CS Events Monthly View

Masters Defense

Designing and Learning CPG Gaits for Spherical Tensegrity Robots Using Bayesian Optimization

 

Download as iCal file

Thursday, September 28, 2017, 02:00pm

 

This work presents a framework for developing a library of gaits for tensegrity robots, which are examples of highly non-linear, hyper-redundant, compliant systems. The first component corresponds to the design of a Central Pattern Generator (CPG) for such robots, which provides a reparametrization of the system that easily results in the generation of rhythmic gaits. Second, a novel framework is presented for simultaneously discovering effective gait parameters along different directions of motion. The framework integrates a parallel Bayesian Optimization (BO) process with classification. This integration is more efficient than Monte Carlo sampling or BO or classification alone. Evaluation is performed in simulation using a spherical tensegrity robot

Speaker: Colin Rennie

Bio

NULL

Location : CBIM 22

Committee

Prof. Kostas Bekris (Chair), Prof. Abdeslam Boularias, Prof. Konstantinos Michmizos

Event Type: Masters Defense

Abstract: 

Organization

Dept. of Computer Science