Here are some corrections that were necessary, in Lecture 22.

On page 142, change the last 7 lines to the following:

Let \(\sigma \) be an \(\equiv_{2m^2}^k \)-equivalence class, and \(\tau \) an \(\equiv_{m^2}^{k+1} \)-equivalence class. Let \(a \in \sigma \subseteq \mathbb{R}^k \). We say that \(\tau \) is consistent with \(\sigma \) via \(a \) if there exists an \(a' \in \mathbb{R} \) such that \((a, a') \in \tau \).

Lemma 22.4: Let \(a \in \mathbb{Q}^k \), and let \(\sigma \) be the \(\equiv_{2m^2}^k \)-equivalence class of \(a \). The set
\[
\{(a, f(a)/c) : f \in A_{2m^2}^k, |c| \leq 2m^2, c \in \mathbb{Z}\}
\]
contains a representative of every \(\equiv_{m^2}^{k+1} \)-equivalence class that is consistent with \(\sigma \) via \(a \).