Announcements

• Project 2 deadline extension: Friday, November 30.

• Homework 5 will be posted by Wednesday, November 28.

• Project 3 will be posted by Friday, November 30. Due on Friday, December 14 (last day of reading period).

• final exam:
 Need to find good time.
 ⇒ any conflicts?
Shared Memory Programming with OpenMP

- MIMD architecture (multiple instructions, multiple data)
- Allows expression of parallelism at different levels: task and loop level. Parallelization through **pragmas**.
- Basic fork/join thread execution model with barrier synchronization between parallel regions.

![Shared Memory Model](image)

![Parallel Threads Execution Model](image)
Project 3: OpenMP and CUDA

Two important issues while specifying the parallel execution of a `for` loops:

- **safety** – parallel execution has to preserve all dependences

- **profitability** – benefits of parallel execution have to compensate for the overhead penalty, both in terms of execution time and energy consumption

Target platforms: NVIDIA Jetson TK-1, TX-1, and TX-2 boards
dependence relation: Describes all statement-to-statement execution orderings for a sequential program that must be preserved if the meaning of the program is to remain the same.

There are two sources of dependences:

data dependence

\[S_1 \quad \text{pi} = 3.14 \]
\[S_2 \quad r = 5.0 \]
\[S_3 \quad \text{area} = \text{pi} \times r^2 \]

control dependence

\[S_1 \quad \text{if (t .ne. 0.0) then} \]
\[S_2 \quad a = a/t \]
\[\text{endif} \]

How to preserve the meaning of these programs?
Execute the statements in an order that preserves the original load/store order.
Dependence — Basics

Theorem

Any reordering transformation that preserves every dependence (i.e., visits first the source, and then the sink of the dependence) in a program preserves the meaning of that program.

\[\]

Note: Dependence starts with the notion of a sequential execution, i.e., starts with a sequential program.
Dependence — Overview

Definition — There is a data dependence from statement S_1 to statement S_2 ($S_1 \delta S_2$) if

1. Both statements access the same memory location, and
2. There is a run–time execution path from S_1 to S_2.

Data dependence classification

“S_2 depends on S_1” — $S_1 \delta S_2$

true (flow) dependence

occurs when S_1 writes a memory location that S_2 later reads

anti dependence

occurs when S_1 reads a memory location that S_2 later writes

output dependence

occurs when S_1 writes a memory location that S_2 later writes

input dependence

occurs when S_1 reads a memory location that S_2 later reads. Note: Input dependences do not restrict statement ($load/store$) order!
Dependence — Where do we need it?

We restrict our discussion to data dependence for scalar and subscripted variables (no pointers and no control dependence).

Examples:

```
do I = 1, 100
   do J = 1, 100
      A(I,J) = A(I,J) + 1
   enddo
endo

do I = 1, 99
   do J = 1, 100
      A(I,J) = A(I+1,J) + 1
   enddo
endo
```

vectorization

```
A(1:100:1,1:100:1) = A(1:100:1,1:100:1) + 1
A(1:99,1:100) = A(2:100,1:100) + 1
```

parallelization

```
doall I = 1, 100
   doall J = 1, 100
      A(I,J) = A(I,J) + 1
   enddo
endo
    implicit barrier sync.
endo
```

```
doall I = 1, 99
   doall J = 1, 100
      A(I,J) = A(I+1,J) + 1
   enddo
endo
    implicit barrier sync.
endo
```
Dependence Analysis

Question

Do two variable references never/maybe/always access the same memory location?

Benefits

• improves alias analysis
• enables loop transformations

Motivation

• classic optimizations
• instruction scheduling
• data locality (register/cache reuse)
• vectorization, parallelization

Obstacles

• array references
• pointer references
Vectorization vs. Parallelization

vectorization — Find parallelism in innermost loops; fine-grain parallelism

parallelization — Find parallelism in outermost loops; coarse-grain parallelism

- Parallelization is considered more complex than vectorization, since finding coarse-grain parallelism requires more analysis (e.g., interprocedural analysis).
- Automatic vectorizers have been very successful
A **loop-independent** dependence exists regardless of the loop structure. The source and sink of the dependence occur on the same loop iteration.

A **loop-carried** dependence is induced by the iterations of a loop. The source and sink of the dependence occur on different loop iterations.

Loop-carried dependences can inhibit parallelization and loop transformations
Dependence Testing

Given

\[
\begin{align*}
do & \ i_1 = L_1, U_1 \\
& \cdots \\
do & \ i_n = L_n, U_n \\
S_1 & \quad A(f_1(i_1, \ldots, i_n), \ldots, f_m(i_1, \ldots, i_n)) = \ldots \\
S_2 & \quad \ldots = A(g_1(i_1, \ldots, i_n), \ldots, g_m(i_1, \ldots, i_n))
\end{align*}
\]

A dependence between statement \(S_1 \) and \(S_2 \), denoted \(S_1 \delta S_2 \), indicates that \(S_1 \), the source, must be executed before \(S_2 \), the sink on some iteration of the nest.

Let \(\alpha \) & \(\beta \) be a vector of \(n \) integers within the ranges of the lower and upper bounds of the \(n \) loops.

\[\text{Does } \exists \, \alpha \leq \beta, \text{ s.t.} \]
\[f_k(\alpha) = g_k(\beta) \quad \forall k, 1 \leq k \leq m ? \]
Iteration Space

\[
\begin{align*}
\text{do } & I = 1, 5 \\
\text{do } & J = I, 6 \\
& \ldots \\
& \text{enddo} \\
& \text{enddo}
\end{align*}
\]

\[
1 \leq I \leq 5 \\
I \leq J \leq 6
\]

- lexicographical (sequential) order for the above iteration space is

\[
(1,1), (1,2), \ldots, (1,6) \\
(2,2), (2,3), \ldots (2,6) \\
\ldots \\
(5,5), (5,6)
\]

- given \(I = (i_1, \ldots i_n) \) and \(I' = (i'_1, \ldots, i'_n) \),

\[I < I' \text{ iff } \]
\[
(i_1, i_2, \ldots i_k) = (i'_1, i'_2, \ldots i'_k) \& \ i_{k+1} < i'_{k+1}
\]
Distance & Direction Vectors

\[
d\mathrm{I}=1,\ N \\
d\mathrm{J}=1,\ N \\
S_1\ A(I,J) = A(I,J-1) \\
\text{endo} \\
\text{endo} \\
S_2\ A(I,J) = A(I-1,J-1) \\
S_3\ B(I,J) = B(I-1,J+1) \\
\text{endo} \\
\text{endo} \\
\text{Distance Vector} = \text{number of iterations between accesses to the same location} \\
\text{Direction Vector} = \text{direction in iteration space (}=, <, >) \\
\delta S_1 \\
\delta S_2 \\
\delta S_3 \\
\]
Which Loops are Parallel?

\[
\begin{align*}
&\text{do } I = 1, N \\
&\quad \text{do } J = 1, N \\
&S_1 \ A(I,J) = A(I,J-1)
\end{align*}
\]

\[
\begin{align*}
&\text{do } I = 1, N \\
&\quad \text{do } J = 1, N \\
&S_2 \ A(I,J) = A(I-1,J-1)
\end{align*}
\]

\[
\begin{align*}
&\text{do } I = 1, N \\
&\quad \text{do } J = 1, N \\
&S_3 \ B(I,J) = B(I-1,J+1)
\end{align*}
\]

- a dependence \(D = (d_1, \ldots, d_k) \) is carried at level \(i \), if \(d_i \) is the first nonzero element of the distance/direction vector.

- a loop \(l_i \) is parallel, if \(\nexists \) a dependence \(D_j \) carried at level \(i \)

\[
\begin{array}{|c|c|c|}
\hline
\text{distance vector} & \text{direction vector} \\
\hline
\forall D_j : d_1, \ldots, d_{i-1} > 0 & d_1, \ldots, d_{i-1} = "<" \\
\text{OR} \quad d_1, \ldots, d_i = 0 & d_1, \ldots, d_i = "=" \\
\hline
\end{array}
\]

198:515, Fall 2018

Lecture 11, Page 14
Approaches to Dependence Testing

• can we solve this problem exactly?

• what is conservative in this framework?

• restrict the problem to consider index and bound expressions that are linear functions

⇒ solving general system of linear equations in integers is NP-hard

Solution Methods

• inexact methods
 ○ Greatest Common Divisor (GCD)
 ○ Banerjee’s inequalities

• cascade of exact, efficient tests
 (fall back on inexact methods if needed)
 ○ Rice (see posted PLDI’91 paper)
 ○ Stanford

• exact general tests (integer programming)
Dependence Testing

SIV - Single Induction Variable Test

1. Single loop nest with constant lower (LB) and upper (UB) bounds, and step 1

 \[\text{for } i = \text{LB}, \text{UB}, 1 \]
 \[\ldots \]
 \[\text{endfor} \]

 The loop bounds define the iteration space for loop induction variable \(i \).

2. Two array references with array subscript (index) expressions of the form (true dependence)

 \[\text{for } i = \text{LB}, \text{UB}, 1 \]
 \[R1: \ X(a*i + c1) = \ldots \ \backslash\backslash \text{write} \]
 \[R2: \ \ldots X(a*i + c2) \ldots \ \backslash\backslash \text{read} \]
 \[\text{endfor} \]

 where \(a, c1, \) and \(c2 \) are integer constants, \(R1 \) and \(R2 \) are references to the same array, \(i \) is the loop induction variable, and \(a \neq 0 \).

Question:

Is there a true dependence between \(R1 \) and \(R2 \)?
Dependence Testing

There is a dependence between R1 and R2 iff

$$\exists i, i' : i \leq i' \ and \ (a \times i + c_1) = (a \times i' + c_2)$$

where i and i' are two iterations in the iteration space of the loop. This means that in both iterations, the same element of array X would be accessed.

So let’s just solve the equation:

$$(a \times i + c_1) = (a \times i' + c_2) \iff$$

$$\frac{c_1 - c_2}{a} = i' - i = \Delta d$$

There is a dependence with distance Δd iff

1. Δd is an integer value and
2. $UB - LB \geq \Delta d \geq 0$
Dependence Testing Examples

1. \[\text{for } i = \text{LB, UB, 1} \]
 \[\text{R1: } X(i) = \ldots \quad \text{\\ write} \]
 \[\text{R2: } \ldots X(i - 2) \ldots \quad \text{\\ read} \]
 \[\text{endfor} \]

 \[a=1, c_1=0, c_2=-2 \Rightarrow \Delta d = 2 \text{ (dependence)} \]

2. \[\text{for } i = \text{LB, UB, 1} \]
 \[\text{R1: } X(2*i) = \ldots \quad \text{\\ write} \]
 \[\text{R2: } \ldots X(2*i - 1) \ldots \quad \text{\\ read} \]
 \[\text{endfor} \]

 \[a=2, c_1=0, c_2=-1 \Rightarrow \Delta d = \frac{1}{2} \text{ (no dependence)} \]

Assume R1 executes before R2.

Classification of dependences:

- R1 is write, R2 is read \(\Rightarrow\) **true** dependence
- R1 is read, R2 is write \(\Rightarrow\) **anti** dependence
- R1 is write, R2 is write \(\Rightarrow\) **output** dependence
Dependence Testing

ZIV - Zero Induction Variable Test

Two array references with array subscript (index) expressions of the form of a constant:

\[
\begin{align*}
\text{for } & i = LB, UB, 1 \\
R1: & \quad X(c1) = \ldots \quad \backslash \text{ write} \\
R2: & \quad \ldots X(c2) \ldots \quad \backslash \text{ read} \\
\text{endfor}
\end{align*}
\]

where \(c_1 \), and \(c_2 \) are integer constants, and R1 and R2 are references to the same array.

There is a dependence between R1 and R2 \textbf{iff}

\[c_1 = c_2 = c. \]

What is the dependence distance \(\Delta d \)?

Since every iteration \(i \) writes \(X(c) \), and every iteration \(i' \) reads \(X(c) \), there is no fixed distance \(\Delta d \). In fact, both references have true, anti, and output dependences:

\[\Delta d \in \{0, \ldots UB - LB\} \text{ for true} \]
\[\Delta d \in \{1, \ldots UB - LB\} \text{ for anti and output} \]
A Simple Vectorizing Compiler

How to vectorize the following loops?

```
for (i=2; i<100; i++) {
    S1:  a[i] = b[i+1] + 1;
    S2:  b[i] = a[i] + 5;
}
```

```
for (i=2; i<100; i++) {
    S1:  a[i] = b[i-1] + a[i-1] + 3;
    S2:  b[i] = a[i+1] + 5;
}
```

Simple vectorizer assumptions:

1. singly-nested loops
2. constant upper and lower bounds, step is always 1
3. body is sequence of assignment statements to array variables
4. simple array index expressions of induction variable (i +/- c or c); can use ZIV or SIV test
5. no function calls
A Simple Vectorizing Source-to-Source Compiler

SKETCH OF BASIC ALGORITHM

Here is a basic vectorization algorithm based on a statement-level dependence graph:

1. Construct statement-level dependence graph considering true, anti, and output dependences; in the final dependence graph, the type of the dependence is not important any more

2. Detect strongly connected components (SCC) over the dependence graph; represent SCC as summary nodes; walk resulting graph in topological order; For each visited node do

 (a) if SCC has more than one statement in it, distribute loop with statements of SCC as its body, and keep the code sequential

 (b) if SCC is a single statement and has no dependence cycle (ignore anti), distribute loop around it and generate vector code; otherwise, mark distributed loop sequential.
A more complex example

EXAMPLE

for (i=2; i<99; i++) {
 S1: a[i] = b[i-1] + c[i-1] + 3;
 S2: b[i] = (c[i] + b[i+1]) / 2;
 S3: c[i] = a[i] + 1;
 S4: d[i] = b[i] + c[i+1];
}

STATEMENT-LEVEL DEPENDENCE GRAPH?
A more complex example

for (i=2; i<99; i++) {
 S1: a[i] = b[i-1] + c[i-1] + 3;
 S2: b[i] = (c[i] + b[i+1]) / 2;
 S3: c[i] = a[i] + 1;
 S4: d[i] = b[i] + c[i+1];
}

Partition of dependence graph nodes into SCCs:
{ {S1, S3}, {S2}, {S4} }
A more complex example

Dependencies between SCCs of statement-level dependence graph. This has to be an acyclic graph:

Generated code:

S2: \(b[2:99] = (c[2:99] + b[3:100]) / 2; \)
\[
\text{for (i=2; i<99; i++)} \{
\begin{align*}
\text{S1: } & a[i] = b[i-1] + c[i-1] + 3; \\
\text{S3: } & c[i] = a[i] + 1;
\end{align*}
\}
\]
Next Lecture

Things to do:

• More on loop transformation, openMP, and CUDA programming

• Logic Programming and Prolog