Barrington’s Theorem

Norbert Lis, based on lecture by Prof. Eric Allender

March 9-11, 1998

1 Barrington’s Theorem

Theorem: $NC^1 = WIDTH(O(1))_SIZE(n^{O(1)})$ branching programs.

Proof.
1) \supseteq

Let A be accepted by a $WIDTH(k)$ branching program BP of size n^k. View the branching program BP as a sequence of pairs of functions $(f_{i,0}, f_{i,1}), \ldots, (f_{n^k,0}, f_{n^k,1})$, where $f_{i,b} : [1..k] \rightarrow [1..k]$, and for i-th symbol $b \in \{0,1\}$ of input x, $f_{i,b}$ is picked. Denote selected $f_{i,b}$ to be just f_i. Then the BP running on input x can be expressed as function $f = f_1 \circ f_2 \circ \ldots \circ f_{n^k} = \prod_{i=1}^{n^k} f_i$. We want to find an algorithm which would answer the question: is $f(1) = acc$? Here it is:

On input x:

\exists guess $f = \prod_{i=1}^{n^k} f_i$ as a $k \times k$ matrix (this can be done in constant time)

call $VERIFY(f, 1, n)$

end

$VERIFY(g, i, j)$:

if $i + 1 = j$ then

return true iff position i in the branching program evaluates to g

else

\exists guess f_a, f_b such that $f_a \circ f_b = g$

\forall call $VERIFY(f_a, i, \frac{i+j}{2})$ and $VERIFY(f_b, \frac{i+j}{2} + 1, j)$

end

2) \subseteq

Let $A \in NC^1$. We will build a $WIDTH(5)$ branching program for A. This branching program will be a permutation program in the sense that each $f_{i,0}, f_{i,1}$ will be a permutation on $[1..5]$. It will have the property: "\exists a 5-cycle δ, such that $x \in A \iff \prod_{i=1}^{n^k} f_i = \delta$, and $x \notin A \iff \prod_{i=1}^{n^k} f_i = i$". This defines what it means for a branching program to δ-recognize A. To proceede with the proof, first note the following:
1. If \(\exists \) a BP that \(\delta \)-recognizes \(A \), then \(\exists \) a BP that \(\delta' \)-recognizes \(A \), for any 5-cycle \(\delta' \). This can be justified by noting that \(\exists \) a 5-permutation \(\theta \) such that \(\delta' = \theta \delta \theta^{-1} \) (because any two 5-cycles are isomorphic) and replacing each \(f_{i,b} \) in original BP with \(\theta f_{i,b} \theta^{-1} \).

2. If \(A \) can be \(\delta \)-recognized by a \(\mathit{SIZE} (s(n)) \mathit{WIDTH} (5) \) permutation BP, then so can the complement \(\overline{A} \). Building such BP for \(\overline{A} \) can be accomplished by replacing \(f_{s(n),b} \) with \(\delta^{-1} \circ f_{s(n),b} \) in the original machine. This results in a machine which \(\delta^{-1} \)-recognizes \(\overline{A} \).

3. There exist 5-cycles \(\delta, \pi, \rho \) such that \(\rho = \delta \pi \delta^{-1} \pi^{-1} \), namely, \(\delta = (1, 2, 3, 4, 5) \), \(\pi = (1, 3, 5, 4, 2) \), \(\rho = (1, 3, 2, 5, 4) \).

To complete the proof the following statement will be proved by induction on \(d \): “If \(A \) has \(\mathit{DEPTH} (d) \mathit{NC}^1 \) circuits, then \(A \) is \(\rho \)-recognized by a \(\mathit{WIDTH} (5) \mathit{SIZE} (4^d) \) BP”.

Basis: If \(d = 0 \), then one of the input gates is also an output gate, call that gate \(G \). If \(G = x_i \), then let BP be \(f_{i,1} = \rho, f_{i,0} = i \). If \(G = \overline{f_{j,0}} \), then let BP be \(f_{j,0} = \rho, f_{j,1} = i \).

Induction: Assume that all \(\mathit{NC}^1 \) circuits with depth \(d' < d \) have corresponding \(\rho \)-BP’s of \(\mathit{WIDTH} (5) \mathit{SIZE} (4^{d'}) \). Further, assume the output gate of circuit \(C_n \) of depth \(d \) for \(A \) is an \(\wedge \)-gate, call it \(G \). Let the language recognized by the sub-circuit attached to the left in-edge of \(G \) be \(A_L \) and the language recognized by the sub-circuit attached to the right in-edge of \(G \) be \(A_R \). By the induction hypothesis, let \(P_\delta \) be a \(\mathit{SIZE} (4^{d-1}) \) BP that \(\delta \)-recognizes \(A_L \), \(P_\pi \) be a \(\mathit{SIZE} (4^{d-1}) \) BP that \(\pi \)-recognizes \(A_R \), \(P_\delta \circ = \mathit{SIZE} (4^{d-1}) \) BP that \(\delta^{-1} \)-recognizes \(A_L \), \(P_\pi \circ = \mathit{SIZE} (4^{d-1}) \) BP that \(\pi^{-1} \)-recognizes \(A_R \).

Since \(A = A_L \cap A_R \), \(P = P_\delta P_\pi P_\delta \circ P_\pi \circ \) recognizes \(A \) and has size \(4^d \). Since \(\rho = \delta \pi \delta^{-1} \pi^{-1} \), \(P \) \(\rho \)-recognizes \(A \). The case when the output gate is a \(\neg \)-gate is trivial by fact 2 above. Similarly, the case when the output gate is an \(\vee \)-gate reduces to the first two cases by DeMorgan’s Law: \((p \lor q) = \overline{p} \land \overline{q} \).

2. Completeness

Definition: Let \(C \) be a class of functions, and \(A, B \) be languages. We say \(A \) is many-one \(C \)-reducible to \(B \) (denoted \(A \leq^C_m B \)) if \(\exists f \in C \forall x \in A \iff f(x) \in B \).

Definition: Let \(D \) be a class of languages, and \(A \) be a language. We say \(A \) is hard for \(D \) under \(\leq^D_m \) if \(\forall B \in D \, B \leq^D_m A \).

Definition: Let \(D \) be a class of languages, and \(A \) be a language. \(A \) is complete for \(D \) under \(\leq^D_m \) if \(A \) is hard and \(A \in D \).

Notes:

1. Important reducibilities: \(\leq^P_m, \leq^{log}_m, \leq^{AC^0}_m \).
2. Notion of hardness is useful for proving lower bounds. Using diagonalization or some other technique, a set B in some class \mathcal{D} is defined, such that B is very complex. (Usually, B will look very artificial and intrinsically uninteresting.) However, the class \mathcal{D} will usually have some natural and interesting complete sets. Since B is complex, all of the complete sets will also be complex.

3. Many natural problems are complete for some well known complexity class under $\leq^{AC^0}_m$.

Corollary: There exists a regular set that is complete for NC^1 under $\leq^{AC^0}_m$.

Proof.

Let $W_5 = \{\pi_1, ..., \pi_n \mid \pi_1 \circ ... \circ \pi_n = i, \text{ and each } \pi_i \text{ is a permutation on } [1..5]\}$. Clearly, W_5 is regular. The regular set that is complete for NC^1 under $\leq^{AC^0}_m$ is $\overline{W_5}$. Let $B \in NC^1$. Then there is a dlogtime-uniform NC^1 circuit family C_n, and on input x, let π_i be the i'th instruction in the branching program for $C_{|x|}$. Then x is accepted by $C_{|x|}$ if and only if $\pi_1, ..., \pi_n \in \overline{W_5}$.