
CS415 Compilers

Context-Sensitive Analysis
Part 3

These slides are based on slides copyrighted by
Keith Cooper, Ken Kennedy & Linda Torczon at Rice

University

cs415, spring 22 Lecture 19

Announcements

Roadmap for the remainder of the course

• Project #2 – Bottom-up parser and compiler
Due date Friday April 15
Project intro video (29 minutes) available on canvas: My Media

• Sample solution for Homework #4 has been posted

• Posted “old” lecture videos on type systems, code generation,
intermediate representations, and procedure abstractions to
help with studying this material (Canvas, My Media). Not a
replacement for attending lecture.

• Second midterm on Wednesday, April 6 (60 minutes in class)

• Final exam on May 10 , 1:00pm, (60 minutes in class)

2

cs415, spring 22 Lecture 19

Midterm #2

Topics
• Regular expressions
• NFA and DFA
• Regular expressions to minimal DFA construction
• CFG

® Derivations
® Parse trees
® Ambiguity

• LL(1) parsing
® FIRST and FOLLOW sets
® Parse tables
® Recursive descent parsers

• LR(0) parsing
® LR(0) items
® LR(0) canonical collection and its construction
® ACTION and GOTO tables
® Shift/reduce and reduce/reduce conflicts

3

cs415, spring 22 4

Types and Type Systems

Type: A set of values and meaningful operations on them

Types provide semantic “sanity checks” (consistency checks) and
determine efficient implementations for data objects

Types help identify
® errors, if an operator is applied to an incompatible operand

§ dereferencing of a non-pointer
§ adding a function to something
§ incorrect number of parameters to a procedure
§ …

® which operation to use for overloaded names and operators, or
what type coercion to use (e.g.: 3.0 + 1)

® identification of polymorphic functions

Lecture 19

cs415, spring 22 5

Types and Type Systems

Type system: Each language construct (operator, expression,
statement, …) is associated with a type expression. The type
system is a collection of rules for assigning type expressions
to these constructs.

Type expressions for
® basic types: integer, char, real, boolean, typeError
® constructed types, e.g., one-dimensional arrays:

array(lb, ub, elem_type) , where elem_type is a type expression

A type checker implements a type system. It computes or
“constructs” type expressions for each language construct.

Lecture 19

cs415, spring 22 6

Types and Type Systems

Example type inference rule:

E e1 : integer , E e2 : integer
E e1 + e2 : integer

where E is a type environment that maps constants and
variables to their type expressions.

Questions: How to specify rules that allow type coercion
(type widening) from integers to reals in arithmetic
expressions?

3.0 + 1 or 1 + 3.0

Lecture 19

cs415, spring 22 7

Types and Type Systems

Example type inference rule pointer dereferencing:

E e : ???
E *e : ???

where E is a type environment that maps constants and
variables to their type expressions.

Lecture 19

cs415, spring 22 8

Types and Type Systems

Example type inference rule pointer dereferencing:

E e : pointer(integer)
E *e : integer

where E is a type environment that maps constants and
variables to their type expressions.

pointer(…) is now part of the type expression language such
as array(…).

Lecture 19

cs415, spring 22 9

Types and Type Systems

Example type inference rule pointer dereferencing:

E e : pointer(β)
E *e : β

where E is a type environment that maps constants and
variables to their type expressions.

Type expressions may also contain type variables such as β. Type
variables can denote any type expression.

Type variables are needed to express polymorphic types.

Lecture 19

cs415, spring 22 10

Types and Type Systems

Example type inference rule address computation:

E e : ???
E &e : ???

where E is a type environment that maps constants and
variables to their type expressions.

What about a polymorphic version of this rule?

Lecture 19

cs415, spring 22 11

Types and Type Systems

Example type inference rule address computation:

E e : integer
E &e : pointer(integer)

where E is a type environment that maps constants and
variables to their type expressions.

What about a polymorphic version of this rule?

Lecture 19

cs415, spring 22 12

Types and Type Systems

Example type inference rule address computation:

E e : integer
E &e : pointer(integer)

where E is a type environment that maps constants and
variables to their type expressions.

What about a polymorphic version of this rule?

E e : β

E &e : pointer(β)

Lecture 19

cs415, spring 22 13

Types and Type Systems

Formal proof that a program can be typed correctly.

int a; E = { a: integer }
. . .
. . . *(&a) + 3 . . .

Lecture 19

cs415, spring 22 14

Types and Type Systems

Formal proof that a program can be typed correctly.

int a;
. . .
. . . *(&a) + 3 . . . E = { a: integer, 3: integer)

E |- a: integer

E |- (&a) : pointer (integer)

E |- *(&a): integer , E |- 3: integer

E |- *(&a) + 3 : integer

Lecture 19

cs415, spring 22 15

Type Names and Type Systems

Programmers may define their own types and give them names:

type my_int is int;
…

int a;
my_int b;
…
… a + b …

Type names can also be part of the type expression language.
Note: type names and type variables are different!

Lecture 19

cs415, spring 22 16

Type Equivalence

Structural -- type equivalence: type names are expanded
Name -- type equivalence: type names are not expanded

Example:
type A is array(1..10) of integer;
type B is array(1..10) of integer;
a : A;
b : B;

c, d: array(1..10) of integer;
e: array(1..10) of integer;

Answer: structural equivalence:
name equivalence:

Lecture 19

cs415, spring 22 17

Type Equivalence

Structural -- type equivalence: type names are expanded
Name -- type equivalence: type names are not expanded

Example:
type A is array(1..10) of integer;
type B is array(1..10) of integer;
a : A;
b : B;

c, d: array(1..10) of integer;
e: array(1..10) of integer;

Answer: structural equivalence: (a, b, c, d, e)
name equivalence: (a); (b); (c, d, e);

Lecture 19

cs415, spring 22 18

Syntax Directed Translation Scheme (SDT)

Revisit our type inference rule for “+”.

exp : exp ‘+’ exp { if ($1 == TYPE_INT && $3 == TYPE_INT)
$$ = TYPE_INT;

else {
$$ = TYPE_INT;
printf(“\n***Error: illegal operand types\n”);

} }

PROJECT HINT: The definition of type expression as C types (structs)
should be done in attr.h . attr.c may contain helper functions.
The assignment of type expression C types to terminals and
nonterminals of the grammar is done in parse.y.

Lecture 19

cs415, spring 22 19

Lexically-scoped Symbol Tables

The problem
• The compiler needs a distinct record for each declaration
• Nested lexical scopes admit duplicate declarations

The interface
• insert(name, level) – creates record for name at level
• lookup(name, level) – returns pointer or index
• delete(level) – removes all names declared at level

Many implementation schemes have been proposed (see § B.4)
• We’ll stay at the conceptual level
• Hash table implementation is tricky, detailed, & fun

Symbol tables are compile-time structures the compiler use to resolve references to names.
We’ll see the corresponding run-time structures that are used to establish addressability later.

§ 5.5 in EaC

Lecture 19

cs415, spring 22 20

Example

procedure p {
int a, b, c
procedure q {

int v, b, x, w
procedure r {

int x, y, z
….

}
procedure s {

int x, a, v
…

}
… r … s

}
… q …

}

B0: {
int a, b, c

B1: {
int v, b, x, w

B2: {
int x, y, z
….

}
B3: {

int x, a, v
…

}
…

}
…
}

Lecture 19

cs415, spring 22 21

Example

procedure p {
int a, b, c
procedure q {

int v, b, x, w
procedure r {

int x, y, z
….

}
procedure s {

int x, a, v
…

}
… r … s

}
… q …

}

B0: {
int a0, b1, c2

B1: {
int v3, b4, x5, w6

B2: {
int x7, y8, z9
….

}
B3: {

int x10, a11, v12
…

}
…

}
…
}

x, a, v
b, w

c a11, b4, c2,
v12, w6,, x10,
no y or z

Picturing it as a series of
Algol-like procedures

Lecture 19

cs415, spring 22

Lexically-scoped Symbol Tables

High-level idea
• Create a new table for each scope
• Chain them together for lookup

“Chain of tables” implementation
• insert() may need to create table
• it always inserts at current level
• lookup() walks chain of tables &

returns first occurrence of name
• delete() throws away table for level

p, if it is top table in the chain

Individual tables can be hash tables.

x

a

v

v

b
x
w

a

b

c

•

s

q

p ...

...

22Lecture 19

cs415, spring 22

Lexically-scoped Symbol Tables

High-level idea
• Create a new table for each scope
• Chain them together for lookup

Remember

If we add the subscripts, the
relationship between the code and
the table becomes clear

x

a

v

v

b
x
w

a

b

c

•

s

q

p ...

...

a11, b4, c2,
v12, w6,, x10,
no y or z

the names
visible in s

23Lecture 19

cs415, spring 22

Implementing Lexically Scoped Symbol Tables

Stack organization

a
b
c
v
b
x
w
x
a
v

growth

Implementation
• insert () creates new level

pointer if needed and inserts
at nextFree

• lookup () searches linearly
from nextFree–1 forward

• delete () sets nextFree to the
equal the start location of the
level deleted.

Advantage
• Uses much less space
Disadvantage
• Lookups can be expensive

p (level 0)

q (level 1)

s (level 2)

nextFree

24Lecture 19

cs415, spring 22

Stack organization

a
b
c
v
b
x
w
x
a
v

growth

Implementation
• insert () creates new level

pointer if needed and inserts
at nextFree

• lookup () searches linearly
from nextFree–1 down stack

• delete () sets nextFree to the
equal the start location of the
level deleted.

Advantage
• Uses much less space
Disadvantage
• Lookups can be expensive

p (level 0)

q (level 1)

s (level 2)

nextFree

a11, b4, c2,
v12, w6,, x10,
no y or z

12

11

10

6

5

4

3

2

1

0

Implementing Lexically Scoped Symbol Tables

25Lecture 19

cs415, spring 22

Threaded stack organization

Implementation
• insert () puts new entry at the

head of the list for the name
• lookup () goes direct to location
• delete () processes each element

in level being deleted to remove
from head of list

Advantage
• lookup is fast
Disadvantage
• delete takes time proportional to

number of declared variables in
level

•

•

•

•

•

h(x)

b
c

b
x
w
x

growth

p

q

s

•

a

a

v

v

Implementing Lexically Scoped Symbol Tables

26Lecture 19

cs415, spring 22

Threaded stack organization

Implementation
• insert () puts new entry at the

head of the list for the name
• lookup () goes direct to location
• delete () processes each element

in level being deleted to remove
from head of list

Advantage
• lookup is fast

Disadvantage
• delete takes time proportional to

number of declared variables in
level

•

•

•

•

•

h(x)

b
c

b
x
w
x

growth

p

q

s

12

11

10

6

5

4

3

2

1

0•

a

a

v

v

a11, b4, c2,
v12, w6,, x10,
no y or z

Implementing Lexically Scoped Symbol Tables

27Lecture 19

cs415, spring 22 Lecture 19 28

Work on the project!

Code generation
Read EaC: Chapter 5

Intermediate representations
Read EaC: Chapter 5

Things to do and next class

