1 Notes on 16th Feb.

1.1 Main Topic

Theorem 1

\[NSPACE(s(n)) \subseteq DSPACE(s^2(n)) \]

(1)

Before proving the above theorem, we will introduce one new computation model: **Alternating Turing Machine.** The possible computations of an alternating Turing Machine M on an input word x can be represented by a tree \(T_x \) in which the root is initial configuration, and the children of a nonterminal node \(C \) are the configurations reachable from \(C \) by one step of \(M \). For a word \(x \) in \(L(M) \), define an **accepting subtree** \(S \) of \(T_x \) as follows:

1) \(S \) is finite.
2) The root of \(S \) is the initial configuration with input word \(x \).
3) If \(S \) has an existential configuration \(C \), then \(S \) has exactly one child of \(C \) in \(T_x \); if \(S \) has a universal configuration \(C \), then \(S \) has all children of \(C \) in \(T_x \).
4) Every leaf is a configuration whose state is the accepting state \(q_A \).

Observe that Non-deterministic machine is one special case of **ATM**.

Theorem 2

\[\begin{align*}
ASPACEx(s(n)) &= DTIME(2^{O(s(n))}) \\
DSPACE(x(n)) &= ATIME(s(n)^{O(1)})
\end{align*} \]

(2)

Theorem 3

\[\begin{align*}
AL &= P \\
ASPACEx(n) &= E \\
ATIME(n^{O(1)}) &= PSPACE \\
ASPACEn^{O(1)} &= EXP
\end{align*} \]

(3)

Theorem 4 **Either**

\[DSPACE(log n) \subset ASPACE(log n) \]

(4)

or

\[DTIME(n^{O(1)}) \subset ATIME(n^{O(1)}) \]

(5)

Thus, alternation is more powerful than deterministic computation in either the time-bounded or the space-bounded setting.

The first theorem will be the direct corollary of the following theorem:

Theorem 5

\[\begin{align*}
1)\ NSPACE(s(n)) &= ATIME(S^2(n)) \\
2)\ ATIME(T(n)) &= DSPACE(T(n)) \\
3)\ ASPACEx(s(n)) &= DTIME(2^{O(s(n))}) \\
4)\ DTIME(T(n)) &= ASPACEx(log T(n))
\end{align*} \]

(6)
proof: 1) Let $A \in \text{NSPACE}(s(n))(A$ is accepted by some NTM M in $\text{SPACE}(s(n))$ and time $t^{k+s(n)})$

construct one new algorithm:

Begin
 on input x
 compute $s(|x|)$
 compute $T = 2^{s(|x|)}$
 call PATH(C_{int}, C_{acc})
 ($PATH \text{ return } TRUE \text{ if } C_{int} \rightarrow C_{acc}$ in t step)
End

PATH(C,D,t)
Begin
 if $t \leq 1$, then
 check if $C = D$ or $C \rightarrow D$
 else
 Guess config E
 check
 PATH($C,E,$) PATH($E,D,$)
End

Because the recursive depth is $O(s(n))$ and each call requires $O(s(n))$ (This is the time required to guess E), ATM’s accepting tree’s depth can’t be longer than $O(s^2(n))$. End (of proof of theorem 5.1).

2) let $A \in \text{ATIME}(t(n))$

construct a Deterministic algorithm to compute A

BEGIN
 on input x
 let $C = \text{initial config of } M$
 call Eval(C)
END

Eval(C)
if C is existential node
 let C_1 be the first child of C
 if Eval(C_1) then return TRUE
 else return Eval(C_2)
if C is universal node
 if Eval(C_1) is false, return FALSE
 else return Eval(C_2)

counting: recursive depth is $t(n)$, each call use less than $t(n)^2$ space(In the next lecture, we’ll improve this method to get the claimed conclusion.) End (of theorem 5.2.1).