Past Events
Qualifying ExamGenerating Explanation Sentences for Personalized Recommendation |
|
||
Thursday, March 14, 2019, 03:00pm |
|||
Abstract:
Current explainable recommendation models mostly generate textual explanations based on pre-defined sentence templates. However, the expressiveness power of template-based explanation sentences is limited to the pre-defined expressions, and manually defining the expressions require significant human efforts. We propose a hierarchical sequence-to-sequence model for personalized explanation generation. Different from conventional sentence generation in NLP research, a great challenge of explanation generation in e-commerce recommendation is that not all sentences in user reviews are of explanation purpose. To solve the problem, we further propose an auto-denoising mechanism based on topical item feature words for sentence generation.
Speaker: Hanxiong Chen
Bio
NULL
Location : CoRE 305 (B)
Committee:
Prof. Yongfeng Zhang (Chair), Prof. Matthew Stone, Prof. Gerard de Melo, Prof. Desheng Zhang
Event Type: Qualifying Exam
Abstract:
Organization:
Dept. of Computer Science