Motivation, Definitions and Notation: Recall that the proof of Gödel’s Incompleteness Theorem involved the construction of a formula $\phi_{M,x}$ of the form $\phi_{M,x} = \neg \exists v \text{VALCOMP}_{M,x}(v)$ with the property that $\mathbb{N} \models \phi_{M,x}$ if and only if Turing machine M does not halt on input x. Let PA denote Peano Arithmetic. The Incompleteness Theorem says that there is a Turing machine M and an input x such that $\mathbb{N} \models \phi_{M,x}$, but such that there is no proof in PA of the logic formula $\phi_{M,x}$. That is, the machine M really does not halt on input x, but this cannot be proved in PA. For the remainder of this write-up, we will use the notation “M” and “x” to refer to this specific machine M, which does not halt on input x, but where this cannot be proved in PA.

Let Γ be any set of formulae. Recall that the notation $\Gamma \models \phi$ means that, for every structure M such that $M \models \Gamma$, it also holds that $M \models \phi$. In particular, if there is no structure that satisfies Γ, then the condition “$M \models \phi$” is considered to hold vacuously (since it holds for “every structure that satisfies Γ”), and thus, in this case we say that $\Gamma \models \phi$ for every formula ϕ, including obvious contradictions such as the case when ϕ is $\psi \land \neg \psi$. In this case, we say that Γ is inconsistent.

The notation $\Gamma \vdash \phi$ means that there is a proof (using some standard notion of “proof system”) such that every line of the proof is either an element of Γ or else follows from some earlier lines according to the inference rules of the proof system, where the final line in the proof is ϕ.

Gödel’s Completeness Theorem says that $\Gamma \models \phi$ implies $\Gamma \vdash \phi$.

In particular, the proof of the Completeness Theorem establishes that, if Γ is inconsistent, then $\Gamma \vdash (\psi \land \neg \psi)$. This proof must be of finite length, and thus it can only make use of finitely-many of the formulae in Γ. This proves:

The Compactness Theorem for first-order logic: If Γ is inconsistent, then there must be a finite subset $\Gamma' \subseteq \Gamma$ that is inconsistent (because $\Gamma' \vdash (\psi \land \neg \psi)$).

For the particular case where $\Gamma = \text{PA}$, combining the completeness theorem and the incompleteness theorem, we have that $\text{PA} \nvdash \phi_{M,x}$, and thus $\text{PA} \nmodels \phi_{M,x}$ — and thus (by definition) there must be a structure M such that $M \models \text{PA}$ and simultaneously $M \models \neg \phi_{M,x}$. That is, M “looks like” \mathbb{N} (in the sense that it satisfies PA, which are the usual axioms for \mathbb{N}), but nonetheless $M \models \exists v \text{VALCOMP}_{M,x}(v)$. That is, in the structure M, there is a “number” that encodes a halting computation transcript of M on input x. This homework assignment asks you to explore how this can possibly be.
1. Let Γ_0 be PA. Let c be a new constant. Consider $\Gamma_1 = \Gamma_0 \cup \{c > 1, c > 1 + 1, c > 1 + 1 + 1, \ldots \}$. Prove that every finite subset of Γ_1 is consistent. Then explain why this shows that there is a structure \mathcal{M} such that $\mathcal{M} \models \Gamma_1$.

\mathcal{M} is called a non-standard model of arithmetic. Note that \mathcal{M} contains elements that are larger than any “standard” integer.

In the rest of this assignment, fix one such “non-standard” structure \mathcal{M}.

2. PA proves several standard facts about \mathbb{N}, such as

$$\forall x \ (x > 0 \rightarrow (\exists y \ (y + 1 = x \land y \neq x)))$$

and $\forall x \forall y (x < y \lor y < x \lor y = x)$, and $\forall x \exists y (y^2 \leq x \land (y + 1)^2 > x)$. (This third statement can be interpreted as saying “for all x, $\lceil \sqrt{x} \rceil$ exists”.) What does this allow you to say about the interpretation of the constant c in \mathcal{M}? Do the elements $c - 1$ and $\lceil (c)^{1/2} \rceil$ exist? If so, are these elements standard or non-standard elements? Is it correct to think of \mathcal{M} as being $\mathbb{N} \cup \{\infty\}$, or is it something more complicated?

3. Consider the closed terms that do not use the constant c (such as $(1 + 1) \times (1 + 1 + 1)$). Do these terms represent standard or non-standard elements of \mathcal{M}?

4. Now consider any structure \mathcal{M}' such that $\mathcal{M}' \models \exists v \ \text{VALCOMP}_{\mathcal{M},x}(v)$ and $\mathcal{M}' \models \text{PA}$. (That is, we are not necessarily assuming ahead of time that \mathcal{M}' satisfies Γ_1 or even that \mathcal{M}' has an interpretation of the constant c.) Show that we can nonetheless conclude that \mathcal{M}' contains nonstandard elements. (Hint: consider the formulas of the form $\text{VALCOMP}_{\mathcal{M},x}(1 + 1 + 1 + 1)$, and with other closed terms plugged in place of the variable v.)