Using Kolmogorov Complexity to Prove some Primality Theorems

First, we present one of the results given in class:

Let \(p_1, p_2, p_3, \ldots \) be an enumeration of the primes (in order, so that \(p_1 = 2, p_3 = 5 \), etc.)

Recall that we say that a string \(x \) is \(\ell \)-random if \(C(x) \geq |x| - \ell \).

Claim: There is a constant \(c \) such that, if \(p_m \) is \(7 \)-random, then \(p_m \leq cm \log^2 m \).

Proof: Let \(m \) and \(x \) be as above, where \(r = |x| \). Since \(p_m \) is \(7 \)-random, we have that \(p_m \leq cm \log^2 m \).

Thus \(x \) is described by the program (of length \(c' = O(1) \)):

Take as input a string \(i \), and decode this to find \(i \) (using the self-delimiting property of the encoding \(\hat{z} \), and interpret \(i \) as the length of \(m \) (where the remainder of the input is the string \(y \)). Using \(m \), compute \(p_m \), and output \(y \cdot p_m \).

This shows that \(C(x) \leq O(1) + 2|\hat{i}| + |m| + (|x| - |p_m|) = O(1) + 2 \log \log m + \log m + (r - \log p_m) \) But we also have \(r - 7 \leq C(x) \). Thus we obtain \(\log p_m \leq O(1) + 2 \log \log m + \log m \). This is equivalent to the statement of the claim (merely taking logs of both sides of the claim).

Observe that, for any \(N \) such that \(N = p_m \) for some prime \(p_m \) that satisfies the hypothesis of the claim above, we have that \(\pi(N) \geq N/c \log^2 N \), where \(\pi(N) \) denotes the number of primes less than or equal to \(N \). This is because \(\pi(N) = \pi(p_m) = m \geq p_m/(c \log^2 m) = N/(c \log^2 N) \). However, we still need to establish that there are many such primes \(p_m \).

Claim: There are infinitely many primes that divide an \(\ell \)-random number (for each value of \(\ell \)).

Proof: Assume, for the sake of a contradiction, that the only primes that divide an \(\ell \)-random number are \(q_1, q_2, \ldots, q_k \). Thus each \(\ell \)-random number is described by a program of size \(O(1) \) that takes as input two tuples \((e_1, \ldots, e_k) \) and \((q_1, \ldots, q_k) \) and outputs \(x = \prod_{i=1}^{k} q_i^{e_i} \). If \(|x| = n \), then note that each \(e_i \) has length at most \(\log n \), and thus \(C(x) \leq k \log n + \sum_{i=1}^{k} |q_i| + O(1) = k \log n + \log(\prod_{i=1}^{k} q_i) + O(1) \).

(Since we’re assuming that \(q_1, q_2, \ldots, q_k \) is a fixed list, it follows that \(\log(\prod_{i=1}^{k} q_i) \) is actually \(O(1) \), but it will be useful to keep track of the size of this part of the “constant”.) Since \(n - \ell \leq C(x) \), we thus have \(n - \ell \leq k \log n + \log(\prod_{i=1}^{k} q_i) + b \) for some constant \(b \). But this clearly fails for large enough \(n \). (Picking \(n \) a bit larger than \(k \log(\prod_{i=1}^{k} q_i) + \ell + b \) is sufficient.)

This implies that, for infinitely many lengths \(n \), there are at least \(2^n/O(n^2) \) primes of length at most \(n \). In fact this holds for all large \(n \), and not merely for
infinitely many such \(n \), but I am not aware of a \textit{simple} proof of this fact, using Kolmogorov complexity.