ for Halfspaces be extended to the distributed case? (i.e. input sample is distributed between Alice and Bob)
Overview

• Model

• Decision problems
 • Convex set disjointness
 • The realizability problem

• Search problems
 • Realizable/Agnostic learning
 • Proper/non-proper learning

• Summary
Communication model
Communication Model

\(\mathcal{X} \) – domain
\{0,1\} – labels

Two party communication protocols

• Parties inputs are **samples**
 • Alice’s input: \(S_a = (x_1, y_1), \ldots, (x_n, y_n) \)
 • Bob’s input: \(S_b = (u_1, v_1), \ldots, (u_n, v_n) \)

• Parties may send examples from their inputs (and/or bits)
 • but **not** arbitrary examples

• Sample complexity = total number of examples/bits sent
Problems we study: decision problems

- \(h: \mathcal{X} \rightarrow \mathcal{Y} \): a hypothesis
- \(\mathcal{H} \): a hypothesis class

The realizability problem
Given input samples \(S_a, S_b \) decide if there is \(h \in \mathcal{H} \) that is consistent with the joint sample \(S = (S_a, S_b) \)

- Focus on infinite classes \(\mathcal{H} \) (uniform model like e.g. Turing machines)
- Convex set disjointness - \(\mathcal{H} \) is half-spaces
Problems we study: search/learning problems

- **H**: hypothesis class

Learning problems

Given input samples S_a, S_b output a hypothesis that makes no more mistakes on $S = (S_a, S_b)$ than the best $h \in H$

- Proper/non-proper
- Realizable/agnostic
- Allow for ϵ slackness (may make ϵ more errors than the best)
Decision problems

Convex set disjointness
Convex set disjointness

Upper bound:

Theorem. There is a protocol for convex set disjointness with sample complexity $\tilde{O}(d^3 \log n)$

Lower bound:

Theorem.
1. A lower bound of $\tilde{\Omega}(d)$ holds always
2. A lower bound of $\tilde{\Omega}(\log n)$ holds for $d \geq 2$

- In particular the d+1 size sample compression scheme for halfspaces can not be extended to the distributed case

Open: find tight bounds
Convex set disjointness: upper bound

Lemma [Center-subset].
Let X be a set of n points in \mathbb{R}^d. Then there is $Y \subseteq X$ of size $\tilde{O}(d / \epsilon)$ such that every half-space containing Y contains $(1 - \epsilon)n$ points from X.

• Also extends for arbitrary weights on the points in X
Convex set disjointness: upper bound

Alice’s input: \(n \) points
Bob’s input: \(n \) points
Convex set disjointness: upper bound

Alice’s input: \(n \) points
Bob’s input: \(n \) points
Initialize the weight of each point to 1
Convex set disjointness: upper bound

Alice’s input: n points
Bob’s input: n points

Initialize the weight of each point to 1

1. Alice & Bob publish an $1/(8d)$-center-subset w.r.t current weights (of size $O(d^2)$)
Convex set disjointness: upper bound

Alice’s input: n points
Bob’s input: n points

Initialize the weight of each point to 1

1. Alice & Bob publish $1/(8d)$-center-sets w.r.t current weights
2. If the hulls of the center-sets intersect output “intersect”
Convex set disjointness: upper bound

Alice’s input: \(n \) points
Bob’s input: \(n \) points

Initialize the weight of each point to 1

1. Alice & Bob publish \(1/(8d) \)-center-sets w.r.t current weights

2. If the hulls of the center-sets intersect
 output “intersect”

3. Else, find a separator and double the weights of misclassified points
Convex set disjointness: upper bound

Alice’s input: \textit{n points}
Bob’s input: \textit{n points}

Initialize the weight of each point to 1

1. Alice & Bob publish \(1/(8d)\)-center-sets w.r.t current weights
2. If the hulls of the center-sets intersect output “intersect”
3. Else, find a separator and double the weights of misclassified points
Convex set disjointness: upper bound

Alice’s input: \(n \) points
Bob’s input: \(n \) points

Initialize the weight of each point to 1

1. Alice & Bob publish \(1/(8d) \)-center-sets w.r.t current weights
2. If the hulls of the center-sets intersect output “intersect”
3. Else, find a separator and double the weights of misclassified points
4. Repeat 1-3 for \(4d \log n \) times
5. Output “disjoint”
Convex set disjointness: upper bound

- If the hulls are **disjoint** then the output will be "**disjoint**"

- If the hulls intersect, then (by Caratheodory) there is a subset A of at most $2d$ points whose hulls intersect:

- At every round T we have $W_T(A) \leq W_T$ (all input points)

- At least one point from A **doubles** in every round, so: $W_T(A) \geq 2d \cdot 2^{T/2d}$

- Since Alice&Bob send epsilon=1/8d **center subsets**:

$$W_T \text{(all input points)} \leq 2n \cdot (1+1/8d)^T \leq 2n \cdot 2^{T/4d}$$

- So, the protocol proceeds only for as long as $2d \cdot 2^{T/2d} \leq 2n \cdot 2^{T/4d}$ which implies that $T \leq 4d \log n$
Convex set disjointness

Question: When the hulls are disjoint, can Alice and Bob find a separating hyperplane?

- Yes, but requires a more subtle analysis
- Related to *properly learning* halfspaces (more details later)
Decision problems

The realizability problem
The realizability problem: the class P

Goal: decide whether the input samples are simultaneously consistent with some h in H.

P – all classes H for which the realizability problem can be decided with sample complexity $\text{polylog}(n)$, where n is the joint input sample size.

- P is a set of hypothesis classes
- Half-spaces are in P (by convex set disjointness upper bound)
Understanding the class P

• Goal: characterize the classes H for which the realizability problem can be decided fast

• We will give two characterizations

 • combinatorial

 • complexity-theoretical (using analogs of NP and coNP)
The realizability problem: \(NP \) and \(coNP \)

The class \(NP \)

\(H \) is in \(NP \) if there are two predicates \(A,B \) such that for every \(S = (S_a, S_b) \):

- If \(S \) is realizable then there is a \(\text{polylog}(n) \) size proof \(p \) such that \(A(S_a, p) = B(S_b, p) = \text{True} \),

- If \(S \) is not realizable then \(A(S_a, p) = \text{false} \) or \(B(S_b, p) = \text{false} \) for any proof

- The proof must consist only of examples from \(S \) (and/or bits).
- Define \(coNP \) similarly.
NP and coNP sample complexities of half-spaces

Claim. The NP sample complexity of half-spaces in d dimensions is at most $d+1$.

S is realizable \rightarrow there is separating hyperplane \rightarrow the maximum margin hyperplane can be encoded using at most $d+1$ examples (support vectors)
NP and coNP sample complexities of half-spaces

Claim. The coNP sample complexity of half-spaces in d dimensions is at most $2d$.

S is not realizable \rightarrow the positive and negative convex hulls intersect \rightarrow can be certified with $2d$ examples:
A characterization of P

Theorem. The following statements are equivalent for a hypothesis class H.

1. H is in P.
2. H is in $NP \land coNP$.
3. H has finite VC dimension and $coVC$ dimension.

Moreover, if either the VC or coVC are unbounded then the sample complexity is $\Omega(n)$.

- The coVC dimension of H is the min k such that every non-realizable sample contains a non-realizable subsample of size at most k.

- $1 \rightarrow 2$: trivial
- $2 \rightarrow 3$: via reductions to classical results in Yao’s model (set-disjointness)
- $3 \rightarrow 1$: similar to the convex set-disjointness upper bound
A characterization of coNP

Theorem. The following statements are equivalent for a hypothesis class H.

1. H is in coNP.
2. H has a finite *coVC dimension*.

- The coVC dimension of H is the min k such that every **non-realizable** sample contains a **non-realizable** subsample of size k.

- $1 \rightarrow 2$: via reductions to classical results in Yao’s model (set-disjointness)
- $2 \rightarrow 1$: the non-realizable subsample of size k serves as a proof
Open: a characterization of NP

Conjecture. The following statements are equivalent for a hypothesis class H.

1. H is in NP.
2. H has a finite VC *dimension*.

We show $1 \rightarrow 2$ via reductions to known statements in Yao’s model (set-disjointness).

Would follow from establishing the existence of proper sample compression schemes for every VC class (which would be a breakthrough).
One more result concerning the realizability problem

• A natural possibility of studying realizability problems in Yao’s model is via discretization:

 • Assume a prespecified arbitrary finite \(R \subseteq \mathcal{X} \)

 • Inputs samples come from \(R \) (and labelled by unknown \(h \) in \(H \))

 • \(R \) is known to both Alice and Bob

 • Decide the realizability problem using \(poly \log(| R |) \) bits

 • Do the class \(P \) change under this (nonuniform) definition?
Theorem. The following statements are equivalent for a hypothesis class H.

1. H is in P.

2. For any finite $R \subseteq \mathcal{X}$ there is a protocol for the realizability problem of $H|_R$ in Yao’s model of sample complexity $O(\log^2 |R|)$.

A compactness result + connection to Yao’s model
Learning problems
Learnability - definitions

Definition.
H is learnable with sample complexity $T(\epsilon)$ if there is a protocol that for every input sample $S=(S_a,S_b)$ outputs a hypothesis with error at most ϵ more than the best $h \in H$

- Realizable – input samples restricted to be realizable
- Proper – output hypothesis must reside in H
Realizable case

Upper bound:

Theorem [Balcan Blum Fine Mansour ‘12]. Every \mathcal{H} is learnable in the realizable case with sample complexity $O(d \log(1/\epsilon))$, where d is the VC dimension of \mathcal{H}.

Lower bound:

Theorem.
1. A lower bound of $\Omega(d)$ holds for any \mathcal{H} ($\epsilon = 1/4$).
2. A lower bound of $\Omega(\log(1/\epsilon))$ holds for half-planes.
Proper learning in the realizable-case

Theorem.
1. If H is in P then* it can be properly learned with $O(\log(1/\epsilon))$ sample complexity (the $O()$ hides polynomial dependency on VC and coVC)

2. If H is not in P then any protocol that properly learns it must use $\Omega(1/\epsilon)$ sample complexity.

* - our proof assumes that H is “nice”: either the domain X is countable, or H is closed in the product topology on $\{0,1\}^X$

- Analysis is more subtle than in the realizability problem
Agnostic case

Lower bound:

Theorem. Let H be the class of singletons over \mathbb{N}. Then every protocol that learns H agnostically has sample complexity $\tilde{\Omega}(1/\epsilon)$.

Upper bound:

Theorem. Every H is learnable in the agnostic case with sample complexity $O\left(1/\epsilon^{2d+2}\right) = o(1/\epsilon^2)$ (e.g., halfspaces).

Open: what is the correct bound? halfspaces?
Summary

• An extension of Yao’s model
• Decision problems
 • Convex set disjointness
 • Upper and lower bounds (open: not tight)
 • The realizability problem
 • P,NP,coNP
 • Open: NP = finite VC dim?
• Search problems
 • Agnostic/Realizable/Proper/Non-proper
 • Separations
 • Open: sample complexity of agnostic learning
Misc. slides
Connection with $P=\mathsf{NP} \land \mathsf{coNP}$ in Yao’s model?

Corollary. $P=\mathsf{NP} \land \mathsf{coNP}$ for **realizability** problems.

- Proof gives a protocol with sample complexity $\tilde{O}(s_1 \cdot s_0^2 \log |S|)$ where s_1, s_0 are the NP, coNP samp. comp.

Theorem[Aho Ullman Yannakakis ‘83].

$P=\mathsf{NP} \land \mathsf{coNP}$ in Yao’s model for any decision problem

- Proof gives a protocol with sample complexity $n_1 \cdot n_0$ where n_1, n_0 are the NP, coNP bit comp.

How do these two results relate to each other?
Connection with $P=NP \land coNP$ in Yao’s model?

- Different proofs: in Yao’s model combinatorial, our proof is more analytical (fractional combinatorics)

- **Conjecture.** $P \neq NP \cap coNP$ in our model for general decision problems. (have explicit candidate)

- Different bounds: $s_1 \cdot s_0^2 \log |S|$ vs $n_1 \cdot n_0$
 - ours is non-symmetric
 - ours has an extra $\log |S|$ factor
 - necessary (convex set disjointness)