GPUs and CUDA programming

Most of these slides were taken from a NVIDIA corporation tutorial for CUDA programming in C.
My View of the World

GPGPU

CPU

GPU

© NVIDIA 2013
CUDA C/C++ BASICS

NVIDIA Corporation 2013
What is CUDA?

- **CUDA Architecture**
 - Expose GPU parallelism for general-purpose computing
 - Retain performance

- **CUDA C/C++**
 - Based on industry-standard C/C++
 - Small set of extensions to enable heterogeneous programming
 - “Straightforward” APIs to manage devices, memory etc.

- This lecture introduces CUDA C/C++
Introduction to CUDA C/C++

- What will you learn in this session?
 - Start from “Hello World!”
 - Write and launch CUDA C/C++ kernels
 - Manage GPU memory
 - Manage communication and synchronization
Prerequisites

• You (probably) need experience with C or C++

• You don’t need GPU experience

• You don’t need parallel programming experience

• You don’t need graphics experience
CONCEPTS

- Heterogeneous Computing
- Blocks
- Threads
- Indexing
- Shared memory
- __syncthreads()
- Asynchronous operation
- Handling errors
- Managing devices

© NVIDIA 2013
HELLO WORLD!

CONCEPTS

- Heterogeneous Computing
- Blocks
- Threads
- Indexing
- Shared memory
- __syncthreads()
- Asynchronous operation
- Handling errors
- Managing devices
Heterogeneous Computing

- **Terminology:**
 - *Host* The CPU and its memory (host memory)
 - *Device* The GPU and its memory (device memory)
```cpp
#include <iostream>
#include <algorithm>
using namespace std;

#define N          1024
#define RADIUS     3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
    __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
    int gindex = threadIdx.x + blockIdx.x * blockDim.x;
    int lindex = threadIdx.x + RADIUS;

    // Read input elements into shared memory
    //                    threadIdx + blockIdx;
    temp[lindex] = in[gindex];
    if (threadIdx.x < RADIUS) {
        temp[lindex - RADIUS] = in[gindex - RADIUS];
        temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
    }

    __syncthreads();

    // Apply the stencil
    int result = 0;
    for (int offset = -RADIUS; offset <= RADIUS; offset++)
        result += temp[lindex + offset];

    // Store the result
    out[gindex] = result;
}

void fill_ints(int *x, int n) {
    fill_n(x, n, 1);
}

int main(void) {
    int *in, *out;
    int main_array[2];
    int *M_in, *M_out;
    int size = (N + 2*RADIUS) * sizeof(int);

    // Alloc space for host copies and setup values
    in = (int*)malloc(size);
    fill_ints(in, N + 2*RADIUS);
    M_in = (int*)malloc(size);
    fill_ints(M_in, N + 2*RADIUS);

    // Alloc space for device copies
    cudaMalloc((void**)&M_in);
    cudaMalloc((void**)&M_out);
    cudaMalloc((void**)&M_out);

    // Copy to device
    cudaMemcpy(M_in, in, size, cudaMemcpyHostToDevice);
    cudaMemcpy(M_out, M_in, size, cudaMemcpyHostToDevice);

    // Launch stencil_1d() kernel on GPU
    stencil_1d<<<N/BLOCK_SIZE, BLOCK_SIZE>>>(M_in + RADIUS,
                                            M_out + RADIUS);

    // Copy result back to host
    cudaMemcpy(in, M_out, size, cudaMemcpyDeviceToHost);

    // Cleanup
    free(in);
    free(M_in);
    free(M_out);
    return 0;
}
```

The code snippet above demonstrates a comparison between serial and parallel implementations of a stencil operation. The serial code is shown at the top of the page, while the parallel code is shown at the bottom. The serial code is executed on the host, while the parallel code is executed on the GPU. The diagram illustrates the flow of data between the host and the device, highlighting the differences in execution between the two approaches.
Simple Processing Flow

1. Copy input data from CPU memory to GPU memory
Simple Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
3. Copy results from GPU memory to CPU memory
Hello World!

```c
int main(void) {
    printf("Hello World!\n");
    return 0;
}
```

- Standard C that runs on the host
- NVIDIA compiler (nvcc) can be used to compile programs with no device code

Output:

```
$ nvcc hello_world.cu
$ a.out
Hello World!
$  
```
Hello World! with Device Code

__global__ void mykernel**(void)** {
}

int main(void) {
 mykernel<<<1,1>>>();
 printf("Hello World!\n");
 return 0;
}

- Two new syntactic elements...
Hello World! with Device Code

```c
__global__ void mykernel(void) {
}
```

- CUDA C/C++ keyword `__global__` indicates a function that:
 - Runs on the device
 - Is called from host code

- `nvcc` separates source code into host and device components
 - Device functions (e.g. `mykernel()`) processed by NVIDIA compiler
 - Host functions (e.g. `main()`) processed by standard host compiler
 - `gcc`, `cl.exe`
Hello World! with Device Code

mykernel<<<1,1>>>()

• Triple angle brackets mark a call from host code to device code
 → Also called a “kernel launch”
 → We’ll return to the parameters (1,1) in a moment

• That’s all that is required to execute a function on the GPU!
\texttt{__global_ void mykernel(void)}

\begin{verbatim}
int main(void) {
 mykernel<<<1,1>>>();
 printf("Hello World!\n");
 return 0;
}
\end{verbatim}

mykernel() does nothing, somewhat anticlimactic!

Output:

\begin{verbatim}
$ nvcc hello.cu
$ a.out
Hello World!
$
\end{verbatim}
• But wait... GPU computing is about massive parallelism!

• We need a more interesting example...

• We’ll start by adding two integers and build up to vector addition
• A simple kernel to add two integers

```c
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

• As before `__global__` is a CUDA C/C++ keyword meaning
 → `add()` will execute on the device
 → `add()` will be called from the host
• Note that we use pointers for the variables

```c
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

• add() runs on the device, so a, b and c must point to device memory

• We need to allocate memory on the GPU
Host and device memory are separate entities
- **Device** pointers point to GPU memory
 - May be passed to/from host code
 - May *not* be dereferenced in host code
- **Host** pointers point to CPU memory
 - May be passed to/from device code
 - May *not* be dereferenced in device code

Simple CUDA API for handling device memory
- `cudaMalloc()`, `cudaFree()`, `cudaMemcpy()`
- Similar to the C equivalents `malloc()`, `free()`, `memcpy()`
• Returning to our `add()` kernel

```c
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

• Let’s take a look at `main()`...
int main(void) {
 int a, b, c; // host copies of a, b, c
 int *d_a, *d_b, *d_c; // device copies of a, b, c
 int size = sizeof(int);

 // Allocate space for device copies of a, b, c
 cudaMalloc((void**)&d_a, size);
 cudaMalloc((void**)&d_b, size);
 cudaMalloc((void**)&d_c, size);

 // Setup input values
 a = 2;
 b = 7;
Addition on the Device: main()

```c
// Copy inputs to device
cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU
add<<<1,1>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;
```
RUNNING IN PARALLEL

CONCEPTS

- Heterogeneous Computing
- Blocks
- Threads
- Indexing
- Shared memory
- __syncthreads()
- Asynchronous operation
- Handling errors
- Managing devices

© NVIDIA 2013
• GPU computing is about massive parallelism
 → So how do we run code in parallel on the device?

 \[
 \text{add} \lll 1, 1 \ggg(); \\
 \text{add} \lll N, 1 \ggg();
 \]

• Instead of executing \text{add()} once, execute \(N\) times in parallel
• With `add()` running in parallel we can do vector addition

• Terminology: each parallel invocation of `add()` is referred to as a block
 → The set of blocks is referred to as a grid
 → Each invocation can refer to its block index using `blockIdx.x`

```c
__global__ void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

• By using `blockIdx.x` to index into the array, each block handles a different index
Vector Addition on the Device

```c
__global__ void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

• On the device, each block can execute in parallel:

- **Block 0**: \(c[0] = a[0] + b[0] \)
• Returning to our parallelized `add()` kernel

```c
__global__ void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

• Let’s take a look at `main()`...
Vector Addition on the Device: main()

```c
#define N 512

int main(void) {
    int *a, *b, *c; // host copies of a, b, c
    int *d_a, *d_b, *d_c; // device copies of a, b, c
    int size = N * sizeof(int);

    // Alloc space for device copies of a, b, c
    cudaMalloc((void **)&d_a, size);
    cudaMalloc((void **)&d_b, size);
    cudaMalloc((void **)&d_c, size);

    // Alloc space for host copies of a, b, c and setup input values
    a = (int *)malloc(size); random_ints(a, N);
    b = (int *)malloc(size); random_ints(b, N);
    c = (int *)malloc(size);
}
```
// Copy inputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N blocks
add<<<N,1>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;
• Difference between host and device
 → Host CPU
 → Device GPU

• Using `__global__` to declare a function as device code
 → Executes on the device
 → Called from the host

• Passing parameters from host code to a device function
• Basic device memory management
 → cudaMalloc()
 → cudaMemcpy()
 → cudaFree()

• Launching parallel kernels
 → Launch N copies of add() with add$<<<N,1>>>(...);
 → Use blockIdx.x to access block index
INTRODUCING THREADS

CONCEPTS

- Heterogeneous Computing
- Blocks
- Threads
- Indexing
- Shared memory
- __syncthreads()
- Asynchronous operation
- Handling errors
- Managing devices
• Terminology: a block can be split into parallel **threads**

• Let’s change `add()` to use parallel *threads* instead of parallel *blocks*

```c
__global__ void add(int *a, int *b, int *c) {
    c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}
```

• We use `threadIdx.x` instead of `blockIdx.x`

• Need to make one change in main()...
#define N 512
int main(void) {
 int *a, *b, *c; // host copies of a, b, c
 int *d_a, *d_b, *d_c; // device copies of a, b, c
 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c
 cudaMalloc((void **)&d_a, size);
 cudaMalloc((void **)&d_b, size);
 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values
 a = (int *)malloc(size); random_ints(a, N);
 b = (int *)malloc(size); random_ints(b, N);
 c = (int *)malloc(size);
Vector Addition Using Threads: main()

```c
// Copy inputs to device
cudamemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudamemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N threads
add<<<1,N>>>(d_a, d_b, d_c);

// Copy result back to host
cudamemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
free(a); free(b); free(c);
cudafree(d_a); cudafree(d_b); cudafree(d_c);
return 0;
```
COMBINING THREADS AND BLOCKS

CONCEPTS

- Heterogeneous Computing
- Blocks
- Threads
- Indexing
- Shared memory
- __syncthreads()
- Asynchronous operation
- Handling errors
- Managing devices
• We’ve seen parallel vector addition using:
 → Many blocks with one thread each
 → One block with many threads

• Let’s adapt vector addition to use both blocks and threads

• Why? We’ll come to that...

• First let’s discuss data indexing...
Indexing Arrays with Blocks and Threads

- No longer as simple as using `blockIdx.x` and `threadIdx.x`

 Consider indexing an array with one element per thread (8 threads/block)

 `threadIdx.x` `threadIdx.x` `threadIdx.x`
  ```
  0 1 2 3 4 5 6 7
  0 1 2 3 4 5 6 7
  0 1 2 3 4 5 6 7
  0 1 2 3 4 5 6 7
  ```

 `blockIdx.x` = 0 `blockIdx.x` = 1 `blockIdx.x` = 2 `blockIdx.x` = 3

- With M threads/block a unique index for each thread is given by:

  ```
  int index = threadIdx.x + blockIdx.x * M;
  ```
Indexing Arrays: Example

• Which thread will operate on the red element?

```
int index = threadIdx.x + blockIdx.x * M;
= 5 + 2 * 8;
= 21;
```
• Use the built-in variable `blockDim.x` for threads per block
  ```
  int index = threadIdx.x + blockIdx.x * blockDim.x;
  ```

• Combined version of `add()` to use parallel threads and parallel blocks
  ```
  __global__ void add (int *a, int *b, int *c) {
      int index = threadIdx.x + blockIdx.x * blockDim.x;
      c[index] = a[index] + b[index];
  }
  ```

• What changes need to be made in `main()`?
#define N (2048*2048)
#define THREADS_PER_BLOCK 512

int main(void) {
 int *a, *b, *c; // host copies of a, b, c
 int *d_a, *d_b, *d_c; // device copies of a, b, c

 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c
 cudaMalloc((void **)&d_a, size);
 cudaMalloc((void **)&d_b, size);
 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values
 a = (int *)malloc(size); random_ints(a, N);
 b = (int *)malloc(size); random_ints(b, N);
 c = (int *)malloc(size);
// Copy inputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU
add<<<N/THREADS_PER_BLOCK, THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;
}
Handling Arbitrary Vector Sizes

- Typical problems are not friendly multiples of `blockDim.x`

- Avoid accessing beyond the end of the arrays:

```c
__global__ void add(int *a, int *b, int *c, int n) {
    int index = threadIdx.x + blockIdx.x * blockDim.x;
    if (index < n)
        c[index] = a[index] + b[index];
}
```

- Update the kernel launch:

```
add<<<(N + M-1) / M, M>>>(d_a, d_b, d_c, N);
```
Why Bother with Threads?

• Threads seem unnecessary
 → They add a level of complexity
 → What do we gain?

• Unlike parallel blocks, threads have mechanisms to:
 → Communicate
 → Synchronize

• To look closer, we need a new example...
• Launching parallel kernels
 → Launch \(N \) copies of \(\text{add}() \) with \(\text{add}^{<<M,N/M,M>>}(...) \);
 → Use \(\text{blockIdx.x} \) to access block index
 → Use \(\text{threadIdx.x} \) to access thread index within block

• Allocate elements to threads:

\[
\text{int } \text{index} = \text{threadIdx.x} + \text{blockIdx.x} \times \text{blockDim.x};
\]
COOPERATING THREADS

CONCEPTS
- Heterogeneous Computing
- Blocks
- Threads
- Indexing
- Shared memory
- __syncthreads()
- Asynchronous operation
- Handling errors
- Managing devices

© NVIDIA 2013
• Consider applying a 1D stencil to a 1D array of elements

 Each output element is the sum of input elements within a radius

• If radius is 3, then each output element is the sum of 7 input elements:
Implementing Within a Block

- Each thread processes one output element \rightarrow blockDim.x elements per block
- Input elements are read several times \rightarrow With radius 3, each input element is read seven times
• Terminology: within a block, threads share data via shared memory

• Extremely fast on-chip memory, user-managed

• Declare using __shared__, allocated per block

• Data is not visible to threads in other blocks
• Cache data in shared memory
 – Read \((\text{blockDim.x} + 2 \times \text{radius})\) input elements from global memory to shared memory
 – Compute \text{blockDim.x} output elements
 – Write \text{blockDim.x} output elements to global memory
 – Each block needs a \textit{halo} of radius elements at each boundary

\[\text{blockDim.x output elements}\]
__global__ void stencil_1d(int *in, int *out) {

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

int gindex = threadIdx.x + blockIdx.x * blockDim.x; // global index
int lindex = threadIdx.x + RADIUS; // local index

// Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex - RADIUS] = in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] =
 in[gindex + BLOCK_SIZE];
 }
// Apply the stencil
 result = 0;
for (offset = -RADIUS ; offset <= RADIUS ; offset++)
 result += temp[lindex + offset];

// Store the result
out[gindex] = result;
}
The stencil example will not work...

Suppose thread 15 reads the halo before thread 0 has fetched it...

temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {
 temp[lindex - RADIUS] = in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
}

int result = 0;
result += temp[lindex + 1];
• \texttt{__syncthreads();}

• Synchronizes all threads within a block
 – Used to prevent RAW / WAR / WAW hazards

• All threads must reach the barrier
 – In conditional code, the condition must be uniform across the block
__global__ void stencil_1d(int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + radius;

 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex - RADIUS] = in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
 }

 // Synchronize (ensure all the data is available)
 __syncthreads();
}
// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
 result += temp[lindex + offset];

// Store the result
out[gindex] = result;
• Launching parallel threads

 → Launch N blocks with M threads per block with $\text{kernel}^{\lll N,M\rrl}(\ldots)$;

 → Use blockIdx.x to access block index within grid

 → Use threadIdx.x to access thread index within block

• Allocate elements to threads:

$$\text{int index = threadIdx.x + blockIdx.x} \times \text{blockDim.x}$$
• Use `__shared__` to declare a variable/array in shared memory
 → Data is shared between threads in a block
 → Not visible to threads in other blocks

• Use `__syncthreads()` as a barrier
 → Use to prevent data hazards
MANAGING THE DEVICE

CONCEPTS

- Heterogeneous Computing
- Blocks
- Threads
- Indexing
- Shared memory
- __syncthreads()
- Asynchronous operation
- Handling errors
- Managing devices
Coordinating Host & Device

- Kernel launches are **asynchronous**
 - Control returns to the CPU immediately

- CPU needs to synchronize before consuming the results

```c
cudaMemcpy()  
* Blocks the CPU until the copy is complete
* Copy begins when all preceding CUDA calls have completed

cudaMemcpyAsync()  
* Asynchronous, does not block the CPU

cudaDeviceSynchronize()  
* Blocks the CPU until all preceding CUDA calls have completed
```
• All CUDA API calls return an error code (**cudaError_t**)
 → Error in the API call itself
 OR
 → Error in an earlier asynchronous operation (e.g. kernel)

• Get the error code for the last error:

  ```c
  cudaError_t cudaGetLastError(void)
  ```

• Get a string to describe the error:

  ```c
  char *cudaGetErrorString(cudaError_t)
  ```

  ```c
  printf("\%s\n", cudaGetErrorString(cudaGetLastError()));
  ```
Device Management

• Application can query and select GPUs

 `cudaGetDeviceCount(int *count)`

 `cudaSetDevice(int device)`

 `cudaGetDevice(int *device)`

 `cudaGetDeviceProperties(cudaDeviceProp *prop, int device)`

• Multiple threads can share a device

 Requires OS and device support

• A single thread can manage multiple devices

 `cudaSetDevice(i)` to select current device

 `cudaMemcpy(…)` for peer-to-peer copies†

† requires OS and device support
© NVIDIA 2013
Introduction to CUDA C/C++

- What have we learned?
 - Write and launch CUDA C/C++ kernels
 - `__global__`, `blockIdx.x`, `threadIdx.x`, `<<<>>>`
 - Manage GPU memory
 - `cudaMalloc()`, `cudaMemcpy()`, `cudaFree()`
 - Manage communication and synchronization
 - `__shared__`, `__syncthreads()`
 - `cudaMemcpy()` vs `cudaMemcpyAsync()`, `cudaDeviceSynchronize()`