
CS415 Compilers

Code Generation - Part 2

Intermediate Representations

These slides are based on slides copyrighted by
Keith Cooper, Ken Kennedy & Linda Torczon at Rice

University

cs415, spring 22 Lecture 21

Announcements

Roadmap for the remainder of the course

• Project #2 – Bottom-up parser and compiler
New due date: Wednesday April 20

• Homework #5 has been posted

• Midterm #1 – Grade challenge deadline is Friday, April 15.
Please pick up your exams in recitation

• Final exam on May 10 , 1:00pm, (60 minutes in class)

• Grading Scheme
®Exams: 2 x 30% (best two exams count)
®Projects: 3 x 10%
®Homeworks: 5 x 2% (best five homeworks count)

2

cs415, spring 22

Code Generation

EaC Chapter 7

cs415, spring 22 Lecture 21 4

Boolean & Relational Values

How should the compiler represent them?
• Answer depends on the target machine

Two classic approaches
• Numerical representation
• Positional (implicit) representation
Correct choice depends on both context and ISA

cs415, spring 22 Lecture 21 5

Boolean & Relational Values

Numerical representation
• Assign values to TRUE and FALSE
• Use hardware AND, OR, and NOT operations
• Use comparison to get a boolean from a relational expression

Examples

cs415, spring 22 Lecture 21 6

Boolean & Relational Values

What if the ISA uses a condition code?
• Must use a conditional branch to interpret result of compare
• Necessitates branches in the evaluation

Example: // r2 should contain boolean value of “x<y” evaluation

This “positional representation” is much more complex

cs415, spring 22 Lecture 21 7

Boolean & Relational Values

The last example actually encodes result in the PC
If result is used to control an operation, this may be enough

Condition code version does not directly produce (x < y)

Boolean version does

Still, there is no significant difference in the code produced

if (x < y)
then a ¬ c + d

else a ¬ e + f

Example

cs415, spring 22 Lecture 21 8

Boolean & Relational Values

Conditional move & predication both simplify this code

Both versions avoid the branches
Both are shorter than CCs or Boolean-valued compare
Are they better? What about power?

if (x < y)
then a ¬ c + d

else a ¬ e + f

Example

cs415, spring 22 Lecture 21 9

Boolean & Relational Values

Consider the assignment x ¬ a < b Ù c < d (short circuiting?)

Here, the boolean compare produces much better code.

cs415, spring 22

Intermediate Representation

EaC Chapter 5

cs415, spring 22 Lecture 21 11

Intermediate Representations

• Front end - produces an intermediate representation (IR)
• Middle end - transforms the IR into an equivalent IR that

runs more efficiently
• Back end - transforms the IR into native code

• IR encodes the compiler’s knowledge of the program
• Middle end usually consists of several passes

Front
End

Middle
End

Back
End

IR IRSource
Code

Target
Code

cs415, spring 22 Lecture 21 12

Intermediate Representations

• Decisions in IR design affect the speed and efficiency
of the compiler

• Some important IR properties
® Ease of generation
® Ease of manipulation
® Size
® Level of abstraction

• The importance of different properties varies between
compilers
® Selecting an appropriate IR for a compiler is critical

cs415, spring 22 Lecture 21 13

Types of Intermediate Representations

Three major categories
• Structural

® Graphically oriented
® Heavily used in source-to-source translators
® Tend to be large

• Linear
® Pseudo-code for an abstract machine
® Level of abstraction varies
® Simple, compact data structures
® Easier to rearrange

• Hybrid
® Combination of graphs and linear code

Examples:
Trees, DAGs

Examples:
3 address code
Stack machine code

Example:
Control-flow graph

cs415, spring 22 Lecture 21 14

Level of Abstraction

• The level of detail exposed in an IR influences the
profitability and feasibility of different optimizations.

• Two different representations of an array reference:

subscript

A i j

loadI 1 => r1
sub rj, r1 => r2
loadI 10 => r3
mult r2, r3 => r4
sub ri, r1 => r5
add r4, r5 => r6
loadI @A => r7
Add r7, r6 => r8
load r8 => rAijHigh level AST:

Good for memory
disambiguation

Low level linear code:
Good for address calculation

cs415, spring 22 Lecture 21 15

Level of Abstraction

• Structural IRs are usually considered high-level
• Linear IRs are usually considered low-level
• Not necessarily true:

+

*

10

i 1

- j 1

-

+

@A

load

Low level AST loadArray A,i,j

High level linear code

cs415, spring 22 Lecture 21 16

Abstract Syntax Tree

An abstract syntax tree is the procedure’s parse tree with
the nodes for most non-terminal nodes removed

x - 2 * y
• Can use linearized form of the tree

x 2 y * - in postfix form
- * 2 y x in prefix form

• S-expressions are (essentially) ASTs (remember functional
languages such as Scheme or Lisp!)

-

x

2 y

*

cs415, spring 22 Lecture 21 17

Directed Acyclic Graph

A directed acyclic graph (DAG) is an AST with a unique
node for each value

• Makes sharing explicit
• Encodes redundancy

x

2 y

*

-

¬

z /

¬

w

z ¬ x - 2 * y
w ¬ x / 2

Same expression twice means
that the compiler might arrange
to evaluate it just once!

cs415, spring 22 Lecture 21 18

Stack Machine Code

Originally used for stack-based computers, now Java
• Example:

x - 2 * y becomes

Advantages
• Compact form
• Introduced names are implicit, not explicit
• Simple to generate and execute code

Useful where code is transmitted
over slow communication links (the net)

push x
push 2
push y
multiply
subtract

Implicit names take up
no space, where explicit
ones do!

cs415, spring 22 Lecture 21 19

Three Address Code

Several different representations of three address code
• In general, three address code has statements of the form:

x ¬ y op z
With 1 operator (op) and, at most, 3 names (x, y, z)

Example:
z ¬ x - 2 * y becomes

Advantages:
• Resembles many machines
• Introduces a new set of names
• Compact form

t ¬ 2 * y
z ¬ x - t

cs415, spring 22 Lecture 21 20

Three Address Code: Quadruples

Naïve representation of three address code
• Table of k * 4 small integers
• Simple record structure
• Easy to reorder
• Explicit names

245sub

X4load

123mult

22loadI

Y1load
load r1, y
loadI r2, 2
mult r3, r2, r1
load r4, x
sub r5, r4, r3

RISC assembly code (not ILOC) Quadruples

The original FORTRAN
compiler used “quads”

cs415, spring 22 Lecture 21 21

Three Address Code: Triples

• Index used as implicit name
• 25% less space consumed than quads
• Much harder to reorder

(3)(4)sub

xload

(2)(1)mult

2loadI

yload(1)

(2)

(3)

(4)

(5)

Implicit names take no space!

cs415, spring 22 Lecture 21 22

Control-flow Graph (CFG)

Models the transfer of control in the procedure
• Nodes in the graph are basic blocks

® Can be represented with quads or any other linear
representation

• Edges in the graph represent control flow

Example
if (x = y)

a ¬ 2
b ¬ 5

a ¬ 3
b ¬ 4

c ¬ a + b

Basic blocks —
Maximal length
sequences of
straight-line code

cs415, spring 22 Lecture 21 23

Static Single Assignment Form (SSA)

• The main idea: each name defined exactly once in program
• Introduce f-functions to make it work

Strengths of SSA-form
• Sharper analysis
• “minimal” f-functions placement is non-trivial
• (sometimes) faster algorithms

Original

x ¬ ...
y ¬ ...
while (x < k)

x ¬ x + 1
y ¬ y + x

SSA-form

x0 ¬ ...
y0 ¬ ...
if (x0 > k) goto next

loop: x1 ¬ f(x0,x2)
y1 ¬ f(y0,y2)
x2 ¬ x1 + 1
y2 ¬ y1 + x2
if (x2 < k) goto loop

next: ...

cs415, spring 22 Lecture 21 24

Work on the project!

Compiler Optimizations

Procedure abstraction
Read EaC: Chapter 6.1 – 6.5

Things to do and next class

