
CS415 Compilers

Code Generation

These slides are based on slides copyrighted by
Keith Cooper, Ken Kennedy & Linda Torczon at Rice

University

cs415, spring 22 Lecture 20

Announcements

Roadmap for the remainder of the course

• Project #2 – Bottom-up parser and compiler
Due date Friday April 15

• Homework #5 has been posted

• Midterm #1 – Grade challenge deadline is Friday, April 15.
Please pick up your exams in recitation

• Final exam on May 10 , 1:00pm, (60 minutes in class)

• Grading Scheme
®Exams: 2 x 30% (best two exams count)
®Projects: 3 x 10%
®Homeworks: 5 x 2% (best five homeworks count)

2

cs415, spring 22

Code Generation

EaC Chapter 7

cs415, spring 22 Lecture 20 4

Review - Structure of a Compiler

A compiler is a lot of fast stuff followed by some hard problems
® The hard stuff is mostly in code generation and optimization
® For superscalars, its allocation & scheduling that is particularly

important

Instruction
Selection

Register
Allocation

Instruction
Scheduling

Scanner Parser
Analysis

&
Optimization

O(n), O(n log n), … NP-CompleteO(n)O(n)

NP-Complete NP-CompleteEither fast or
NP-Complete

words IR

IR
asm asm asm

∞
regs

∞
regs

k
regs

cs415, spring 22 Lecture 20 5

Review - Generating Code

The key code quality issue is holding values in registers
• When can a value be safely allocated to a register?

® When only 1 name can reference its value (no aliasing)
® Pointers, parameters, aggregates & arrays all cause trouble

• When should a value be allocated to a register?
® When it is both safe & profitable

Encoding this knowledge into the IR (register-register model)
• Use code shape to make it known to every later phase
• Assign a virtual register to anything that can go into one
• Load or store the others at each reference

Relies on a strong register allocator

cs415, spring 22 Lecture 20 6

Recursive Treewalk vs. Ad-hoc SDT

Goal : Expr { $$ = $1; } ;
Expr: Expr PLUS Term

{ t = NextRegister();
emit(add,$1,$3,t); $$ = t; }

| Expr MINUS Term {…}
| Term { $$ = $1; } ;

Term: Term TIMES Factor
{ t = NextRegister();
emit(mult,$1,$3,t); $$ = t; };

| Term DIVIDES Factor {…}
| Factor { $$ = $1; };

Factor: NUMBER
{ t = NextRegister();
emit(loadI,val($1),none, t);
$$ = t; }

| ID
{ t1 = base($1);
t2 = offset($1);
t = NextRegister();
emit(loadAO,t1,t2,t);
$$ = t; }

int expr(node) {
int result, t1, t2;
switch (type(node)) {

case ´,÷,+,- :
t1¬ expr(left child(node));
t2¬ expr(right child(node));
result ¬ NextRegister();
emit (op(node), t1, t2, result);
break;

case IDENTIFIER:
t1¬ base(node);
t2¬ offset(node);
result ¬ NextRegister();
emit (loadAO, t1, t2, result);
break;

case NUMBER:
result ¬ NextRegister();
emit (loadI, val(node), none, result);
break;

}
return result;

}

Top-down “LL” Bottom-up “LR”

cs415, spring 22 Lecture 20 7

Handling Assignment (just another operator)

lhs¬ rhs
Strategy
• Evaluate rhs to a value (an rvalue)
• Evaluate lhs to a location (memory address) (an lvalue)

® lvalue is an address Þ store rhs
• If rvalue & lvalue have different types

® Evaluate rvalue to its “natural” type
® Convert that value to the type of lhs value, if possible

Unambiguous scalars may go into registers (no aliasing)
Ambiguous scalars or aggregates go into memory (possible

aliasing)
Example: A(i, j) = 1.42 vs. k = 1.42 ?

cs415, spring 22 Lecture 20 8

Handling Assignment

What if the compiler cannot determine the rhs’s type ?
• This is a property of the language & the specific program
• If type-safety is desired, compiler must insert a run-time

check
• Add a tag field to the data items to hold type information

Code for assignment becomes more complex

evaluate rhs
If lhs.type_tag ¹ rhs.type_tag

then
convert rhs to type(lhs) or
signal a run-time error

lhs ¬ rhs

This is much more
complex than if it
knew the types

cs415, spring 22 Lecture 20 9

Handling Assignment

Compile-time type-checking
• Goal is to eliminate both the runtime check & the tag
• Determine, at compile time, the type of each subexpression
• Use compile-time types to determine if a run-time check is

needed

Optimization strategy
• If compiler knows the type, move the check to compile-time
• Unless tags are needed for garbage collection, eliminate them
• If check is needed, try to overlap it with other computation

(superscalar or multi-core architectures)

cs415, spring 22 Lecture 20 10

Handling Assignment (with reference counting)

The problem with reference counting
• Must adjust the count on each pointer assignment
• Overhead is significant, relative to assignment
Code for assignment becomes

This adds 1 +, 1 -, 2 loads, & 2 stores

With extra functional units & large caches, this may become
either cheap or free. What about power consumption?

evaluate rhs
lhs®count ¬ lhs®count - 1
lhs ¬ addr(rhs)
rhs®count ¬ rhs®count + 1

Plus a check for zero
at the end

Garbage Collection

count

object

cs415, spring 22 Lecture 20 11

How does the compiler handle A[i,j] ?

First, must agree on a storage scheme
Row-major order (most languages)

Lay out as a sequence of consecutive rows
Rightmost subscript varies fastest
A[1,1], A[1,2], A[1,3], A[2,1], A[2,2], A[2,3]

Column-major order (Fortran)
Lay out as a sequence of columns
Leftmost subscript varies fastest
A[1,1], A[2,1], A[1,2], A[2,2], A[1,3], A[2,3]

Indirection vectors (Java)
Vector of pointers to pointers to … to values
Takes much more space, trades indirection for arithmetic
Not easily amenable to (locality) analysis

cs415, spring 22 Lecture 20 12

Laying Out Arrays

The Concept

Row-major order

Column-major order

Indirection vectors

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4A

1,1 2,1 1,2 2,2 1,3 2,3 1,4 2,4A

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
A

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
A

These have distinct
& different cache
behavior

cs415, spring 22 Lecture 20 13

Computing an Array Address

A[i]
• @A + (i – low) x sizeof(A[1])
• In general: base(A) + (i – low) x sizeof(A[1])

Declaration: A[low .. high] of …

cs415, spring 22 Lecture 20 14

Computing an Array Address

A[i]
• @A + (i – low) x sizeof(A[1])
• In general: base(A) + (i – low) x sizeof(A[1])

Almost always a power of
2, known at compile-time
Þ use a shift for speedint A[1:10] Þ low is 1

Make low 0 for faster
access (saves a –)

Declaration: A[low .. high] of …

cs415, spring 22 Lecture 20 15

Computing an Array Address

A[i]
• @A + (i – low) x sizeof(A[1])
• In general: base(A) + (i – low) x sizeof(A[1])

What about A[i1,i2] ?

Row-major order, two dimensions
@A + ((i1 – low1) x (high2 – low2 + 1) + i2 – low2) x sizeof(A[1])

Column-major order, two dimensions
@A + ((i2 – low2) x (high1 – low1 + 1) + i1 – low1) x sizeof(A[1])

Indirection vectors, two dimensions
*(A[i1])[i2] — where A[i1] is, itself, a 1-d array reference

This stuff looks expensive!
Lots of implicit +, -, x ops

Declaration: A[low1 .. high1, low2 .. high2] of …

cs415, spring 22 Lecture 20 16

where w = sizeof(A[1,1])

Optimizing Address Calculation for A[i,j]

In row-major order
@A + (i–low1) x (high2–low2+1) x w + (j – low2) x w

Which can be factored into
@A + i x (high2–low2+1) x w + j x w

– (low1 x (high2–low2+1) x w) + (low2 x w)
If lowi, highi, and w are known, the last term is a constant
Define @A0 as

@A – (low1 x (high2–low2+1) x w + low2 x w
And len2 as (high2-low2+1)

Then, the address expression becomes
@A0 + (i x len2 + j) x w

Compile-time constants

cs415, spring 22 Lecture 20 17

Control Flow

One possible approach for code generation:

Loops
• Evaluate condition before loop (if needed)
• Evaluate condition after loop
• Branch back to the top (if needed)
Merges test with last block of loop body

while, for, do, & until all fit this basic model

Pre-test

Loop body

Post-test

Next block

cs415, spring 22 Lecture 20 18

Loop Implementation Code

loadI 0 Þ r1
loadI 1 Þ r2
loadI 100 Þ r3
cmp_GT r3, r1 Þ r4
cbr r4 Þ L1, L2

L1: body
add r1, r2 Þ r1
cmp_LT r1, r3 Þ r5
cbr r5 Þ L1, L2

L2: next statement

for (i = 0; i< 100; i++) { body }
next statement

Pre-test

Post-test

Initialization

cs415, spring 22 Lecture 20 19

Break statements

Many modern programming languages include a break
• Exits from the innermost control-flow statement

® Out of the innermost loop
® Out of a case statement

Translates into a jump
• Targets statement outside control-

flow construct
• Creates multiple-exit construct
• skip in loop goes to next iteration

Pre-test

Loop head

Post-test

Next block

B 1 B 2Break
in B 1

Skip in
B 2

cs415, spring 22 Lecture 20 20

Control Flow

Case Statements
1 Evaluate the controlling expression
2 Branch to the selected case
3 Execute the code for that case
4 Branch to the statement after the case
Parts 1, 3, & 4 are well understood, part 2 is the key

cs415, spring 22 Lecture 20 21

Control Flow

Case Statements
1 Evaluate the controlling expression
2 Branch to the selected case
3 Execute the code for that case
4 Branch to the statement after the case (use break)
Parts 1, 3, & 4 are well understood, part 2 is the key

Strategies

• Linear search (nested if-then-else constructs)
• Build a table of case expressions & binary search it
• Directly compute an address (requires dense case set: jump table)

Surprisingly many
compilers do this
for all cases!

cs415, spring 22 Lecture 20 22

Boolean & Relational Values

How should the compiler represent them?
• Answer depends on the target machine

Two classic approaches
• Numerical representation
• Positional (implicit) representation
Correct choice depends on both context and ISA

cs415, spring 22 Lecture 20 23

Boolean & Relational Values

Numerical representation
• Assign values to TRUE and FALSE
• Use hardware AND, OR, and NOT operations
• Use comparison to get a boolean from a relational expression

Examples

cs415, spring 22 Lecture 20 24

Boolean & Relational Values

What if the ISA uses a condition code?
• Must use a conditional branch to interpret result of compare
• Necessitates branches in the evaluation

Example: // r2 should contain boolean value of “x<y” evaluation

This “positional representation” is much more complex

cs415, spring 22 Lecture 20 25

Boolean & Relational Values

The last example actually encodes result in the PC
If result is used to control an operation, this may be enough

Condition code version does not directly produce (x < y)

Boolean version does

Still, there is no significant difference in the code produced

if (x < y)
then a ¬ c + d

else a ¬ e + f

Example

cs415, spring 22 Lecture 20 26

Boolean & Relational Values

Conditional move & predication both simplify this code

Both versions avoid the branches
Both are shorter than CCs or Boolean-valued compare
Are they better? What about power?

if (x < y)
then a ¬ c + d

else a ¬ e + f

Example

cs415, spring 22 Lecture 20 27

Boolean & Relational Values

Consider the assignment x ¬ a < b Ù c < d (short circuiting?)

Here, the boolean compare produces much better code.

cs415, spring 22 Lecture 20 28

Work on the project!

Intermediate representations
Read EaC: Chapter 5

Procedure abstraction
Read EaC: Chapter 6.1 – 6.5

Things to do and next class

