In this lecture, we are going to prove the following result:

\[N_{space}(s(n)) = Co - N_{space}(s(n)) \]

Let \(A = L(M) \), where \(M \) is a nondeterministic Turing machine, using space \(s(n) \).

Define \(C_k(x) \) to be the number of configurations of \(M \) that are reachable from the start configuration in steps less than \(k \) on input \(x \). Before we proceed our proof, we need two assumptions about \(M \): (1) \(M \) counts the numbers of steps it has run; (2) \(M \) runs for less than \(2^{b \times (s(n))} \) steps (Notice that \(C_k(x) \) can be written in binary in \(O(s(n)) \) space).

The key point is to show that \(C_k(x) \) is computable in \(N_{space}(s(n) + \log(k)) \).

Assume that \(C_k(x) \) is computable in \(N_{space}(s(n)) \). The following little code will show that \(\text{Nondeterministic space is closed under complementation.} \)

Begin

On input \(x \)
- Compute \(C_{2^{b \times (s(n))}}(x) \);
- \(Count := 0; \)
- \(Flag := \text{False}; \)
- For each configuration \(c \) using \(s(n) \) space, Guess a path from the initial configuration to \(c \). If a path is found, then
 - \(Count := Count + 1; \)
 - If \(c \) is accepting, then
 - \(Flag := \text{True}; \)
- EndFor
- If \(Count \neq C_{2^{b \times (s(n))}}(x) \), then reject; else accept iff \(Flag = \text{False} \)

End

The code says that the exact number of configurations of size \(s(n) \) reachable by \(M \) from \(\text{START} \) can be computed, then we can test in \(N_{space}(s(n)) \) if \(M \) rejects.

Now the remaining thing is to prove that \(C_k(x) \) is computable. We also write a little code for it (the basic idea is inductive counting).

Begin

On input \(x \)
- \(C_0(x) := 1; \)
- Compute \(C_{k+1}(x) \) from \(C_k(x) \):
 - \(c_{k+1} := 1; \)
 - For each configuration \(c \)
 - For each configuration \(d \) such that there is a path between them, if \(d \) is reachable in less than \(k \) steps, then
 - \(Count := 0; \)
 - \(Flag := \text{False}; \)
 - For each configuration \(e \), guess a path from the initial configuration to \(e \) of less than \(k \). If a path is found, then
 - \(Count := Count + 1; \)
 - If \(e = d \), then
 - \(Flag := \text{True}; \)
 EndFor
 - If \(Count \neq C_k(x) \), then halts and rejects else if \(Flag := \text{True} \), then
 - \(C_{k+1} := C_{k+1} + 1 \)
 Go to next \(c \)
 EndFor
- If \(Count \neq C_k(x) \), then halts and rejects else if \(Flag := \text{True} \), then
 - \(C_{k+1} := C_{k+1} + 1 \)
 Go to next \(c \)

End

The ideas used in the above code is the mathematical induction. It shows how to find \(C_{k+1}(x) \) from \(C_k(x) \).