
CS415 Compilers

Procedure Abstraction
Part 4

Syntax Analysis
Wrap-Up

These slides are based on slides copyrighted by
Keith Cooper, Ken Kennedy & Linda Torczon at Rice

University

cs415, spring 22 Lecture 26

Announcements

Last class

• Project #3 – Local Dead-Code Elimination
Due date: Wednesday May 4

• Midterm has been graded. Please see sample solution.
Need to ask for regrade by Wednesday, May 4

• Final exam on May 10 , 1:00pm (60 minutes in class)
® HW#5 and HW#6
® Parameter passing

• Grading Scheme
®Exams: 2 x 30% (best two exams count)
®Projects: 3 x 10%
®Homeworks: 5 x 2% (best five homeworks count)

2

cs415, spring 22 Lecture 26

Final Exam Topics
LR(1) parsing

Type systems
- type checking

Syntax-Directed translation schemes
- Yacc notation
- Second project

Code generation
- loops
- arrays

Optimizations
- local vs. global optimizations
- Third project

Procedure abstraction
- dynamic runtime stack
- non-local accesses

lexical scoping (access links)
dynamic scoping

- parameter passing
3

Material to Study

- Lectures 16 through 26
(with readings)

- Homeworks #5 and #6

- Projects #2 and #3

cs415, spring 22 Lecture 26 4

Communicating Between Procedures

Most languages provide a parameter passing mechanism:
actual parameters are mapped to formal parameters

Common binding mechanisms:
• Call-by-reference passes a pointer to actual parameter

® Requires slot in the AR (for address of parameter)
® Expression used at “call site” becomes a variable in callee
® Multiple names with the same address (aliasing)?

• Call-by-value passes a copy of its value at time of call
® Requires slot in the AR
® Each name gets a unique location
® Arrays are mostly passed by reference, not value

e.g: call fee(x,x,x)

cs415, spring 22 Lecture 26 5

Communicating Between Procedures

Most languages provide a parameter passing mechanism
actual parameters are mapped to formal parameters

• Call-by-value-result passes the value of and a pointer to the
actual parameter; at the end of the call, value of formal
parameter is copied back into actual parameter.
® Requires two slots in the AR
® During execution of procedure body, formal parameter is

treated as a call-by-value parameter,
® Order of write-back is important

• Can always use global variables, which makes reasoning about
programs harder

cs415, spring 22 Lecture 26 6

Procedure Linkages

How do procedure calls actually work?
• At compile time, callee may not be available for inspection

® Different calls may be in different compilation units
® Compiler may not know system code from user code
® All calls must use the same protocol

Compiler must use a standard sequence of operations
• Enforces control & data abstractions
• Divides responsibility between caller & callee
Usually a system-wide agreement (for interoperability)

cs415, spring 22 Lecture 26 7

Procedure Linkages

Standard procedure linkage
procedure p

prolog

epilog

pre-call

post-return

procedure q

prolog

epilog

Procedure has
• standard prolog
• standard epilog
Each call involves a
• pre-call sequence
• post-return sequence
These are completely
predictable from the
call site Þ depend on
the number & type of
the actual parameters

cs415, spring 22 Lecture 26 8

Procedure Linkages

Pre-call Sequence
• Sets up callee’s basic AR
• Helps preserve its own environment

The Details
• Allocate space for the callee’s AR

® except space for local variables
• Evaluates each parameter & stores value and/or address
• Saves return address, caller’s ARP (control link) into callee’s AR
• If access links are used

® Find appropriate lexical ancestor & copy into callee’s AR
• Save any caller-save registers

® Save into space in caller’s AR
• Jump to address of callee’s prolog code

cs415, spring 22 Lecture 26 9

Procedure Linkages

Post-return Sequence
• Finish restoring caller’s environment
• Place any value back where it belongs

The Details
• Copy return value from callee’s AR, if necessary
• Free the callee’s AR
• Restore any caller-save registers
• Copy back call-by-value-result parameters
• Continue execution after the call

cs415, spring 22 Lecture 26 10

Procedure Linkages

Prolog Code
• Finish setting up callee’s environment
• Preserve parts of caller’s environment that will be disturbed

The Details
• Preserve any callee-save registers
• If display is being used

® Save display entry for current lexical level
® Store current ARP into display for current lexical level

• Allocate space for local data
® Easiest scenario is to extend the AR

• Handle any local variable initializations

With heap allocated AR, may
need to use a separate heap
object for local variables

cs415, spring 22 Lecture 26 11

Procedure Linkages

Epilog Code
• Wind up the business of the callee
• Start restoring the caller’s environment

The Details
• Store return value?

® Some implementations do this on the return statement
® Others have return assign it & epilog store it into caller’s AR

• Restore callee-save registers
• Free space for local data, if necessary (on the heap)
• Load return address from AR
• Restore caller’s ARP
• Jump to the return address

If ARs are stack allocated,
this may not be necessary.
(Caller can reset stacktop
to its pre-call value.)

cs415, spring 22

Bottom-up Parsing
(Syntax Analysis)

EAC Chapters 3.4
ALSU Chapter 4.5

cs415, spring 22 Lecture 26 13

LR(0) versus SLR(1) versus LR(1)

Example:

LR(0) ? s0 = {[S’ -> .S], [S -> . S ; a], [S -> . a]}
s1 = goto(s0,S) = {[S’-> S.], [S -> S. ; a]} **conflict**

LR(1) ? YES – check at home or in recitation

SLR(1) ? SIMPLE LR(1) FOLLOW (S) = {eof, ; }
s1 = {[S’ -> S., eof], [S -> S. ; a, {eof, ;}] } **no conflict**

SLR(1): add FOLLOW(A) to each LR(0) item [A®g•] as its
second component: [A®g•, a], "a ÎFOLLOW(A);
Note: Can also add to other items, but does not really matter.

S’ ® S
S ® S ; a | a

cs415, spring 22 Lecture 26 14

LR(0) versus SLR(1) versus LR(1)

1: S’ ® S
2: S ® S ; a
3: S ® a
LR(0):
s0 = {[S’ -> .S], [S -> . S;a], [S -> . a]}
s1 = Goto(s0, S) = {[S’ -> S.], [S -> S . ;a]}
s2 = Goto(s0, a) = {[S -> a .]}
s3 = Goto(s1, ;) = {[S -> S; . a]}
s4 = Goto(s3, a) = {[S -> S; a .]}

SLR(1)
Follow(S’) = {eof}
Follow(S) = {eof, ;}

Grammar is SLR(1)!

Grammar is not LR(0)!

cs415, spring 22 Lecture 26 15

LALR(1) versus LR(1)

Example:

LR(0) ?

LR(1) ?

LALR(1) ?

LALR(1): Merge two sets of LR(1) items (states), if they have
the same core.

core of set of LR(1) items: set of LR(0) items derived by
ignoring the lookahead symbols

S’ ® S
S ® aAd | bBd | aBe | bAe
A ® c
B ® c

cs415, spring 22 Lecture 26 16

LALR(1) versus LR(1)

s0 = Closure({[S’ ® .S, eof]}) = {[S ® . aAd, eof], [S ® . aBe, eof],
[S ® . bAe, eof], [S ® . bBd, eof],
[S’ ® .S, eof]}

s1 = Closure(GoTo (s0, a)) =
{[S ® a . Ad, eof],
[S ® a . Be, eof],
[A ® .c, d], [B ® .c, e]}

s2 = Closure(GoTo (s0, b)) =
{[S ® b . Ae, eof],
[S ® b . Bd, eof],
[A ® .c, e], [B ® .c, d]} … /* other states */

There are other states that are not listed here!

s3 = Closure(GoTo (s1, c)) =
{[A ® c. , d],
[B ® c. , e]}

s4 = Closure(GoTo (s2, c)) =
{[A ® c. , e],
[B ® c. , d]}

Grammar is LR(1), but not LALR(1), since collapsing
s3 and s4 (same core) will introduce reduce-reduce conflict.

cs415, spring 22 Lecture 26 17

LALR(1) versus LR(1)

Example:

LR(0) ? NO

LR(1) ? YES

LALR(1) ? NO, since introduces a reduce/reduce conflit

LALR(1): Merge two sets of LR(1) items (states), if they have
the same core.

core of set of LR(1) items: set of LR(0) items derived by
ignoring the lookahead symbols

FACT: collapsing LR(1) states into LALR(1) states cannot
introcude shift/reduce conflicts

S’ ® S
S ® aAd | bBd | aBe | bAe
A ® c
B ® c

cs415, spring 22 Lecture 26 18

Shrinking the Tables

Three options:
• Combine terminals such as number & identifier, + & -, * & /

® Directly removes a column, may remove a row
® For expression grammar, 198 (vs. 384) table entries

• Combine rows or columns (table compression)
® Implement identical rows once & remap states
® Requires extra indirection on each lookup
® Use separate mapping for ACTION & for GOTO

• Use another construction algorithm
® Both LALR(1) and SLR(1) produce smaller tables
® Implementations are readily available

cs415, spring 22 Lecture 26 19

LR(k) versus LL(k)

Finding Reductions
LR(k) Þ Each reduction in the parse is detectable with

® the complete left context,
® the reducible phrase, itself, and
® the k terminal symbols to its right

LL(k) Þ Parser must select the next rule based on
® The complete left context
® The next k terminals

Thus, LR(k) examines more context

cs415, spring 22 Lecture 26 20

Summary

Advantages

Easy to implement
Good locality (fast)
Simplicity
Easy to embed actions
(code access)

Fast
Deterministic langs.
Automatable (tool
support)
Left associativity

Disadvantages

Hand-coded
High maintenance
Right associativity

Large working sets
Large table sizes

Top-down
recursive
descent

LR(1)

cs415, spring 22 Lecture 26 21

Hierarchy of Context-Free Languages

Context-free languages

Deterministic languages (LR(k))

LL(k) languages Simple precedence
languages

LL(1) languages Operator precedence
languages

LR(k) º LR(1)

The inclusion hierarchy for
context-free languages

cs415, spring 22 Lecture 26 22

Hierarchy of Context-Free Grammars

The inclusion hierarchy for
context-free grammars

• Operator precedence
includes some ambiguous
grammars

• LL(1) is a subset of SLR(1)

Context-free grammars

Unambiguous
CFGs

Operator
Precedence

Floyd-Evans
Parsable

LR(k)

LR(1)

LALR(1)

SLR(1)

LR(0)

LL(k)

LL(1)

cs415, spring 22 Lecture 26 23

Work on the project!

See you at the midterm on May 10, at 1:00pm, in
class

Will keep additional office hours before exam. Will
announce via piazza.

GOOD LUCK WITH STUDYING!

That’s it!

