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Announcements

Last class

• Project #3 – Local Dead-Code Elimination
Due date: Wednesday May 4 

• Midterm has been graded. Please see sample solution.
Need to ask for regrade by Wednesday, May 4

• Final exam on May 10 , 1:00pm (60 minutes in class)
® HW#5 and HW#6
® Parameter passing

• Grading Scheme
®Exams: 2 x 30%  ( best two exams count ) 
®Projects: 3 x 10%
®Homeworks: 5 x 2% ( best five homeworks count )
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Final Exam Topics
LR(1) parsing

Type systems
- type checking

Syntax-Directed translation schemes 
- Yacc notation
- Second project

Code generation
- loops
- arrays

Optimizations
- local vs. global optimizations
- Third project

Procedure abstraction
- dynamic runtime stack 
- non-local accesses

lexical scoping (access links)
dynamic scoping

- parameter passing
3

Material to Study

- Lectures 16 through 26
(with readings)

- Homeworks #5 and #6

- Projects #2 and #3
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Communicating Between Procedures

Most languages provide a parameter passing mechanism:
actual parameters are mapped to formal parameters

Common binding mechanisms:
• Call-by-reference passes a pointer to actual parameter

® Requires slot in the AR (for address of parameter)
® Expression used at “call site” becomes a variable in callee
® Multiple names with the same address (aliasing)?

• Call-by-value passes a copy of its value at time of call
® Requires slot in the AR
® Each name gets a unique location
® Arrays are mostly passed by reference, not value

e.g: call fee(x,x,x)
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Communicating Between Procedures

Most languages provide a parameter passing mechanism
actual parameters are mapped to formal parameters

• Call-by-value-result passes the value of and a pointer to the 
actual parameter; at the end of the call, value of formal 
parameter is copied back into actual parameter. 
® Requires two slots in the AR
® During execution of procedure body, formal parameter is 

treated as a call-by-value parameter, 
® Order of write-back is important

• Can always use global variables, which makes reasoning about 
programs harder
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Procedure Linkages

How do procedure calls actually work?
• At compile time, callee may not be available for inspection

® Different calls may be in different compilation units
® Compiler may not know system code from user code
® All calls must use the same protocol

Compiler must use a standard sequence of operations
• Enforces control & data abstractions
• Divides responsibility between caller & callee
Usually a system-wide agreement               (for interoperability)
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Procedure Linkages

Standard procedure linkage
procedure p

prolog

epilog

pre-call 

post-return 

procedure q

prolog

epilog

Procedure has
• standard prolog
• standard epilog
Each call involves a
• pre-call sequence
• post-return sequence
These are completely 
predictable from the 
call site Þ depend on 
the number & type of 
the actual parameters
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Procedure Linkages

Pre-call Sequence
• Sets up callee’s basic AR
• Helps preserve its own environment

The Details
• Allocate space for the callee’s AR 

® except space for local variables
• Evaluates each parameter & stores value and/or address
• Saves return address, caller’s ARP (control link) into callee’s AR
• If access links are used

® Find appropriate lexical ancestor & copy into callee’s AR
• Save any caller-save registers

® Save into space in caller’s AR
• Jump to address of callee’s prolog code
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Procedure Linkages

Post-return Sequence
• Finish restoring caller’s environment 
• Place any value back where it belongs

The Details
• Copy return value from callee’s AR, if necessary
• Free the callee’s AR
• Restore any caller-save registers
• Copy back call-by-value-result parameters 
• Continue execution after the call
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Procedure Linkages

Prolog Code
• Finish setting up callee’s environment
• Preserve parts of caller’s environment that will be disturbed

The Details
• Preserve any callee-save registers
• If display is being used

® Save display entry for current lexical level
® Store current ARP into display for current lexical level

• Allocate space for local data
® Easiest scenario is to extend the AR

• Handle any local variable initializations

With heap allocated AR, may 
need to use a separate heap 
object for local variables
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Procedure Linkages

Epilog Code
• Wind up the business of the callee
• Start restoring the caller’s environment

The Details
• Store return value? 

® Some implementations do this on the return statement
® Others have return assign it & epilog store it into caller’s AR

• Restore callee-save registers
• Free space for local data, if necessary (on the heap)
• Load return address from AR
• Restore caller’s ARP
• Jump to the return address

If ARs are stack allocated, 
this may not be necessary.  
(Caller can reset stacktop 
to its pre-call value.)
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Bottom-up Parsing
(Syntax Analysis)

EAC Chapters 3.4
ALSU Chapter 4.5 
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LR(0) versus SLR(1) versus LR(1)

Example:

LR(0) ?  s0 = {[S’ -> .S], [S -> . S ; a], [S -> . a]}
s1 = goto(s0,S) = {[S’-> S.], [S -> S. ; a]} **conflict**

LR(1) ? YES – check at home or in recitation

SLR(1) ?  SIMPLE LR(1)    FOLLOW (S) = {eof, ; } 
s1 = {[S’ -> S., eof], [S -> S. ; a, {eof, ;}] } **no conflict**

SLR(1): add FOLLOW(A) to each LR(0) item [A®g•] as its 
second component: [A®g•, a], "a ÎFOLLOW(A);
Note: Can also add to other items, but does not really matter. 

S’ ® S
S ® S ; a  | a
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LR(0) versus SLR(1) versus LR(1)

1: S’ ® S
2: S ® S ; a  
3: S ® a
LR(0): 
s0 = {[S’ -> .S], [S -> . S;a], [S -> . a]} 
s1 = Goto(s0, S) = {[S’ -> S.], [S -> S . ;a]}  
s2 = Goto(s0, a) = {[S -> a .]}
s3 = Goto(s1, ;) = {[S -> S; . a]}
s4 = Goto(s3, a) = {[S -> S; a .]}

SLR(1)
Follow(S’) = {eof}
Follow(S) = {eof, ;}

Grammar is SLR(1)!

Grammar is not LR(0)!
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LALR(1) versus LR(1)

Example:

LR(0) ?

LR(1) ?

LALR(1) ?

LALR(1): Merge two sets of LR(1) items (states), if they have
the same core. 

core of set of LR(1) items: set of LR(0) items derived by         
ignoring the lookahead symbols 

S’ ® S
S ® aAd | bBd | aBe | bAe
A ® c
B ® c
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LALR(1) versus LR(1)

s0 = Closure({[S’ ® .S, eof]}) = {[S ® . aAd, eof], [S ® . aBe, eof],
[S ® . bAe, eof], [S ® . bBd, eof],
[S’ ® .S, eof]}

s1 = Closure( GoTo (s0, a)) =
{[S ® a . Ad, eof],
[S ® a . Be, eof],
[A ® .c, d], [B ® .c, e]}

s2 = Closure( GoTo (s0, b)) =
{[S ® b . Ae, eof],
[S ® b . Bd, eof],
[A ® .c, e], [B ® .c, d]}       …   /* other states */

There are other states that are not listed here!

s3 = Closure( GoTo (s1, c)) =
{[A ® c. , d], 
[B ® c. , e]}

s4 = Closure( GoTo (s2, c)) =
{[A ® c. , e], 
[B ® c. , d]}

Grammar is LR(1), but not LALR(1), since collapsing 
s3 and s4 (same core) will introduce reduce-reduce conflict. 
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LALR(1) versus LR(1)

Example:

LR(0) ?             NO

LR(1) ?              YES

LALR(1) ?          NO, since introduces a reduce/reduce conflit

LALR(1): Merge two sets of LR(1) items (states), if they have
the same core. 

core of set of LR(1) items: set of LR(0) items derived by         
ignoring the lookahead symbols 

FACT: collapsing LR(1) states into LALR(1) states cannot   
introcude shift/reduce conflicts 

S’ ® S
S ® aAd | bBd | aBe | bAe
A ® c
B ® c
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Shrinking the Tables

Three options:
• Combine terminals such as number & identifier, + & -, * & /

® Directly removes a column, may remove a row
® For expression grammar, 198 (vs. 384) table entries  

• Combine rows or columns                            (table compression)
® Implement identical rows once & remap states
® Requires extra indirection on each lookup
® Use separate mapping for ACTION & for GOTO

• Use another construction algorithm
® Both LALR(1) and SLR(1) produce smaller tables
® Implementations are readily available
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LR(k) versus LL(k) 

Finding Reductions
LR(k) Þ Each reduction in the parse is detectable with 

® the complete left context,
® the reducible phrase, itself, and
® the k terminal symbols to its right

LL(k) Þ Parser must select the next rule based on
® The complete left context
® The next k terminals

Thus, LR(k) examines more context 
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Summary

Advantages

Easy to implement
Good locality (fast)
Simplicity
Easy to embed actions 
(code access)

Fast 
Deterministic langs.
Automatable (tool 
support)
Left associativity

Disadvantages

Hand-coded
High maintenance
Right associativity

Large working sets
Large table sizes

Top-down
recursive
descent

LR(1)
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Hierarchy of Context-Free Languages

Context-free languages

Deterministic languages  (LR(k))

LL(k) languages Simple precedence
languages

LL(1) languages Operator precedence
languages

LR(k) º LR(1)

The inclusion hierarchy for 
context-free languages
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Hierarchy of Context-Free Grammars

The inclusion hierarchy for
context-free grammars

• Operator precedence 
includes some ambiguous  
grammars

• LL(1) is a subset of  SLR(1)

Context-free grammars

Unambiguous
CFGs

Operator
Precedence 

Floyd-Evans
Parsable 

LR(k)

LR(1)

LALR(1)

SLR(1)

LR(0)

LL(k)

LL(1)
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Work on the project!

See you at the midterm on May 10, at 1:00pm, in 
class

Will keep additional office hours before exam. Will 
announce via piazza.

GOOD LUCK WITH STUDYING!

That’s it!


