
CS415 Compilers

Compiler Optimizations

These slides are based on slides copyrighted by
Keith Cooper, Ken Kennedy & Linda Torczon at Rice

University

cs415, spring 22 Lecture 22

Announcements

Roadmap for the remainder of the course

• Project #2 – Bottom-up parser and compiler
New due date: Wednesday April 20

• Homework #5 due today.

• Project #3 – Will be posted by Thursday

• Final exam on May 10 , 1:00pm, (60 minutes in class)

• Grading Scheme
®Exams: 2 x 30% (best two exams count)
®Projects: 3 x 10%
®Homeworks: 5 x 2% (best five homeworks count)

2

cs415, spring 22

Compiler Optimizations

ALSU Chapter 9

cs415, spring 22 Lecture 22 4

Traditional Three-pass Compiler

Code Improvement (or Optimization)
• Analyzes IR and rewrites (or transforms) IR
• Primary goal is to reduce running time of the compiled code

® May also improve space, power dissipation, energy consumption,
…

• Must preserve “meaning” of the code (may include
approximations, i.e., quality of outcomes tradeoffs)
® Measured by values of named variables or produced output

Errors

Source
Code

Middle
End

Front
End

Machine
code

Back
End

IR IR

cs415, spring 22 Lecture 22 5

The Optimizer (or Middle End)

Typical Transformations
• Discover & propagate some constant value
• Move a computation to a less frequently executed place
• Specialize some computation based on context
• Discover a redundant computation & remove it
• Remove useless or unreachable code
• Encode an idiom in some particularly efficient form

Errors

Opt
1

Opt
3

Opt
2

Opt
n

...IR IR IR IR IR

Modern optimizers are structured as a series of passes

cs415, spring 22 Lecture 22 6

Optimization - Benefits
How to assess any technique (transformation) that will improve the
overall program outcome or its (dynamic) execution?

(S) Safety: Program semantics has to be preserved (true or false)

(O) Opportunity: How often can the optimization be safely applied during
the execution of the program (percentage)

(P) Profitability: If the optimization is applied, what is the expected
average benefit in terms of the target metric?

Examples:
The transformation “a” is safe and improves the execution time of
10% of the executed code by a factor of 5.

Benefit: execution time reduced to 92%
The transformation “b” is not safe and improves the execution time
40% of the executed code by a factor of 2.

Benefit is not defined
If “b” were safe, benefit: execution time reduction to 80%

Benefit = [(100 – O) + O/P] if S = true

cs415, spring 22

The Optimizer – Interactions

How do these optimizations interact?

A significant body of research tries to find the best sequence of
optimizing transformations for different application domains.
These transformation are not Church-Rosser, i.e., the particular order
of the transformations impact the overall outcome.

Some of the optimizations are used as “clean-up” passes (e.g.: constant
propagation, dead code elimination). This allows implementers of other
transformations to use simpler algorithms and data abstractions that
are easier to reason about.

When you design an optimization pass, keep in mind that the program
your optimizing pass is presented with may have run through many previous
transformations, significantly changing the program’s code shape.
Most likely, this code shape would not have been generated directly by any
human programmer. Make sure your optimization path algorithms and data
structures can deal with these “un-natural” shapes.

Lecture 22 7

cs415, spring 22

Performance Optimizations

What do these optimizations have in common?

Their goal is to reduce the number of machine cycles needed to execute
the program (reduce dynamic execution count).

Note: Reducing dynamic execution cycles does not always imply
reducing static program size. In fact, many optimizations increase the
program size significantly. This in turn can have negative impact on
(dynamic) performance (e.g.: caches, failure of “standard” algorithms to
generate good code).

Examples:
• Procedure inlining
• Blocking for memory hierarchy (in particular caches)
• Loop unrolling to increase basic block sizes
• Trace scheduling to increase size of basic blocks

Lecture 22 8

cs415, spring 22

Optimizations

What other optimization goals are there?

• Performance (dynamic execution time)
• Size of executable
• Power (peak power dissipation)
• Energy (battery life)
• Thermal (cooling)

Lecture 22 9

How do these different optimization goals interact?
• Does one optimization goal subsumes another, or are they

all different?
• Can one optimization goal conflict with another?

(e.g.: power vs. performance, thermal vs. performance)

cs415, spring 22

power (when): activity level at a given point in time
energy (what): total amount of activity
thermal (where): location of activity / power density

time

po
w

er

time

po
w

er

same energy, different (peak) power

Power vs. Energy vs. Thermal

Source: Zhu et al., DATE’15

Thermal map of a
multi-core system

A10 Gatling gun Plate of
hot mashed potatoes

Thermal optimization: Spread activities across spatial dimensions:
Where to do things? A larger surface is easier to cool!

Lecture 22 10

cs415, spring 22 Lecture 22 11

There is no “free” lunch!

You cannot have everything, so
something has to give (Pareto optimal)

cs415, spring 22 Lecture 22 12

The Optimizer – Scope/Granularity

Example: Discover & propagate some constant value (constant folding / propagation)

a := 2
b := 3
c := a + b
print (c)

if (…) then {
a := 2
b := 3

} else {
a := 3
b := 2

}
c := a + b
print (c)

procedure foo (a, b) {
c := a + b // no side effects
return (c) }

procedure bar {
…
c := foo(2, 3)
print (c)
…
d := foo(5, 5)
print (d)
}

Local: Basic block
within a procedure

Global: Control flow
between basic blocks
within a procedure

Inter-procedural:
Control flow across
procedure calls

Local, global (intra-procedural), and inter-procedural optimization

cs415, spring 22 Lecture 22

a := 2
b := 3
c := a + b
print (c)

if (…) then {
a := 2
b := 3

} else {
a := 3
b := 2

}
c := a + b
print (c)

procedure foo (a, b) {
c := a + b // no side effects
return (c) }

procedure bar {
…
c := foo(2, 3)
print (c)
…
d := foo(5, 5)
print (d)
}

Local: Basic block
within a procedure

Global: Control flow
between basic blocks
within a procedure

Inter-procedural:
Control flow across
procedure calls

Local, global (intra-procedural), and inter-procedural optimization

Control Flow
Graph
(CFG)

bar

foo

(2,3) (5,5)

Call Multi-
Graph

List of statements

true false

13

The Optimizer – Scope/Granularity

Example: Discover & propagate some constant value (constant folding / propagation)

cs415, spring 22 Lecture 22 14

a := 2
b := 3
c := 5
print (5)

if (…) then {
a := 2
b := 3

} else {
a := 3
b := 2

}
c := 5
print (5)

procedure foo (a, b) {
c := a + b // no side effects
return (c) }

Local: Basic block
within a procedure

Global: Control flow
between basic blocks
within a procedure

Inter-procedural:
Control flow across
procedure calls

Local, global (intra-procedural), and inter-procedural optimization

optimization
results

procedure bar {
…
c := 5
print (5)
…
d := 10
print (10)
}

The Optimizer – Scope/Granularity

Example: Discover & propagate some constant value (constant folding / propagation)

cs415, spring 22

Constant propagation/folding (local, global, inter-procedural)

Dead code elimination (local, global, inter-procedural)

CSE: common subexpression elimination (local, global)

Invariant code motion (global, inter-procedural)

Strength reduction, idioms recognition (local)

Procedure inlining (inter-procedural)

Lecture 22 15

The Optimizer – Scope/Granularity

cs415, spring 22 Lecture 22 16

Work on the project!

Procedure abstraction
Read EaC: Chapter 6.1 – 6.5

Things to do and next class

