LEAST ABSOLUTE DEVIATION ESTIMATES IN
AUTOREGRESSION WITH INFINITE VARIANCE

By

S. Gross
W. L. Steiger
Technical Report # 62

Dr. S. Gross
Dept. of Statistics
Baruch College
The City University of New York

Dr. W. L. Steiger
Dept. of Computer Science
Rutgers University

Department of Computer Science
Rutgers, The State University of New Jersey
New Brunswick, New Jersey 08903
Classification: Probability/Statistics

Title: Least Absolute Deviation Estimates in Autoregression with Infinite Variance

Authors: S. Gross
Dept. of Statistics
Baruch College
The City University of New York

W.L. Steiger
Department of Computer Science
Rutgers University

Key Words: Least Absolute Deviation, Autoregression, Infinite Variance

Running Title: Least Absolute Deviation Estimates

AMS (MOS) Classification: Primary 62J05, 60G10
Secondary 62P20, 95E10
Abstract

We consider an L_1 analogue of the least squares estimator for the parameters of stationary, finite order autoregressions. This estimator, the least absolute deviation (LAD), is shown to be strongly consistent via a result that may have independent interest. The striking feature is that the conditions are so mild as to include processes with infinite variance, notably the stationary, finite autoregressions driven by stable increments in L_α, $\alpha > 1$. Finally sampling properties of LAD are compared to those of least squares. Together with a known convergence rate result for least squares, the Monte-Carlo study provides evidence for a conjecture on the convergence rate of LAD.
1. Introduction and Summary

There has been a good deal of interest in stochastic processes based on random variables with infinite variance (e.g. [3] - [6], [8] - [16], [19]). No doubt this is due to the inherent challenge ([12], e.g.) and theoretical interest provided by the non-normal stable laws as well as the possibility that processes constructed from these laws may be appropriate models for many, diverse phenomena ([15] - [16]).

In this paper we consider the problem of estimating the regression parameter vector \(\mathbf{a} = (a_0, \ldots, a_k) \) in the \(k \)th order autoregressive model

\[
X_n = a_0 + a_1 X_{n-1} + \ldots + a_k X_{n-k} + U_n
\]

where \(k > 0 \) is a given integer and the error variables \(U_i \) form a sequence of nonlattice, integrable, independent and identically distributed random variables. We assume that \(\mathbf{a} \) satisfies the invertibility condition

\[
a_1 z + \ldots + a_k z^k = 0
\]

for any complex \(z, |z| \leq 1 \). Thus (1) is invertible and may be written as

\[
X_n = \sum_{j=0}^{\infty} b_j U_{n-j}
\]

for some constants \(b_j \) which are uniquely determined by \(\mathbf{a} \).

It was recently shown by Yohai and Maronna [19] that integrability of the positive part of \(\log |U_1| \) is a sufficient condition for the a.s. convergence of (2). Since \(\mathbb{E} |U_1|^{\infty} \Rightarrow \mathbb{E} \log^+ |U_1|^{\infty} \), the process in (2) converges a.s. This in turn guarantees the existence of a stationary process \(\{X_i\} \) that satisfies (1). We further assume that \(\text{Median}(U_1) = 0 \).
Least squares estimators are known to be consistent for \(\hat{\alpha} \).

Kanter & Steiger \([9,10]\) studied (1) in case the \(U_n \) are in the domain of attraction of a symmetric stable law of index \(\alpha \in (0,2] \). They show that \(\hat{\alpha}_N \), the least squares estimate of \(\alpha \), based on \(N \) observations of \(\{X_i\} \), satisfies

\[
N^\delta |\hat{\alpha}_N - \alpha| \to 0
\]

in probability for all \(\delta < 2/\alpha - 1/\min(1,\alpha) \) while in \([8]\), (3) was shown to hold a.s. for \(\delta < 1/\alpha \). Yohai and Maronna \([19]\) enlarged the class of processes for which \(\hat{\alpha}_N \) is consistent by showing that \(N^{1/2} |\hat{\alpha}_N - \alpha| \to 0 \)

in probability for \(U_i \) symmetric and satisfying \(E(\log |U_i|) < \infty \). The latter condition is obeyed by all symmetric stable variables \(U_i \). The greater generality is obtained at the expense of rate of convergence.

In the present paper we consider the LAD, or least absolute deviation estimators of \(\alpha \), defined as a random variable \(L_N \) at which the function

\[
f_N(c) = \sum_{i=1}^{N} |X_i + k - (c_0 + c_1X_{i+k-1 + \ldots + c_kX_i})|
\]

attains a minimum; as long as \(U_i \) is nonlattice, \(L_N \) is a.s. unique. In the next section we establish the strong consistency of \(L_N \).

However consistency is not justification enough for considering LAD, especially in view of the favourable properties of least squares indicated...
by (3) and (4). Any such justification must address the obvious complexity of computing \(L_N \) from real data by showing that it is first feasible to calculate \(L_N \) and then, that it is worthwhile to do so.

An attempt is made to do this in Section 3. We briefly discuss an algorithm [1] to compute \(L_N \) exactly and present some Monte-Carlo results that portray its efficiency. The conclusion is that while \(L_N \) is computationally several times more costly than least squares, it is affordable. The same Monte-Carlo experiments indicated that it should be worth the extra expense. In the stable autoregressions LAD appears to converge much faster than the least squares rate of \(n^{-\delta} \) as shown in (3).

It may be useful to close this introduction by recalling some basic facts about stable laws: further details may be found in Feller [7]. A random variable \(X \) is stable of index \(\alpha \in (0,2] \) in case for each \(n \) there is a constant \(c_n \) that makes

\[
L(X) = L((X_1 \ldots X_n)/n^{1/\alpha} - c_n),
\]

the \(X_i \) being i.i.d. variables with \(L(X_i) = L(X) \) and \(L(\cdot) \) referring to the law of the variable inside parentheses. A random variable \(Z \) is in the domain of attraction of a stable law of index \(\alpha < 2 \) if \(t^{\alpha} P(\{ |Z| > t \} > k = 0 \), a constant, as \(t \to \infty \), in which case a sequence \(\{c_i\} \) may be found that makes \(L((Z_1 \ldots Z_n)/n^{1/\alpha} - c_n) \to L(X) \), the \(Z_i \) being i.i.d. copies of \(Z \). Finally if \(X \neq 0 \) is symmetric and stable of index \(\alpha \), \(E(e^{itX}) = e^{-c|t|^{\alpha}} \) for some \(c > 0 \) and if \(X, Y, Z \) are i.i.d. symmetric stable variables, then for any \(a, b \),

\[
L(aY + bZ) = L((|a|^\alpha + |b|^\alpha)^{1/\alpha} X)
\]
2. **Strong Consistency of LAD.**

The main result of this section is contained in Theorem 1, which is stated below after some preliminary definitions.

Let \(\{\ldots, U_{-1}, U_0, U_1, \ldots \} \) denote a sequence of i.i.d. nonlattice integrable random variables defined on a probability space \((\Omega, A, p)\). Fix an integer \(k \geq 1 \) and constants \(a_1, \ldots, a_k \) and consider the \(k \)th order autoregression

\[
X_n = a_1 X_{n-1} + \ldots + a_k X_{n-k} + U_n
\]

(5)

It follows from Yohai and Maronna [19] that if \(a_1 z^1 + \ldots + a_k z^k = 1 \) for any complex \(z, |z| \leq 1 \), and if the \(U_i \) are integrable then (5) may be written as

\[
X_n = \sum_{j=0}^{\infty} b_j U_{n-j}
\]

(6)

for appropriate constants \(b_j \); the sum on the right converges almost surely.

In other words, there is a stationary process \(\{X_i\} \) that satisfies (5). For this stationary, \(k \)th order autoregression, we study the problem of estimating \(\mathbf{a} = (a_1, \ldots, a_k) \) based on \(N \) observations.

Consider the distance function

\[
f_N(c) = N^{-1} \sum_{j=1}^{N} |R_j(c)|
\]

(7)

where \(R_j(c) = X_{j+k} - (c_1 X_{j+k-1} + \ldots + c_k X_j) \) is the \(j \)th residual determined by the vector \(c \). Clearly \(f_N \) is almost surely a continuous, convex function \(R^k \rightarrow R \) because each term of (7) is. The least absolute deviation (LAD) estimator
for a based on N residuals, L_N is the location of the minimum of f_N, unambiguously defined almost surely by

$$f_N(L_N) \leq f_N(u), \text{ all } u \in \mathbb{R}^k.$$

(8)

Finally let $C = \{c \in \mathbb{R}^k : c_1 z_1 + \ldots + c_k z_k = 1, \ |z| \leq 1 \}$ be the set of all possible coefficients for kth order stationary autoregressions that may be written as (6).

Theorem 1: Let $(\ldots, U_{-1}, U_0, U_1, \ldots)$ be an i.i.d. sequence of integrable random variables with a unique Median $(U_1) = 0$ and (X_i) a stationary sequence that satisfies (5) for some $a \in C \subset \mathbb{R}^k$. The least absolute deviation estimators L_N, satisfy

$$L_N \to a \text{ a.s. as } N \to \infty.$$

(9)

In proving Theorem 1 we rely on a nonprobabilistic result (Lemma 1) that seems to be new and of independent interest due to its potential use in establishing consistency of general least distance estimators, provided the distance employed is convex. The proof of Lemma 1 together with a stronger result for $k=1$ is in an appendix.

Lemma 1: Let $\{h_i\}$ be an equicontinuous sequence of convex functions $\mathbb{R}^k \to \mathbb{R}$ that converge pointwise to a continuous convex function h on an open set $U \subset \mathbb{R}^k$. Suppose h_n has a minimum at X_n and h, a unique minimum at $X \in U$; i.e.,
\[h_n(x_n) \leq h_n(u), \text{ all } u \]
\[h(x) < h(u), \quad u > x. \]

Then
\[x_n \to x \text{ as } n \to \infty. \]

Proof of Theorem 1: We shall establish the following facts:

(i) For each fixed \(c \in C \) the sequence \(f_N(c) \) converges almost surely as \(N \to \infty \) to the limit function

\[f(c) = E|X_{k-1} - (c_1 X_k + \ldots + c_k X_1)|. \]

(ii) The limit function \(f \) is convex on \(C \) and has a unique minimum at \(a \).

Thus,
\[f(a) < f(c), \quad c \neq a. \]

Statement (i) follows from the ergodicity and stationarity of the process \(\{X_n\} \), which in turn implies that the residual process \(\{R_j(c)\} \) is stationary and ergodic (see Doob [2]). Hence \(f_N(c) \to E|R_0(c)| = f(c) \) by the ergodic theorem. Finally \(|X_{k+1} - (c_1 X_k + \ldots + c_k X_1)| \) is a convex function of \(c \) on the set \(C \), so \(E(|X_{k+1} - (c_1 X_k + \ldots + c_k X_1)|) = f(c) \) is convex.

To prove (ii) write \(c = a + d \) and note that
\[f(c) = f(a + d) = E(|X_{k+1} - (a_1 X_k + \ldots + a_k X_1) - (d_1 X_k + \ldots + d_k X_1)|) = E(|U_{k+1} - (d_1 X_k + \ldots + d_k X_1)|), \]
the last equality a consequence of (5).
Letting \(\mathcal{F}_k \) denote the \(\sigma \)-field generated by \(X_1, \ldots, X_k \) we have

\[
(14) \quad f(c) = E\left([U_{k+1} \circ (d_1 X_k + \ldots + d_k X_1)] \mid \mathcal{F}_k \right)
\]

from which it is clear that \(f \) is minimized when

\[
(15) \quad E([U_{k+1} \circ (d_1 X_k + \ldots + d_k X_1)] \mid \mathcal{F}_k)
\]

is. Since \(U_{k+1} \) is independent of \(\mathcal{F}_k \) and has a unique median at 0, \(d \) must be chosen so that

\[
(16) \quad d_1 X_k + \ldots + d_k X_1 = 0
\]
on \(\mathcal{F}_k \), which because \(\{U_i\} \) are nonlattice, implies that \(d = 0 \) at the unique minimum of \(f \).

This completes the proof of statement (ii). As \(f_N(c) \) is a sequence of continuous and convex functions on \(C \) for which \(f_N(L_N) \leq f_N(L) \) for all \(L \in \mathbb{R}^K \), Theorem 1 will follow from Lemma 1 and statements (i), (ii) provided we verify that \(\{f_i\} \) is almost surely equicontinuous on \(C \), a fact that follows easily from

\[
|f_N(c) - f_N(c + \tau)| \leq N^{-1} \sum_{j=1}^{N} |t_1 X_{k+j-1} + \ldots + t_k X_j|
\]

\[
\leq ||\tau|| (N^{-1} \sum_{j=1}^{N} (|X_{k+j-1}| + \ldots + |X_j|))
\]

and the ergodic theorem.

\(\square \)
Remark. The theorem holds even if the \(\{U_i\} \) are not centered at zero.

If \(U_n = a_0 + V_n \), the \(\{V_i\} \) i.i.d. with unique \(\text{Median}(V_i) = 0 \), the auto-regression (5) may be written as

\[
X_n = a_0 + a_1 X_{n-1} + \ldots + a_k X_{n-k} + V_n.
\]

If we define \(L_N \in \mathbb{R}^{k+1} \) as the location of the minimum of

\[
g_N(c) = N^{-1} \sum_{j=1}^{N} |X_{k+j} - (c_0 + c_1 X_{k+j-1} + \ldots + c_k X_j)|
\]

and

\[
g(c) = E|X_n - (c_0 + c_1 X_{n-1} + \ldots + c_k X_{n-k})|
\]

g_N \rightarrow g \text{ a.s. on } \mathbb{R} \times \mathbb{C}. \text{ Furthermore statement (ii) in Theorem 1 adapts to show that } g \text{ has a unique minimum at } (a_0, a_1, \ldots, a_k) = (a_0, \bar{a}) \text{ from which, using Lemma 1, } L_N \rightarrow (a_0, \bar{a}).

In this section we present Monte-Carlo results that compare sampling distributions of \(L_N \) with those of the least squares estimators. Since rate of convergence results are known for the latter in the stable case, we chose to present simulation results for symmetric stable processes of index \(0 < \alpha \leq 2 \). These lend support to a conjecture about the rate of
convergence of L_N to a and to a possible generalization of Theorem 1.

In the experiments we generated stable random numbers using the fact that for $\alpha < 1$ the random variable $S_\alpha = [f(U)/V]^{1/\alpha - 1}$ is positive stable of index α, where U and V are independent with $P(U \leq t) = t$, $0 \leq t \leq 1$, and $P(V \leq 1 - e^{-t})$, $0 \leq t < \infty$, and $f(x) = (\sin \pi x/\sin \pi x)^{1/(1-\alpha)}(\sin \pi x(1-\alpha)/\sin \pi x)$, for $0 \leq x \leq 1$ (see [11]). Moreover if X is symmetric stable of index $\alpha \in (0,2]$ and Y is positive stable of index $\beta < 1$ and independent of X, then

$$R = X(Y)^{1/\alpha}$$

is symmetric stable of index $\alpha \beta$ (see [7:p172]) from which it follows that

(20) $$N(S_{\alpha/2}^{1/2})$$

is symmetric stable of index α, where N is normal, $E(N) = 0$, $E(N^2) = 2$, and $S_{\alpha/2}$ positive stable of index $\alpha/2$ and independent of N; in fact, the variable in (20) is "standard", with characteristic function $e^{-|t|^\alpha}$.

We simulated the stationary autoregression

(21) $$X_n = a_1 X_{n-1} + a_2 X_{n-2} + \cdots + a_k X_{n-k} + U_n$$

with U_i symmetric stable of index α, generated as in (20). This was done via the moving average representation of the process,
\[X_n = \sum_{j=0}^{\infty} b_j U_{n-j} \]

and approximating the solution to (21) by the (non stationary) process

\[X_n = \sum_{j=0}^{199+n} b_j U_{n-j} \tag{22} \]

For \(N > 0 \) a sample of size \(N, X_1, \ldots, X_N \) is computed from \(U_{-199}, \ldots, U_N \) according to (22).

Fifty samples of size \(N+k \) were generated. For each, a value of the LAD estimator \(L_N \), and of the least squares estimator \(C_N \) was computed. The estimate \(C_N \) was computed as the solution of the normal equation:

\[C_N^T = (W^T W)^{-1} W^T Y^T \]

where

\[W = \begin{pmatrix} X_k & \ldots & X_1 \\ \vdots & \ddots & \vdots \\ X_{N+k-1} & \ldots & X_N \end{pmatrix} \quad \text{and} \quad Y = (X_{k+1}, \ldots, X_{N+k}) \]

The exact value of the LAD estimator was found using a recently developed algorithm [1]. It is based on the following observations.

(i) Let \(X_1, \ldots, X_{N+k} \) be a sample of size \(N+k \) from (17) and let

\[\Pi = \{ z_l = (X_x, \ldots, X_{x+k}) ; l = 1, \ldots, N \} \]

be the set of \(N \) \(k+1 \)-tuples, or "points" formed by \(k+1 \) successive elements of \(X_1 \). It is well known ([18], e.g.) and easy to prove that at the minimum value of (18),

\[c_m \]

may be chosen so that at least \(k+1 \) terms in the sum are zero; i.e.,

\[X_{i_j} = c_{m} + c_{i_{j-1}+1} \ldots + c_{i_{j-k}} \]

for certain distinct indices \(i_j, \ldots, i_{j-k} \), so \(c_m \) may be regarded as a \(k \) dimensional hyperplane in \(R^{k+1} \).
containing the points \(z_{i1}, z_{i2}, \ldots, z_{ik+1} \in \Pi \). Since the minimum of (18) is unique a.s., \(L_N \) is determined by one of the \(\binom{N}{k+1} \) hyperplanes generated by the \(k+1 \)-tuples from \(\Pi \).

(ii) Exhaustive search of these hyperplanes is avoided by starting with an initial hyperplane \(c_0 \) and iterating through a sequence \(c_1, \ldots, c_n \) of hyperplanes until (18) is minimized. For the basic iteration suppose one is at \(c_i \), determined by points \(z_{j1}, \ldots, z_{jk+1} \) from \(\Pi \). Since \(z_{j1}, \ldots, z_{jk+1} \) are \(k \) points in \(\mathbb{R}^{k+1} \), there are distinct hyperplanes \(\theta = (\theta_0, \ldots, \theta_k) \neq 0 \) and \(V = (V_0, \ldots, V_k) \neq 0 \) that contain them. Any hyperplane \(d \) containing \(z_{j1}, \ldots, z_{jk+1} \) may be written as \(d = \theta + t(V - \theta) = \theta + t\delta \) for some real \(t \) and \(\delta = V - \theta \). To minimize (18), one must minimize

\[
f(d) = \sum_{j=1}^{N} |X_{j} + k - (d_0 + d_1 X_{j1} + \cdots + d_k X_{jk+1})|
\]

\[
= \sum_{j=1}^{N} |X_{j} + k - (\theta_0 + \theta_1 X_{j1} + \cdots + \theta_k X_{jk+1}) - t(\delta_0 + \delta_1 X_{j1} + \cdots + \delta_k X_{jk+1})|
\]

(23)

\[
= \sum_{j=1}^{N} |w_j - u_j|
\]

where we have written \(w_j = X_{j} + k - (\theta_0 + \theta_1 X_{j1} + \cdots + \theta_k X_{jk+1}) \) and \(u_j = \delta_0 + \delta_1 X_{j1} + \cdots + \delta_k X_{jk+1} \).

Note that \(w_j = \ldots = w_{j_k+1} = 0 \) because \(z_{j1}, \ldots, z_{jk+1} \) are in \(\theta \) and that \(u_j = \ldots = u_{j_k+1} = 0 \) because \(\delta = V - \theta \) is orthogonal to \(z_{j1}, \ldots, z_{jk+1} \), so that \(k \) terms of (23) are already 0.

The \(d \) that minimizes (23) is determined by solving the one dimensional problem for \(t \) using the idea in Singleton [17] and thus forcing an additional, \(k+1 \)st term of (23) to be zero. The next iterate, \(c_{i+1} \), is set to the minimizing \(d \) and \(f(c_{i+1}) \leq f(c_i) \).

(iii) If the model in (17) is constrained to have \(a_0 = 0 \), \(c_0 \) in (18) is zero, as is \(\theta_0 \) and \(V_0 \), so the dimensionality, \(k \), may be reduced by 1.
We point out that each iteration of the above procedure can be affected by solving \(k+1 \) linear equations and ordering \(N \) numbers whereas computation of \(C_N \) simply requires the solution of \(k+1 \) linear equations. Thus if \(n \) such iterations are required to compute \(L_N \), cost \((L_N) = n (C_N + \text{cost}(C_N)) \), where "cost" is a measure of computational complexity and \(O_N \) is the complexity of ordering \(N \) numbers.

The following tables depict the sampling distributions of \(\overline{L_N} \), \(C_N \), and the number of iterations \(n \) that were required to compute \(L_N \). The sampling distributions are based on 50 observations each, for \(k=2 \), \(a_1 = 1.4 \), \(a_2 = .7 \).

We are not really trying to estimate the sampling distributions of \(\overline{L_N} \) and \(C_N \). Instead, we want to compare the accuracy, speed of convergence, and computation times of the estimators. For this reason the tables show only the MIN, the MAX, and the three quartiles \(Q_1, Q_2, Q_3 \) of the relevant distributions. For each \(N \) and \(a \), these are shown for the residuals \(\overline{L_N} - a \), for \(C_N - a \), and for the number of iterations, \(n \), required to compute \(L_N \). Thus in Table 1 for \(N=100 \), the largest deviation of the least squares estimator of \(a_1 \) is 0.1816. The maximum number of iterations that were required to compute \(\overline{L_{100}} \) among the 50 samples was 10 and the maximum deviation of the first component of \(L_{100} \) was 0.1101.

The four tables suggest the following observations.

Remark 1. The distribution of the number of iterations required to compute \(L_N \) stayed fairly stable as the sample size \(N+2 \) increased from 52 to 502 and \(a \) varied from 2.0 to 1.6 to 1.2 to .6. We estimate that each iteration to compute \(\overline{L_{100}} \) (which is approximately equal to the time required to compute \(C_{100} \)) was approximately 0.37 sec of CPU time on the Rutgers PDP-10 computer. Thus the maximum CPU time to compute \(L_{100} \) was approximately 3.7 seconds when \(a=2 \).
Remark 2. Comparison of C_N and L_N across tables reveals some unexpected results. For $\alpha=2.0$ where C_N is expected to do better than L_N, the distributions are quite comparable, the $N=500$ case possibly suggesting that $C_N \rightarrow 0$ a little faster than $L_N \rightarrow 0$ does. When $\alpha=1.6$ (Table 2), there is little to choose between them while for $\alpha=1.2$ (Table 3), L_N is distributed much more tightly about α than is C_N, and to about the same extent for each N. Finally for $\alpha=.6$ (Table 4) L_N is clearly superior to C_N and becomes more so as N increases.

These remarks lead us to two conjectures that we cannot, as yet, prove.

First, because of Table 4, we believe

Conjecture 1: For stable autoregressions, L_N is consistent even if $E(|U_1|) = \alpha$.

Next, it was proved in [8] that $N^\alpha \left| C_N - \alpha \right| \rightarrow 0$ a.s. as long as $\alpha < 1/\alpha$. On the basis of the tables and Remark 2, we are led to the following statement.

Conjecture 2: For stable autoregressions, $N^\alpha \left| L_N - \alpha \right| \rightarrow 0$ in probability, for $\alpha < 2/\alpha$.

Acknowledgement. Thanks are due to the referee for pointing out errors in the original simulations.
References

4. Appendix.

Proof of Lemma 1. If \(x_n \not\to x \) there is \(\varepsilon > 0 \) and a subsequence \(n_j \) for which \(|x_{n_j} - x| \geq \varepsilon \). Choose \(t < \varepsilon \) so that \(h_n(u) \to h(u) \) whenever \(|u - x| \leq t \). Write \(S(t) \) for the surface of the sphere \(\{u: |u - x| = t\} \) and note that \(h_n \) attains a minimum (not necessarily uniquely) at, say, \(u_n \in S(t) \).

There is a limit point, \(u_0 \) and a subsequence \(m_j \) of \(n_j \) such that \(u_{m_j} \to u_0 \).

Equicontinuity implies \(h_{m_j}(u_{m_j}) \to h(u_0) \). Pointwise convergence combines to imply that for large enough \(m_j \), \(h_{m_j}(u_{m_j}) > h(u_0) - \sigma/4 \) and \(h_{m_j}(x) < h(x) + \sigma/4 \) where \(\sigma = h(u_0) - h(x) > 0 \); therefore \(h_{m_j}(u_{m_j}) - h_{m_j}(x) > \sigma/2 \).

This shows that for \(m_j \) large enough, each \(h_{m_j} \) attains a minimum in \(B(t) = \{u: |u - x| < t\} \) which, together with convexity, contradicts \(x_n \not\to x \).

As a final remark, it is worth noting that if \(k = 1 \) in Lemma 1, the result holds without equicontinuity of \(\{h_{m_j}\} \).

Lemma 2: \(\{h_{m_j}\} \) and \(h \) are continuous convex functions and

\[
\frac{h_n(x_n)}{n} \leq h_n(u) \quad \text{all } u \in R
\]

\[
h(x) < h(u) \quad u \not\in x
\]

If \(h_n \to h \) pointwise on an open set containing \(x \) then \(x_n \to x \).

Proof: If \(x_n \not\to x \) there is \(\varepsilon > 0 \) and a subsequence \(n_j \) such that \(|x_{n_j} - x| \geq \varepsilon \). Take \(t < \varepsilon \) such that \(h_n \to h \) for all \(u \) in \(S = \{u: |x - u| \leq t\} \). Let \(\sigma > 0 \) be
min(h(x+t)-h(x), h(x-t)-h(x)) and using pointwise convergence, choose N so large that \(h_{n_j}(x+t) > h(x+t) - \sigma/4 \), \(h_{n_j}(x-t) > h(x-t) - \sigma/4 \), and \(h_{n_j}(x) < h(x) + \sigma/4 \) when \(n_j > N \). This shows that \(h_{n_j}(x+t) - h_{n_j}(x) > \sigma/2 \) and \(h_{n_j}(x-t) - h_{n_j}(x) > \sigma/2 \) for \(n_j > N \), which implies that each \(h_{n_j} \) has a minimum in \((x-t, x+t)\) by convexity, in contradiction to \(|x_{n_j} - x| \geq \varepsilon \). \(\Box \)
Table 1 ($\alpha = 2.0$)

Sampling Distributions of L_N and C_N for various N, based on 50 observations of each estimator and of n, the number of iterations required to compute L_N.

<table>
<thead>
<tr>
<th>$N = 50$</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>C_N</td>
<td>L_N</td>
<td>C_N</td>
<td>L_N</td>
</tr>
<tr>
<td>MAX</td>
<td>9</td>
<td>.3479</td>
<td>.1782</td>
<td>.3728</td>
</tr>
<tr>
<td>Q3</td>
<td>5</td>
<td>.0804</td>
<td>.0526</td>
<td>.0945</td>
</tr>
<tr>
<td>Q2</td>
<td>5</td>
<td>.0357</td>
<td>.0082</td>
<td>.0178</td>
</tr>
<tr>
<td>Q1</td>
<td>4</td>
<td>-.0446</td>
<td>-.0817</td>
<td>-.0590</td>
</tr>
<tr>
<td>MIN</td>
<td>2</td>
<td>-.1586</td>
<td>-.4752</td>
<td>-.2425</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$N = 100$</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>C_N</td>
<td>L_N</td>
<td>C_N</td>
<td>L_N</td>
</tr>
<tr>
<td>MAX</td>
<td>10</td>
<td>0.1816</td>
<td>0.2015</td>
<td>0.1101</td>
</tr>
<tr>
<td>Q3</td>
<td>6</td>
<td>0.0403</td>
<td>0.0325</td>
<td>0.0221</td>
</tr>
<tr>
<td>Q2</td>
<td>5</td>
<td>-0.0081</td>
<td>0.0027</td>
<td>-0.0029</td>
</tr>
<tr>
<td>Q1</td>
<td>4</td>
<td>-0.0457</td>
<td>-0.0506</td>
<td>-0.0643</td>
</tr>
<tr>
<td>MIN</td>
<td>2</td>
<td>-0.1429</td>
<td>-0.1683</td>
<td>-0.2044</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$N = 500$</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>C_N</td>
<td>L_N</td>
<td>C_N</td>
<td>L_N</td>
</tr>
<tr>
<td>MAX</td>
<td>9</td>
<td>0.1056</td>
<td>0.0809</td>
<td>0.0744</td>
</tr>
<tr>
<td>Q3</td>
<td>7</td>
<td>0.0207</td>
<td>0.0232</td>
<td>0.0359</td>
</tr>
<tr>
<td>Q2</td>
<td>5</td>
<td>-0.0024</td>
<td>0.0036</td>
<td>-0.0053</td>
</tr>
<tr>
<td>Q1</td>
<td>4</td>
<td>-0.0223</td>
<td>-0.0168</td>
<td>-0.0222</td>
</tr>
<tr>
<td>MIN</td>
<td>2</td>
<td>-0.0722</td>
<td>-0.0904</td>
<td>-0.1028</td>
</tr>
</tbody>
</table>
Table 2 ($\alpha = 1.6$)

Sampling Distributions of l_N and c_N for various N, based on 50 observations of each estimator and of n, the number of iterations required to compute l_N.

<table>
<thead>
<tr>
<th>n</th>
<th>c_N</th>
<th>l_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>7</td>
<td>0.3431</td>
</tr>
<tr>
<td>Q3</td>
<td>5</td>
<td>0.0848</td>
</tr>
<tr>
<td>Q2</td>
<td>4</td>
<td>0.0165</td>
</tr>
<tr>
<td>Q1</td>
<td>3</td>
<td>-0.0354</td>
</tr>
<tr>
<td>MIN</td>
<td>2</td>
<td>-0.1415</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>c_N</th>
<th>l_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>8</td>
<td>0.1257</td>
</tr>
<tr>
<td>Q3</td>
<td>6</td>
<td>0.0520</td>
</tr>
<tr>
<td>Q2</td>
<td>5</td>
<td>0.0131</td>
</tr>
<tr>
<td>Q1</td>
<td>3</td>
<td>-0.0287</td>
</tr>
<tr>
<td>MIN</td>
<td>2</td>
<td>-0.0817</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>c_N</th>
<th>l_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>9</td>
<td>0.0527</td>
</tr>
<tr>
<td>Q3</td>
<td>6</td>
<td>0.00082</td>
</tr>
<tr>
<td>Q2</td>
<td>5</td>
<td>-0.0053</td>
</tr>
<tr>
<td>Q1</td>
<td>4</td>
<td>-0.0156</td>
</tr>
<tr>
<td>MIN</td>
<td>3</td>
<td>-0.0483</td>
</tr>
</tbody>
</table>
Table 3 (a = 1.2).

Sampling Distributions of L_N and C_N for various N, based on 50 observations of each estimator and of
n, the number of iterations required to compute L_N.

<table>
<thead>
<tr>
<th>$N = 50$</th>
<th></th>
<th>L_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>C_N</td>
<td>L_N</td>
</tr>
<tr>
<td>MAX 7</td>
<td>0.3852</td>
<td>0.1085</td>
</tr>
<tr>
<td>Q3 5</td>
<td>0.0778</td>
<td>0.0262</td>
</tr>
<tr>
<td>Q2 4</td>
<td>0.0042</td>
<td>0.0015</td>
</tr>
<tr>
<td>Q1 3</td>
<td>-0.0295</td>
<td>-0.0452</td>
</tr>
<tr>
<td>MIN 2</td>
<td>-0.1204</td>
<td>-0.2313</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$N = 100$</th>
<th></th>
<th>L_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>C_N</td>
<td>L_N</td>
</tr>
<tr>
<td>MAX 8</td>
<td>0.1224</td>
<td>0.1140</td>
</tr>
<tr>
<td>Q3 6</td>
<td>0.0321</td>
<td>0.0265</td>
</tr>
<tr>
<td>Q2 5</td>
<td>0.0056</td>
<td>-0.0064</td>
</tr>
<tr>
<td>Q1 4</td>
<td>-0.0187</td>
<td>-0.0346</td>
</tr>
<tr>
<td>MIN 2</td>
<td>-0.1248</td>
<td>-0.2027</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$N = 500$</th>
<th></th>
<th>L_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>C_N</td>
<td>L_N</td>
</tr>
<tr>
<td>MAX 10</td>
<td>0.0688</td>
<td>0.0374</td>
</tr>
<tr>
<td>Q3 6</td>
<td>0.0061</td>
<td>0.0063</td>
</tr>
<tr>
<td>Q2 6</td>
<td>0.0022</td>
<td>-0.0012</td>
</tr>
<tr>
<td>Q1 4</td>
<td>-0.0057</td>
<td>-0.0112</td>
</tr>
<tr>
<td>MIN 3</td>
<td>-0.0490</td>
<td>-0.0345</td>
</tr>
</tbody>
</table>
Table 4 \((\alpha = 0.6)\)

Sampling Distributions of \(L_N\) and \(C_N\) for various \(N\),
based on 50 observations of each estimator and of \(n\), the number of iterations required to compute \(L_N\):

\(N = 50\)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(C_N)</th>
<th>(L_N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>7</td>
<td>0.2155</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1176</td>
</tr>
<tr>
<td>Q3</td>
<td>5</td>
<td>0.0075</td>
</tr>
<tr>
<td>Q2</td>
<td>4</td>
<td>-0.0000</td>
</tr>
<tr>
<td>Q1</td>
<td>3</td>
<td>-0.0116</td>
</tr>
<tr>
<td>MIN</td>
<td>2</td>
<td>-0.1355</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.3000</td>
</tr>
</tbody>
</table>

\(N = 100\)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(C_N)</th>
<th>(L_N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>8</td>
<td>0.2138</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0667</td>
</tr>
<tr>
<td>Q3</td>
<td>5</td>
<td>0.0053</td>
</tr>
<tr>
<td>Q2</td>
<td>4</td>
<td>0.0000</td>
</tr>
<tr>
<td>Q1</td>
<td>4</td>
<td>-0.0049</td>
</tr>
<tr>
<td>MIN</td>
<td>2</td>
<td>-0.0675</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.1764</td>
</tr>
</tbody>
</table>

\(N = 500\)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(C_N)</th>
<th>(L_N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>9</td>
<td>0.0834</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0676</td>
</tr>
<tr>
<td>Q3</td>
<td>6</td>
<td>0.0029</td>
</tr>
<tr>
<td>Q2</td>
<td>5</td>
<td>0.0000</td>
</tr>
<tr>
<td>Q1</td>
<td>4</td>
<td>-0.0035</td>
</tr>
<tr>
<td>MIN</td>
<td>2</td>
<td>-0.0245</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.5913</td>
</tr>
</tbody>
</table>