
CS415 Compilers

Procedure Abstraction

These slides are based on slides copyrighted by
Keith Cooper, Ken Kennedy & Linda Torczon at Rice

University

cs415, spring 22 Lecture 23

Announcements

Roadmap for the remainder of the course

• Project #2 – Bottom-up parser and compiler
New due date: Friday April 22

• Homework #5 due today. Homework #6 has been posted.

• Project #3 – Local Dead Code Elimination for ILOC
Will be posted by tomorrow

• Final exam on May 10 , 1:00pm (60 minutes in class)

• Grading Scheme
®Exams: 2 x 30% (best two exams count)
®Projects: 3 x 10%
®Homeworks: 5 x 2% (best five homeworks count)

2

cs415, spring 22 Lecture 23 3

The Procedure: Three Abstractions

EaC: Chapter 6.1 – 6.5

• Control Abstraction
® Well defined entries & exits
® Mechanism to return control to caller
® Some notion of parameterization (usually)

• Clean Name Space
® Clean slate for writing locally visible names
® Local names may obscure identical, non-local names
® Local names cannot be seen outside

• External Interface
® Access is by procedure name & parameters
® Clear protection for both caller & callee

• Procedures permit a critical separation of concerns

cs415, spring 22 Lecture 23 4

The Procedure (Realist’s View)

Procedures allow us to use separate compilation
• Separate compilation allows us to build non-trivial programs
• Keeps compile times reasonable
• Lets multiple programmers collaborate
• Requires independent procedures
Without separate compilation, we would not build large systems

The procedure linkage convention
• Ensures that each procedure inherits a valid run-time

environment and that the caller’s environment is restored on
return
® The compiler must generate code to ensure this happens

according to conventions established by the system

cs415, spring 22 Lecture 23 5

The Procedure (More Abstract View)

A procedure is an abstract structure constructed via software

Underlying hardware directly supports little of the abstraction—
it understands bits, bytes, integers, reals, and addresses, but
not:

• Entries and exits
• Interfaces
• Call and return mechanisms

® may be a special instruction to save context at point of call
• Name space
• Nested scopes
All these are established by a carefully-crafted system of

mechanisms provided by compiler, run-time system, linkage
editor and loader, and OS

cs415, spring 22 Lecture 23 6

Run Time versus Compile Time

These concepts are often confusing
• Procedure linkages execute at run time
• Code for the procedure linkage is emitted at compile time
• The procedure linkage is designed long before either of

these

“This issue (compile time versus run time) confuses students
more than any other issue” —Keith Cooper (Rice University)

cs415, spring 22 Lecture 23 7

The Procedure as a Control Abstraction

Procedures have well-defined control-flow

The Algol-60 procedure call
• Invoked at a call site, with some set of actual parameters
• Control returns to call site, immediately after invocation

cs415, spring 22 Lecture 23 8

Procedures have well-defined control-flow

The Algol-60 procedure call
• Invoked at a call site, with some set of actual parameters
• Control returns to call site, immediately after invocation

int p(a,b,c)
int a, b, c;

{
int d;
d = q(c,b);
...

}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction

cs415, spring 22 Lecture 23 9

Procedures have well-defined control-flow

The Algol-60 procedure call
• Invoked at a call site, with some set of actual parameters
• Control returns to call site, immediately after invocation

int p(a,b,c)
int a, b, c;

{
int d;
d = q(c,b);
...

}

int q(x,y)
int x,y;

{
return x + y;

}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction

cs415, spring 22 Lecture 23 10

Procedures have well-defined control-flow

The Algol-60 procedure call
• Invoked at a call site, with some set of actual parameters
• Control returns to call site, immediately after invocation

int p(a,b,c)
int a, b, c;

{
int d;
d = q(c,b);
...

}

int q(x,y)
int x,y;

{
return x + y;

}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction

cs415, spring 22 Lecture 23 11

Procedures have well-defined control-flow

The Algol-60 procedure call
• Invoked at a call site, with some set of actual parameters
• Control returns to call site, immediately after invocation

int p(a,b,c)
int a, b, c;

{
int d;
d = q(c,b);
...

}

int q(x,y)
int x,y;

{
return x + y;

}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction

cs415, spring 22 Lecture 23 12

Procedures have well-defined control-flow

The Algol-60 procedure call
• Invoked at a call site, with some set of actual parameters
• Control returns to call site, immediately after invocation

• Most languages allow recursion

int p(a,b,c)
int a, b, c;

{
int d;
d = q(c,b);
...

}

int q(x,y)
int x,y;

{
return x + y;

}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction

cs415, spring 22 Lecture 23 13

Implementing procedures with this behavior
• Requires code to save and restore a “return address”
• Must map actual parameters to formal parameters q:(c®x, b®y)
• Must create storage for local variables (and, maybe, parameters)

® p needs space for d (and, maybe, a, b, and c)
® where does this space go in recursive invocations?

int p(a,b,c)
int a, b, c;

{
int d;
d = q(c,b);
...

}

int q(x,y)
int x,y;

{
return x + y;

}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction

cs415, spring 22 Lecture 23 14

Implementing procedures with this behavior
• Must preserve p’s state while q executes

® recursion causes the real problem here
• Strategy: Create unique location for each procedure activation

® Can use a “stack” of memory blocks to hold local storage and
return addresses

Compiler emits code that causes all this to happen at run time

int p(a,b,c)
int a, b, c;

{
int d;
d = q(c,b);
...

}

int q(x,y)
int x,y;

{
return x + y;

}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction

cs415, spring 22 Lecture 23 15

The Procedure as a Name Space

Each procedure creates its own name space
• Any name (almost) can be declared locally
• Local names obscure identical non-local names
• Local names cannot be seen outside the procedure

® Nested procedures are “inside” by definition
• We call this set of rules & conventions “lexical scoping”

Examples
• C has global, static, local, and block scopes (Fortran-like)

® Blocks can be nested, procedures cannot
• Scheme has global, procedure-wide, and nested scopes (let)

® Procedure scope (typically) contains formal parameters

cs415, spring 22 Lecture 23 16

The Procedure as a Name Space

Why introduce lexical scoping?
• Provides a compile-time mechanism for binding “free” variables
• Simplifies rules for naming & resolves conflicts
How can the compiler keep track of all those names?

The Problem
• At point p, which declaration of x is current?
• At run-time, where is x found?
• As parser goes in & out of scopes, how does it delete x?

The Answer
• Lexically scoped symbol tables (see § 5.7.3)

cs415, spring 22 17

procedure p {
int a, b, c
procedure q {

int v, b, x, w
procedure r {

int x, y, z
….

}
procedure s {

int x, a, v
…

}
… r … s

}
… q …

}

x, a, v
b, w

c

Picturing it as a series of
Algol-like procedures

Lexically-scoped Symbol Tables

Lecture 23

cs415, spring 22

Lexically-scoped Symbol Tables

High-level idea (one possible implementation option – see lecture 19)
• Create a new table for each scope
• Chain them together for lookup

“Chain of tables” implementation
• insert() may need to create table
• it always inserts at current level
• lookup() walks chain of tables &

returns first occurrence of name
• delete() throws away table for level

p, if it is top table in the chain

Individual tables can be hash tables.

x

a

v

v

b
x
w

a

b

c

•

s

q

p ...

...

18Lecture 23

cs415, spring 22 Lecture 23 19

Where Do All These Variables Go?

Automatic & Local
• Keep them in the procedure activation record or in a register
• Automatic Þ lifetime matches procedure’s lifetime
Static
• Procedure scope Þ storage area affixed with procedure name
• File scope Þ storage area affixed with file name
• Lifetime is entire execution
Global
• One or more named global data areas
• One per program, …
• Lifetime is entire execution

cs415, spring 22 Lecture 23 20

Placing Run-time Data Structures

Classic Organization

• Code, static, & global data have known size
• Heap & stack both grow & shrink over time
• This is a virtual address space

• Better utilization if
stack & heap grow
toward each other

• Very old result (Knuth)
• Code & data separate or

interleaved

C
o
d
e

S G
t l
a & o
t b
i a
c l

S
t
a
c
k

H
e
a
p

Single Logical Address Space
0 high

cs415, spring 22 Lecture 23 21

How Does This Really Work?

The Big Picture

C
o
d
e

S G
t l
a & o
t b
i a
c l

H
e
a
p

S
t
a
c
k

C
o
d
e

S G
t l
a & o
t b
i a
c l

H
e
a
p

S
t
a
c
k

C
o
d
e

S G
t l
a & o
t b
i a
c l

H
e
a
p

S
t
a
c
k

...

...

Hardware’s view

Compiler’s view

OS’s view

Physical address
space_

virtual address
spaces

0 high

C
o
d
e

S G
t l
a & o
t b
i a
c l

H
e
a
p

S
t
a
c
k

cs415, spring 22 Lecture 23 22

Activation Record Basics

parameters

register
save area

return value

return address

addressability

caller’s ARP

local
variables

ARP

Space for parameters to
the current routine

Saved register contents

If function, space for
return value

Address to resume caller

Help with non-local access

To restore caller’s AR on a
return (control link)

Space for local values &
variables (including spills)

One AR for each invocation of a procedure

cs415, spring 22 Lecture 23 23

Work on the project!

More procedure abstraction

Wrap-up parsing: SLR(1) and LALR(1)
Read EaC: Chapter 3.4

Things to do and next class

