Announcements

• Homework set 3 has been posted.

• Updated homework set 2 solutions have been posted (sakai → Resources).

• The first programming project new deadline: Monday, October 29.

• Midterm exam, October 23, in class, 80 minutes. No lecture after the exam. You are responsible for all material up to, but not including bottom-up parsing.

• Exam review session: Monday, October 22, 1:30-2:30pm, CoRE 305 (small conference room)? Any conflicts?
Top-down parsers

- start at the root of derivation tree and fill in
- picks a production and tries to match the input
- some grammars are backtrack-free \((\text{predictive})\)
- **LL Parsing**: reads input from **left to right** and constructs **leftmost** derivation (forwards); LL Parsing is predictive.

\[
S \Rightarrow^*_l \ xA\beta \Rightarrow^l \ x\delta\beta \Rightarrow^*_l \ xy
\]

- \(x, y \in T^*; S, A \in NT; \delta, \beta \in (T \cup NT)^*; A \rightarrow \delta \in P\)
Review - LL(1) grammars

Features

- input parsed from left to right
- leftmost derivation (forward)
- one token lookahead

Definition

A grammar G is $LL(1)$ if and only if for each set of productions $A ::= \alpha_1 | \alpha_2 | \cdots | \alpha_n$

1. $\text{FIRST}(\alpha_1), \text{FIRST}(\alpha_2), \cdots, \text{FIRST}(\alpha_n)$ are all pairwise disjoint, and
2. if $\alpha_i \Rightarrow^* \epsilon$, then in addition
 $\text{FIRST}(\alpha_j) \cap \text{FOLLOW}(A) = \emptyset$, for all
 $1 \leq j \leq n, i \neq j$.

What rule to select for a given non-terminal and input token can be represented in a parse table M.

Algorithm for $LL(1)$ parse table construction must not result in multiple entries for any $M[A, a]$ or $M[A, \text{eof}]$ (Aho, Sethi, and Ullman, Algorithm 4.4).

\Rightarrow Whether a grammar is $LL(1)$ or not is decidable.
Table-driven predictive parser — LL(1)

Input: a string w and a parsing table M for G

push eof
push Start Symbol
token \leftarrow next_token()

$X \leftarrow \text{top-of-stack}$
repeat
 if X is a terminal then
 if $X = \text{token}$ then
 pop X
 token \leftarrow next_token()
 else error()
 else /* X is a non-terminal */
 if $M[X, \text{token}] = X \rightarrow Y_1Y_2\cdots Y_k$ then
 pop X
 push $Y_k, Y_{k-1}, \cdots, Y_1$
 else error()

 $X \leftarrow \text{top-of-stack}$
until $X = \text{eof}$

if token $\neq \text{eof}$ then error()

Aho, Sethi, and Ullman, Algorithm 4.3
Recursive descent parsing — LL(1)

Recursive descent is one of the simplest parsing techniques used in practical compilers:

• Each non–terminal has an associated parsing procedure that can recognize any sequence of tokens generated by that non–terminal.

• Within a parsing procedure, both non–terminals and terminals can be matched:
 – non–terminal A — call parsing procedure for A
 – token t — compare t with current input token; if match, consume input, otherwise ERROR

• Parsing procedures may contain code that performs some useful “computation” (syntax directed translation).
Recursive Descent Parsing (pseudo code)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>eof</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>aSb</td>
<td>ε</td>
<td>ε</td>
<td>error</td>
</tr>
</tbody>
</table>

main: {
 token := next_token();
 if (S() and token == eof) print ‘‘accept’’ else print ‘‘error’’;
}

bool S:
 switch token {
 case a: token := next_token();
 if (not S()) return false; // recursive call to S;
 if token == b {
 token := next_token()
 return true;
 }
 else
 return false;
 break;
 case b,
 case eof:return true;
 break;
 default: return false;
 }

How to parse input a a b b b ?
Recursive descent parser

For our larger example grammar

goal:
 token ← next_token();
 if (expr() = ERROR | token ≠ EOF) then
 return ERROR;
 else return OK;

expr:
 if (term() = ERROR) then
 return ERROR;
 else return expr_prime();

expr_prime:
 if (token = PLUS) then
 token ← next_token(); return expr();
 else if (token = MINUS) then
 token ← next_token(); return expr();
 else if (token = eof) then
 return OK;
 else return ERROR;
Recursive Descent Parsing (Cont.)

term:
 if (factor() = ERROR) then
 return ERROR;
 else return term_prime();

term_prime:
 if (token = MULT) then
 token ← next_token(); return term();
 else if (token = DIV) then
 token ← next_token(); return term();
 else if (token = eof) then
 return OK;
 if (token = PLUS) then
 return OK;
 if (token = MINUS) then
 return OK;
 else return ERROR;

factor:
 if (token = NUM) then
 token ← next_token(); return OK;
 else if (token = ID) then
 token ← next_token(); return OK;
 else return ERROR;
LL(1) grammars

Provable facts about LL(1) grammars:

- no left recursive grammar is LL(1)
- no ambiguous grammar is LL(1)
- LL(1) parsers operate in linear time
- an \(\epsilon\)-free grammar where each alternative expansion for \(A\) begins with a distinct terminal is a *simple* LL(1) grammar

Not all grammars are LL(1)

- \(S ::= aS \mid a \)

is not LL(1)

 \[\text{FIRST}(aS) = \text{FIRST}(a) = \{a\} \]

- \(S ::= aS' \)

- \(S' ::= aS' \mid \epsilon \)

 accepts the same language and is LL(1)
LL grammars

LL(1) grammars

- may need to rewrite grammar

 (left recursion removal, left factoring)

- resulting grammar larger, less maintainable

LL(k) grammars

- k-token lookahead

- more powerful than LL(1) grammars

- example:

 $S ::= ac \mid abc$ is LL(2)

Not all grammars are LL(k)

- example:

 Set of productions of form: $S ::= a^i b^j$ for $i \geq j$

- problem - must choose production after k tokens of lookahead

Bottom-up parsers avoid some of these problems
Bottom-up parsers

- start at the leaves and fill in
- construct rightmost derivation in reverse
- find the next right-hand side of a production (handle) such that its replacement by left-hand side nonterminal will yield previous right-sentential form
- as input is consumed, change state to encode possibilities (recognize valid prefixes); if handle is found, REDUCE, otherwise SHIFT (or ERROR)

\[
S \Rightarrow_{rm}^* \alpha By \Rightarrow_{rm} \alpha \gamma y \Rightarrow_{rm}^* xy
\]

- **LR parsing**: Reads input from *left to right* and constructs **rightmost** derivation in reverse
Example

Consider the context-free grammar (in BNF notation)

1 \[\langle \text{goal} \rangle ::= \langle A \rangle \langle B \rangle e \]
2 \[\langle A \rangle ::= \langle A \rangle b c \]
3 \[\quad | \quad b \]
4 \[\langle B \rangle ::= d \]

and the input string \texttt{abbcde}.

<table>
<thead>
<tr>
<th>Prod’n.</th>
<th>Sentential Form</th>
<th>Handle(^\dagger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>\texttt{abcde}</td>
<td>(3,2)</td>
</tr>
<tr>
<td>3 [a \langle A \rangle b c d e]</td>
<td>(2,4)</td>
<td></td>
</tr>
<tr>
<td>2 [a \langle A \rangle d e]</td>
<td>(4,3)</td>
<td></td>
</tr>
<tr>
<td>4 [a \langle A \rangle \langle B \rangle e]</td>
<td>(1,4)</td>
<td></td>
</tr>
<tr>
<td>1 [\langle \text{goal} \rangle]</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

Why is (3,3) not a handle for \texttt{a(A)b c d e}?

The trick appears to be scanning the input and finding valid right-sentential forms.

\(^\dagger\) (rule, position of right end of handle in input string).
Handles

We trying to find a substring α of the current right-sentential form where:

- α matches some production $A ::= \alpha$
- reducing α to A is one step in the reverse of a rightmost derivation.

We will call such a string a *handle*.

Formally,

- a *handle* of a right-sentential form γ is a production $A ::= \beta$ and a position in γ where β may be found. Convention: position specifies the right end of handle.
- If $(A ::= \beta, k)$ is a handle, then replacing the β in γ at position k with A produces the previous right-sentential form in a rightmost derivation of γ.
Handles

Provable fact:

The substring to the right of a handle contains only terminal symbols.

Proof: Follows from the fact that all γ_i are right-sentential forms.

Corollary

The right end of a handle is to the right of the previously reduced variable.
One scheme to implement a handle-pruning, bottom-up parser is called a \textit{shift-reduce} parser.

Shift-reduce parsers use a \textit{stack} and an \textit{input buffer}

1. initialize stack with $\$

2. Repeat until the top of the stack is the goal symbol and the input token is \texttt{eof}

 a) \textit{find the handle}

 if we don’t have a handle on top of the stack, \textit{shift} an input symbol onto the stack

 b) \textit{prune the handle}

 if we have a handle $(A ::= \beta, k)$ on top of the stack, \textit{reduce}

 i) pop $|\beta|$ symbols off the stack
 ii) push A onto the stack