UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Beidler, Data Structures and Algorithms
Jalote, An Integrated Approach to Software Engineering, Second Edition
Kozen, Automata and Computability

Merritt and Stix, Migrating from Pascal to C++

Zeigler, Objects and Systems COm p utab’ ’ i ty

Lecture 38

Godel's Incompleteness Theorem

In 1931 Kurt Gdel [50, 51] proved a momentous theorem with far-reaching

philosophical consequences: he showed that no reasonable formal proof sys- -

tem for number theory can prove all true sentences. This result set the logic

community on its ear and left Hilbert's formalist program in shambles. This

result is widely regarded as one of the greatest intellectual achievements of
twentieth~century mathematics,

With our understanding of reductions and r.e. sets, we are in a position t0

understand this theorem and give a complete proof. It is thus a fitting ote
on which to end the course,

The Language of Number Theory

The f_irst-order l:.mguage of number theory L is a formal language for ex-
Pressing properties of the natural numbers

N= {0,1,2,...}.
The language ig built from the following symbols:

® variableg Z,¥:2,... ranging over N;

¢ operator symbolg + {(addition) and - {multiplication

N

)&

Godel's Incompleteness Theorem 283

® constant symbols 0 {additive identity)

¢ relation symbol =
able);

and 1 (multiplicative identity)

(other relation symbols <, <, >, and > are defin-

® quantifiers ¥ (for all) and 3 (there exists)

® propositional operators v (or
(if and only if); and

»

) A (and), - (not), — (if-then), and «
¢ parentheses,

Rather than give a formal definition of the well-formed formulas of this

language (which we could easily do with a CFG), let's give some examples
of formulag and their interpretations.

We can define other comparison relations besides =; for example,
e<yArtr=y,
z <yd§3z T+z=yA=(z=0).

Many useful number-theoretic concepts can be formalized in this language.
For example:

® ‘g is the quotient and r the remainder obtained when dividing z by y
using integer division”:

def
INTDIV(Z, 0, q,T) S 2 =qy+7 A 1<y
o “y divides z”:
pIvV(y,) 4 3¢ INTDIV(Z,7,4,0)
e “z is even'™
f
EVEN(z) 4 piv(2,z)
Here 2 is an abbreviation for 1+1.
e “z is odd™:
opbp(z) 4 _pven(z)
e “z is prime™:
prIME(z) 222 A vy (Dv(y,2) = (y = 1Vy =z))
e “z is a power of two”:

powERs(z) & Wy (DIV(y,2) A PRIME(y)) — y = 2

284 Lecture 38

e “y is a power of two, say 2% and the kth bit of the binary representaﬁm1
ofzis 1™

BI7(z,y) & POWERa(y) A Vg Vr (INTDIV(2,,4,7) — opp)
Here is an explanation of the formula BIT(z,y). Su'ppose z and y are nup,
bers satisfying BIT(z,). Since y is a power of two, its binary representatioy
consists of a 1 followed by a string of z(?ros. The for'mula Bl'r(z,y) 15 trye
precisely when z’s bit in the same position as the 1 in y is 1. We get hald
of this bit in & by dividing z by y using integer division; the quotient g and
remainder r are the binary numbers illustrated. The bit we are interesteq
inis 1 iff ¢ is odd.

y = 1000000000000
£ = 11011001010001011011
q T

This formula is useful for treating numbers as bit strings and indexing into
them with other numbers to extract bits. We will use this power below

to write formulas that talk about valid computation histories of Turing
machines,

If there are no free (unquantified) variables, then the formula is called a
sentence. Every sentence has a well-defined truth value under its natural
interpretation in N. Examples are
Vedyy=z+1
vz Ey T=y+1

“Every number has a successor.”
“Every nnmber has a predecessor.”

Of these two sentences, the first is true and the second is false (0 has no
predecessor in N).

The set of.true sentences in this language is called (first-order) ﬂuf."b”
theory and is denoted Th(N). The decision problem for number theory is t0

fie.cide whether a given sentence is irue; that is, whether a given sentence
is in Th(N).

Peano Arithmetic

The most, popular
metic (PA). This g
which are asserte
applied in a mec

proof eystem for number theory is called Peano a7ith
ystem congists of some bagic assumptions called aziomh
d to be true, and some rules of inference, which caf be
hanical way to derive further theorems from the axioms:
:&mong the axioms of PA, ther
In-‘general and are not partic
manipulating

R ic
€ are axioms that apply to first-order]"5;r
ular to number theory, such as axioms

G \Ba

Godel's Incompleteness Theorem 285

¢ propositional formulas, such ag (pAP) - w;
® quantifiers, such as (vz o(z)) — #(17); and

¢ equality, such as Vz vy vz (z:yAy:z-—&z:z).

In addition, PA has the following axioms particular to number theory:

Ve-(0=z+1) 0 is not a successor
VeVy(e+l=y4+lwg= y) successor i3 one-to-gne
Vez40=2¢g 0 is an identity for +
Ve Vyz+(y+1)= (z+y)+1 + is associative
Vzz.-0=0

0 is an annihilator for -
VeVyz-(y+1)=(z-y)+2 - distributes over +
(p(0) AVz (p(z) = ¢(z + 1)) — Vz ¢(z) - induction axiom

where ¢(z) denotes any formula with one free variable z. The last axiom is
called the induction aziom. It is actually an axiom scheme because it rep-
resents infinitely maay axioms, one for each ¢(z). It is really the induction
principle on N as you know it: in words,

® if o is true of 0 (basis}, and

¢ if for any z, from the assumption that ¢ is true of z, it follows that ¢
is true of £ 4+ 1 (induction step),

then we can conclude that ¢ is true of all z.

There are also two rules of inference for deriving new theorems from old:

A Al v
v ! Yz

These two rules are called modus ponens aod generalization, respectively.

i f formulas such that each y;

is a sequence Yo, Y1,¥2,---;¥n O ! uch .
A.tizog;o;nv;xjom or follows from formulas occurring earlier in the list by
:,lrule of inference. A sentence of the language is a theorem of the system if

it has a proof.

i i i true; that is, if it

em is said to be sound if all thel:)re_ms are true; th

fA prfOf:s);Sxine to prove a false sentence. This is a basic requlremer.lt'of
is no I(:nable proof systems; a proof system wouldn't be much gpod xf. its
all reafns were false. The system PA is sound, as one can show b)_/ mduc}:on
theol:e length of proofs: all the axioms are true, and any conclusion derived
by e of inference from true premises is true. Soundness means that the
g set inclusions hold:

/7

by a rul
foliowin

Lecture 38

286

/— Th(N)

true sentences

theorems
of PA

.

~Th(N)

false sentences

\

/

all sentences

A proof system is said to be complete if all true statements are theorems of
the system; that is, if the set of theorems coincides with Th(N).

Lecture 39

Proof of the Incompleteness Theorem

Godel proved the incompleteness theorem by constructing, for any rea-
sonable proof system, a sentence of number theory p that asserts its own

unprovability in that system:

@ i8 true <= g is not provable. (39.1)

Any reasonable proof system, including PA, is sound; this means that for
any sentence ¥,
4 is provable = ¥ is true
a proof system would not be worth much if some of its theorems were
false). Then must be true, because otherwise

(39.2)

@ is false = ¢ is provable by (39.1)
= g is true by (39.2),

a contradiction. Since ¢ is true, by (39.1) ¢ is not provable.

The construction of p is quite interesting by itself, since it captures in
o uncertain terms the notion of self-reference. The power that one needs
» elf-referential sentence is present in Turing machines

truct such a § _mac
:t;r’xdc (::;ls modern programming languages. For example, the following is a C
at prints itself:

program th

288

Lecture 39

Lemma 39.1

char *s="char #s=hclslc;%cmain(){printf(s,34,s,34,1¢

.] 10) ;}I/.C“'
main(){printf(s,34,s,34,10,10);} '
Here 34 and 10 are the ASCII codes for double quote ("™ ang Rewiine
respectively. Although it's a mind-bender to try to figure oy what thié

program does, it’s worth the attempt, becaufe once you understanq this
you have understood the main idea behind Gédel’s constructiop,

We'll construct Godel’s self-referential sentence in Supplementa;
K. For now we take a simpler approach that still retains the mogt impor.
tant consequences. We will argue that in PA or any other reasonable proof
system for number theory,

Y Lecture

(i) the set of theorems (provable sentences) is r.e., but

(ii) the set Th(N) of true sentences ig not,

therefore the two sets cannot be equal, and the proof system cannot be
complete. This approach is due to Turing [120].

The set of theorems of PA is certainly r.e.: one can enumerate the theorems
by enumerating all the axioms and systematically applying the rules of
inference in all possible ways, emitting every sentence that is ever derived.
This is true for any reasonable proof system,

The crux then is to show:

Th(N) is not r.e.

Proof. We prove this by a reduction ~HP <m Th(N). The result will then

follow from Theorem 33.3(i) and the fact that ~HP is not r.e. Recall that
HP = {M#z | M halts on input z}.

Given- M#z, we show how to produce a sentence 7 in the language of
number theory such that

M#z € ~HP ¢= y¢ Th(N);
that is,

M does not halt on z <=> v i8 true.

In other words, given M and z, o e

we want to construct a sentence 7!

l&ngx.lage of number theory that says, “M does not hait on z.” This will be
possible because the langnage

about Turing machines and wh

Recall the formula Brr(y,
think of numbers as bit s

I
of number theory is strong enough to ¥
ether or not they halt.

0
z) constructed in Lecture 38, which allows 43 ;5
trings and extract bits from them. Using thi®

ah
)

™

o,

Proof of the Incompleteness Theorem 289

a starting point, we will be able to construct a series
nating in a formula VALCOMP pr . (y)
computation history of M on inp
configurations ag,0,..
that

of formulas culmi-
that says that Y represents a valid
ut z; that is, y represents a sequence of
-y of M, encoded over some alphabet A, such

(i) oo is the start configuration of M on z,

(i1) a1 follows from o according to the transition function § of M, and

(iii) an is a halt configuration.

These are the same valid computation histories we saw in Lectyre 34. Once
we have the formula vaLcomp M,z(y), we can say that M does not halt on
T by saying that there does not exist a valid computation history:

7y —3y VALCOMP p o ().
This constitutes a reduction from ~HP to Th(N).

It remains only to provide the gory details of the construction of 7 from
M and z. Here they are, Assume that configurations of M are encoded
over a finite alphabet A of size p, where p is prime. Every number has
a unique p-ary representation. We use this representation instead of the
binary representation for convenience.

Let the symbols of the start configuration of M on z = ¢a4---a, be
encoded by the p-ary digits kg, ..., k» as shown:
+ ay a2 a4z ag ' Qn

S — = = = e =
ko ki Kz ks ke o En

Let the blank symbol u be encoded by the p-ary digit k.

Let C be the set of all sextuples (a,b,c,d,e,) of p-ary digits such that if

the three elements of A represented by a, b, and ¢ occur consecutively in

i i i ‘ ding locations
tion &, and if 4, e, and f-occur in the corresponding
?C;)ﬂﬁsutf:e; this”would be‘ consistent with the transition function §. For
n Qi+l,
example, if
6(q,ﬂ.) = (P, b; R)l

then the sextuple

w.a b a b b
- q - - =P
would be in C.

Now it's time te define some formulas.

290

Lecture 39

e “The number y is a power of p.” Here p is a fixed prime thay e,
on M.
POWER,(y) v, (prv(2,y) A PRIME(z) —~ 2 = p)

e “The number d is a power of p and specifies the length of y 55 , 8t
over A7

LENGTH(v, d) «f POWERp{d) A v < d

ring

o “The p-ary digit of v at position y is b” (assuming y is a power of »).

mc;x'r(u,y,z:)d:"':f Jude{v=a+bytupy Aa<y A b<p)
& “The three p-ary digits of v at positiony are b, ¢; and d” (assuming y
i8 a power of p).

3p16iT(v, ¥, 5,¢,d) T (v = a+ by + cpy + dppy + upppy
Ae<y Ab<p Acec<pAd<yp

¢ “The three p-ary digits of v at position y match the three p-ary digits
of v at z according to ” (assuming y and z are powers of p).
MATCE(v,y,2)

& V 3p1617(v,9,8,b,¢) A 3DIGIT(v,2,d,¢, f)
(ﬂ.b.c,d,e,f)ec

@ “The string v represents a string of successive configurations of M a?:
length ¢ up to d” = “All pairs of three-digit sequences exactly ¢ ap
in v match according to & (assuming ¢ and d are powers of p).

MOVE(v,c, d) & Yy (POWER,(y) A yppe < d) — MATCH(v, y,5¢)

® “The string v starts with the start configuration of M on i'nP‘lt;;
6102 ... 4, padded with blanks out to length ¢” (assuming cis 2 PM)
of i n and p, 0 < i < n, are fixed constants depending only on

k43
sn‘An'r(v,c)déf /\mcn(v,p",k;) Apt<c

i=0
k
A ¥y (POWERG(y) A p < ¥ < ¢ DIGIT(%: s)
¢ “The string v has a halt state in it somewhere.”
HALT(,d) & 35 (POWERL(3) A y<d A V mch(v,y»“))

oEH

Fo™

Proof of the Incompleteness Theorem 201

Here H is the set of all p-ary

digits corresponding to symbols of A
containing halt states.

® “The string v is a valid computation history of M on z.”
VALCOMP 1 - (v) VY (POWERL(c) A c<d A LENGTH(v, d)
A START(v,¢) A MOVE(v,c,d) A HALT(v, d))
© “The machine M does not halt on z.”

—3v VALCOMP pq,(v)

This concludes the proof of the incompleteness theorem. In

