In the last lecture, we proved the following inclusions:

(i) $NSPACE(s(n)) \subset TIME(s^2(n))$
(ii) $TIME(t(n)) \subset SPACE(t^2(n))$

In the first part of this lecture, we will reduce $t^2(n)$ to $t(n)$ in (ii).

Last class, we gave the following algorithm that computes $A \in TIME(t(n))$ in a Deterministic TM M, in order to prove (ii):

\begin{verbatim}
Begin
 on input x
 let $C =$ initial configuration of M
 call $Eval(C)$
End

Eval(C)
 if C is halting
 then return T if C is accepting
 F if C is rejecting
 else
 if C is an Existential node
 then let C_1 and C_2 be the successors of C
 if $Eval(C_1)$
 then return T
 else return $Eval(C_2)$
 if C is a Universal node
 if negation of ($Eval(C_1)$)
 then return F
 else return $Eval(C_2)$
\end{verbatim}

Without loss of generality, be M an ATM such that each non-halting configuration of M has exactly two successors. In order to see this, notice that each node has a finite number of successors (since the machine is finite, it has a finite number of states). Let’s say, that the fan-out is k. Then we can transform our tree to an equivalent binary tree, just by introducing intermediate nodes. Note that this increases the depth of the tree by a constant factor of $\log k$. So, the machine built in this way, is just slower by a constant factor than the original machine.

Now, let’s introduce the following Global Variable: $PATH \in \{R, L\}^*$ (sequence of right and lefts moves). Define: $Eval(PATH)$ to be $Eval(C)$, where C is the configuration reached from the initial configuration following the R and L moves from $PATH$.

We will still use the same algorithm as above, we just need to make the following modifications: substitute C by $PATH$, and C_1 by $PATH L$ and C_2 by $PATH R$.

The analysis of the space complexity of the new routine is straightforward. The routine can be computed in space $O(t(n))$, since in each recursive call to $EVAL(C)$, instead of having to store the entire $t(n)$-bit configuration C, we simply add one additional symbol to $PATH$. □

So, in this way we had finally achieved:

(iii) $ATIME(t(n)) \subseteq DSPACE(t(n))$

(i) and (iii) together shows us that: (Savitch’s theorem)

(iv) $NSPACE(s(n)) \subseteq DSPACE(s^2(n))$

Other results we want to prove here are:

(v) $ASPACE(s(n)) \subseteq DTIME(2^{O(s(n))})$

(vi) $DTIME(t(n)) \subseteq ASPACE(\log t(n))$

Proof of v:

Let $A \in ASPACE(s(n))$. $A = L(M)$, where M is an ATM.

Algorithm:

on input x

write a list of all $2^{O(s(n))}$ configurations of M that uses space $s(n)$

apply the labelling procedure until C_i (the initial node) is labelled

(this last step takes polynomial time in the number of configurations.)

Labelling : Labels are 0 or 1. Halting and accepting: 1. Halting and rejecting: 0. Starting from C_2 see if $C_3,...,C_r$ (r is a certain integer) are labelled. Then start from C_3 and so on. Until everything is labelled. When stop see the label of C_i. □

Proof of vi:

Let $A \in DTIME(t(n))$. Then, A is accepted by a 1-tape TM M in time $t^2(n)$. One can think of the computation done by M as a Table. Each row of the table, represents the contents of the worktape, location of the head of the tape and state at a given time. Thus, each cell of the table is: or a state or a element of the tape alphabet or just a blank space.

The rows are indexed in this way : Starting from the lowest row at time $= 0$. Until reaching the top row at time $= t^2(n)$.

What is important to notice about this table, is that, the value at each cell is completely defined by the value of the nearest three cells below.

Algorithm:

on input x

call $Table(1, t^2(n), (q_{acc}, b))$

(note : $|x| = n$, q_{acc} = accepting state, b = blank space)
Table \((i, j, z)\) evaluates to:

T if at time \(j\) location \(i\) of the table contains \(z\)
F otherwise.

This is the alternating routine for Table:

\[
\text{Table } (i, j, z) \\
\text{if } j = 0 \\
\quad \text{then} \\
\quad \quad \text{if } i \leq n \\
\quad \quad \quad \text{return T iff } z = x_i \\
\quad \quad \quad \text{else} \quad \text{return T iff } z = b \\
\text{else} \\
\quad \text{Existentially guess } z_1, z_2, z_3, \ldots \text{ such that:} \\
\quad (\text{Table } (i-1, j-1, z_1) \ \text{AND} \ \text{Table } (i, j-1, z_2) \ \text{AND} \ \text{Table } (i+1, j-1, z_3)) \implies (\text{Table } (i, j, z)) \\
\quad \text{Universally check } \text{Table } (i-1, j-1, z_1) \\
\quad \quad \text{Table } (i, j-1, z_2) \\
\quad \quad \text{Table } (i+1, j-1, z_3).
\]

Let’s analyze space complexity of this last algorithm:

We essentially just need to store \(i\) and \(j\). These numbers are between 1 to \(t^2(n)\). Thus, they required \(O(\log t(n))\) space. □

(v) and (vi) imply:

\(P = \textit{ASPACE}(\log n)\).

Observations: Let \(A \in P\). Then, there is a family of circuits \(C_n : n \in N\), such that, each \(C_n\) is a circuit in \(n\)-inputs with a polynomial \(n^{O(1)}\) of gates iff:

\(x \in A\) iff \(C_{n}(x) = 1\),

and the function from \(n\) to \(C_n\) is easy to compute.

\(C_n\) is the circuit consisting of the configurations of the \(\text{ASPACE}(\log n)\) machine accepting \(A\).