Announcements

- Project 2 has been posted; deadline Wednesday, November 28
- Roadmap: Parallel programming; logic programming (Prolog); energy-aware optimizations
Project 2: A simple compiler

program : PROG ID ' ; ' block PERIOD

block : variables cmpdstmt

variables: /* empty */
| VAR vardecls

vardecls : vardecls varcl ' ; ' | varcl ' ; '

varcl : idlist ' : ' type

idlist : idlist ',' ID | ID

type : ARRAY '[' ICONST ']' OF INT | INT

stmtlist : stmtlist ' ; ' stmt | stmt

stmt : ifstmt | fstmt | astmt | writestmt | cmpdstmt

cmpdstmt: BEG stmtlist END

ifstmt : ifhead THEN stmt ELSE stmt

ifhead : IF condexp

writestmt: PRINT '(' exp ')'

fstmt : FOR ctrlexp DO stmt

ctrlexp : ID ASG ICONST ',' ICONST

astmt : lhs ASG exp

lhs : ID | ID '[' exp ']'

exp : exp '+' exp | exp '-' exp | exp '*' exp
| ID | ID '[' exp ']' | ICONST

condexp : exp NEQ exp | exp EQ exp | exp LT exp | exp LEQ exp
Why Do We Care About Concurrency?

CMOS (Complementary Metal-Oxide-Semiconductor) technology:

\[
\text{Power}_{\text{CPU}} = \text{capacitance} \times \text{voltage}^2 \times \text{frequency}
\]

Moore’s Law for **single** CPU speed:
Increase in CPU speed by 2× every 18-24 months.

How to keep Moore’s law going?

- **Increase frequency**: Power goes up.
- **Reduce feature size**: Dennard’s Scaling Rule:
 Power is proportional to the area of the transistor.
 Problem: Dennard’s Scaling ignores “leakage current” and “threshold voltage” ⇒ as transistors get smaller, power density increases
- **Better designs**: That works, but it does not give you exponential improvements (e.g.: deeper pipeline, better branch prediction, bigger caches, etc.)

⇒ We hit the “**Power Wall**”.
Power Wall Answer: Parallel Architectures!

Instead of a single CPU, use many CPUs to keep Moore’s law going.

Once you are beyond 100W/cm² or so, aircooling alone will not be sufficient.
Programming with Concurrency

Concurrency is here to stay!

• Today, concurrency is nearly everywhere (peta-flops supercomputers to high-end smart phones).

• Some form of parallel programming will be required, i.e., automatic tools have not been able to hide all aspects of concurrency.

• Several different parallel programming models / architecture designs: shared memory, distributed memory, heterogeneous computing with accelerators (GPUs, FPGAs)

⇒ Need to understand

1. the basics of parallel programming
2. the specifics for each architecture.
Two ways of thinking about concurrency?

data-centric view: partition the data that can be worked on in parallel (data-level parallelism);
⇒ your work is determined by the data that you are assigned to work on.

task-centric view: partition the work that can be done concurrently (task-level parallelism);
⇒ your data is determined by the work that you have to do

What tasks have “to travel” to what data (data-centric) or what data has “to travel” to what tasks (task-centric) are symmetric problems.
Task-level parallelism can be performed at different levels:

1. **Instruction-level parallelism** (ILP) – typically exploited by hardware or compiler

2. **Loop-level parallelism** – single loop iterations are considered individual tasks

3. **Procedure-level parallelism** – different procedures may be executed concurrently

4. **Process-level parallelism** – different programs may be executed concurrently

Will concentrate on loop-level parallelism
Loop-level Parallelism

We will concentrate on compilation issues for compiling scientific codes. Some of the basic ideas can be applied to other application domains as well. Typically, scientific codes

- Use arrays as their main data structures.
- Have loops that contain most of the computation in the program.

As a result, advanced optimizing transformations concentrate on loop level optimizations. Most loop level optimizations are source-to-source, i.e., reshape loops at the source level.

We will talk about

- Dependence analysis
- Vectorization
- Parallelization
- Heterogenous parallel architectures
Shared Memory Programming with OpenMP

- MIMD architecture (multiple instructions, multiple data)
- Allows expression of parallelism at different levels: task and loop level. Parallelization through pragmas.
- Basic fork/join thread execution model with barrier synchronization between parallel regions.
Shared Memory Programming with OpenMP

OpenMP program example:

```c
#pragma omp parallel for private(i, hash)
   for (j = 0; j < num_hf; j++) {
      for (i = 0; i < wl_size; i++) {
         hash = hf[j] (get_word(wl, i));
         hash %= bv_size;
         bv[hash] = 1;
      }
   }
```

This specifies:

- outermost (j-loop) is parallel
- each thread will get its own copy of variables `i` and `hash`, eliminating loop carried anti and output dependences.
Distributed-Memory Programming with MPI

MPI (message passing interface)

- MIMD architecture (multiple instructions, multiple data). SPMD programming model (single program, multiple data).

- No global shared memory. Communication through explicit send/receive operations. Receives are blocking, sends may or may not be blocking.

- MPI defines an abstract processor topology (e.g.: 3-dim grid) to allow “virtual” addressing of processors (e.g.: North, South, West, East in a 2-dim grid)
Heterogenous Computing and CUDA

CUDA: Compute Unified Device Architecture

- Host and device (GPU) programs. Program consists of parallel kernels that are executed in sequence.
- GPUs have been designed for speed for graphic applications (e.g.: real-time gaming) as a graphical co-processor. Bare metal design approach.
- Explicit movement of objects between host and device (GPU) memory.
- GPU optimized for streaming computation with limited temporal locality
- GPU implements SIMT (single instruction multiple threads) model.
Heterogenous Computing and CUDA

CPU systems vs. GPU systems comparison

From a “raw capability” point of view, GPUs win big time.
Two important issues while specifying the parallel execution of a for loops:

- **safety** – parallel execution has to preserve all dependences

- **profitability** – benefits of parallel execution have to compensate for the overhead penalty
dependence relation: Describes all statement–to–statement execution orderings for a sequential program that must be preserved if the meaning of the program is to remain the same.

There are two sources of dependences:

data dependence

\[S_1 \quad \text{pi} = 3.14 \]
\[S_2 \quad r = 5.0 \]
\[S_3 \quad \text{area} = \pi \times r^{**2} \]

control dependence

\[S_1 \quad \text{if} \ (t \ .\text{ne.} \ 0.0) \ \text{then} \]
\[S_2 \quad a = a/t \]
\[\text{endif} \]

How to preserve the meaning of these programs?
Execute the statements in an order that preserves the original load/store order.
Dependence — Basics

Theorem
Any reordering transformation that preserves every dependence (i.e., visits first the source, and then the sink of the dependence) in a program preserves the meaning of that program.

Note: Dependence starts with the notion of a sequential execution, i.e., starts with a sequential program.
Dependence — Overview

Definition — There is a data dependence from statement S_1 to statement S_2 ($S_1 \delta S_2$) if

1. Both statements access the same memory location, and

2. There is a run–time execution path from S_1 to S_2.

Data dependence classification

"S_2 depends on S_1" — $S_1 \delta S_2$

true (flow) dependence

occurs when S_1 writes a memory location that S_2 later reads

anti dependence

occurs when S_1 reads a memory location that S_2 later writes

output dependence

occurs when S_1 writes a memory location that S_2 later writes

input dependence

occurs when S_1 reads a memory location that S_2 later reads. Note: Input dependences do not restrict statement (load/store) order!
Dependence — Where do we need it?

We restrict our discussion to data dependence for scalar and subscripted variables (no pointers and no control dependence).

Examples:

```
do I = 1, 100
  do J = 1, 100
    A(I,J) = A(I,J) + 1
  enddo
endo

A(I,J) = A(I+1,J) + 1
endo
```

vectorization

```
A(1:100:1,1:100:1) = A(1:100:1,1:100:1) + 1
A(1:99,1:100) = A(2:100,1:100) + 1
```

parallelization

```
doall I = 1, 100
  doall J = 1, 100
    A(I,J) = A(I,J) + 1
  enddo
endo
  implicit barrier sync.
endo

A(I,J) = A(I+1,J) + 1
endo
  implicit barrier sync.
endo
```

198:515, Fall 2018

Lecture 10, Page 18
Dependence Analysis

Question

Do two variable references never/maybe/always access the same memory location?

Benefits

• improves alias analysis
• enables loop transformations

Motivation

• classic optimizations
• instruction scheduling
• data locality (register/cache reuse)
• vectorization, parallelization

Obstacles

• array references
• pointer references
Vectorization vs. Parallelization

vectorization — Find parallelism in innermost loops; fine–grain parallelism

parallelization — Find parallelism in outermost loops; coarse–grain parallelism

- Parallelization is considered more complex than vectorization, since finding coarse–grain parallelism requires more analysis (e.g., interprocedural analysis).

- Automatic vectorizers have been very successful
A **loop-independent** dependence exists regardless of the loop structure. The source and sink of the dependence occur on the same loop iteration.

A **loop-carried** dependence is induced by the iterations of a loop. The source and sink of the dependence occur on different loop iterations.

Loop-carried dependences can inhibit parallelization and loop transformations
Next Lecture

Things to do:

- More on data dependence analysis
- Algorithms for dependence testing
- Automatic vectorization