CS Events Monthly View
Qualifying ExamLeveraging Adversarial Training in Self-Learning for Cross-Lingual Text Classification |
|
||
Friday, May 08, 2020, 11:00am - 12:00pm |
|||
Speaker: Xin Dong
Location : Remote via Webex
Committee:
Gerard de Melo (Chair), Yongfeng Zhang, Karl Stratos, Srinivas Narayana
Event Type: Qualifying Exam
Abstract: In cross-lingual text classification, one seeks to exploit labeled data from one language to train a text classification model that can then be applied to a completely different language. Recent multilingual representation models have made it much easier to achieve this. Still, there may still be subtle differences between languages that are neglected when doing so. To address this, we present a semi- supervised adversarial training process that minimizes the maximal loss for label-preserving input perturbations. The resulting model then serves as a teacher to induce labels for unlabeled target language samples that can be used during further adversarial training, allowing us to gradually adapt our model to the target language. Compared with a number of strong baselines, we observe significant gains in effectiveness on document and intent classification for a diverse set of languages.
:
Meeting number: 192 300 048
Password: KSsAwbrv845
https://rutgers.webex.com/rutgers/j.php?MTID=m812b6d133997ccbc2b7c783ac1906704
Join by video system
Dial 192300048@rutgers.webex.com
You can also dial 173.243.2.68 and enter your meeting number.
Join by phone
+1-650-429-3300 USA Toll
Access code: 192 300 048