Speed-up Theorem
This theorem shows that there is a problem for which no algorithm is remotely close to optimal.

Let \(r \) be a total recursive function (\(r(n) \geq n \)). Then, there exists \(A \subseteq 0^* \) such that

If \(M_i \) is any Turing machine such that \(L(M_i) = A \), then there exists \(M_j \)
such that:

\[
L(M_j) = A \quad \text{and} \quad r(s_j(0^n)) \leq s_i(0^n) \quad \text{for all large } n.
\]

Proof: Let \(s \) be a space-constructible function such that \(s(n) \geq max(r(n), n) \). We can build such \(s(n) \) as follows:

1. On input \(x \)
 - Compute \(|x| = n \);
 - Compute \(r(n) \) while watching the space being used;
 - Mark off \(r(n) \) and \(n \);
 - Compare these to the space used while computing \(r(n) \) and
 - Return the maximum of these

Let \(h \) be defined inductively as follows:

\[
\begin{align*}
h(0) & = 2, \\
h(n + 1) & = s(h(n)).
\end{align*}
\]

Note that \(h(n) = s^{(n)}(2) \). (n-time composition of \(s \) applied to 2.)

Let \(A \) be the language recognized by the following machine:

```
Begin
on input \( 0^n \)
  if \( n = 1 \) then "cancelled" := \( \phi \);
  else call \( A(0^{n-1}) \) to compute "cancelled" (\( \subseteq \{1, \ldots, n\} \));
  \( j := 1; \)
  while (\( j \leq n \) and \( j \notin "\text{cancelled}" \) and \( s_j(0^n) < h(n - j) \))
    // space \( h(n - j)(\leq h(n)) \) used
    \( j := j + 1 \)
end-while;
if \( j > n \) then reject // this is arbitrary (could be 'accept')
else // at this point, \( j \notin "\text{cancelled}" \) and \( s_j(0^n) < h(n - j) \)
  "cancelled" := "cancelled" \( \cup \{j\} \);
accept \( \iff (M_j(0^n) \neq \text{accept}) \)
End
```

Note that in the program description above, "call \(A(0^{n-1})" \) stands for a recursive call to the
program with the input of length less than the original by one. We will see the following claims
hold:
Claim 1 ∀k, A ∈ DSPACE(h(n − k)).

Claim 2 If L(M_i) = A, then s_i(0^n) ≥ h(n − i).

By Claim 2 and how we have constructed s and h, for any M_i that recognizes A, for all large n:

\[r(h(n − i − 1)) ≤ s(h(n − i − 1)) = h(n − i) ≤ s_i(0^n) \]

However, by Claim 1, there is also a machine M_j to recognize A in space h(n − i − 1); i.e.,
\[s_j(0^n) ≤ h(n − i − 1) \] Hence, the claim of the theorem. (r is assumed to be monotonic for all large inputs.)

To show Claim 1:
Prepare a table showing:

for all j ≤ k,
 the complete list of information concerning
 when TMs get cancelled (values of n, j, s_j(0^n), etc.)
 up to the last time any j ≤ k gets cancelled.

Note that we are not saying that it is possible to build such a table for a fixed k. Our claim is that one does exist, and (hypothetically) by using such a table, we argue as follows:

Let r be the input length on which the last j ≤ k gets cancelled. Revise the program above as follows:

Begin
on input 0^n
 if n ≤ r then look up the table to set “cancelled”;
 else call A(0^{n−1}) to compute “cancelled” (⊆ {1, . . . , n});
 j := 1;
 while (j ≤ n and ¬(j ∉ “cancelled” and s_j(0^n) < h(n − j)))
 // note: for j ≤ k, we look up the table, so space ≤ h(n − k) used
 j := j + 1
 end-while;
 if j > n then reject
 else
 “cancelled” := “cancelled” ∪ {j};
 accept ⇔ (M_j(0^n) ̸= accept)
End

We can observe that this version of program uses space h(n − k). □

To show Claim 2:
Suppose that it is not the case. Then, for a large x = 0^n, i will be added to “cancelled.”
But, the above program does not agree with M_i as to accepting/rejecting such x. Hence, a contradiction. □