
CS415 Compilers

Context-Sensitive Analysis
Part 2

These slides are based on slides copyrighted by
Keith Cooper, Ken Kennedy & Linda Torczon at Rice

University

cs415, spring 22 Lecture 18

Announcements

Roadmap for the remainder of the course

• Fourth homework:
Due Friday, April 1

• Project #2 – Bottom-up parser and compiler
Has been posted; due date Friday April 15
Project intro video (29 minutes) available on canvas: My Media

• Sample solution for Homework #3 has been posted

• Second midterm on Wednesday, April 6 (60 minutes in class)

• Final exam on May 10 (60 minutes at assigned location)

2

cs415, spring 22 Lecture 18

Midterm #2

Topics
• Regular expressions
• NFA and DFA
• Regular expressions to minimal DFA construction
• CFG

® Derivations
® Parse trees
® Ambiguity

• LL(1) parsing
® FIRST and FOLLOW sets
® Parse tables
® Recursive descent parsers

• LR(0) parsing
® LR(0) items
® LR(0) canonical collection and its construction
® ACTION and GOTO tables
® Shift/reduce and reduce/reduce conflicts

3

cs415, spring 22 Lecture 18 4

Attribute Grammars

Add rules to compute the decimal value of a signed binary number

Productions Attribution Rules
Number ® Sign List List.pos ¬ 0

If Sign.neg
 then Number.val ¬ – List.val
 else Number.val ¬ List.val

Sign ® + Sign.neg ¬ false
 | – Sign.neg ¬ true
List0 ® List1 Bit List1.pos ¬ List0.pos + 1

Bit.pos ¬ List0.pos
List0.val ¬ List1.val + Bit.val

 | Bit Bit.pos ¬ List.pos
List.val ¬ Bit.val

Bit ® 0 Bit.val ¬ 0
 | 1 Bit.val ¬ 2Bit.pos

cs415, spring 22 Lecture 18 5

Attribute Grammars

Productions Attribution Rules
List0 ® List1 Bit List1.pos ¬ List0.pos + 1

Bit.pos ¬ List0.pos
List0.val ¬ List1.val + Bit.val

pos

val

pos

val

pos

val

LIST0

LIST1

BIT

• semantic rules define partial dependency graph
• value flow top down or across: inherited attributes
• value flow bottom-up: synthesized attributes

LOCAL INFORMATION
FLOW

cs415, spring 22 Lecture 18 6

Example revisited

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

& then peel away the parse tree ...

If we show the computation ...

compute the decimal value of a signed binary number

cs415, spring 22 Lecture 18 7

Example revisited

–

1

0

1

pos:
val:

pos:
val:

pos:
val:

pos:
val:

pos:
val:

pos: 0
val:

val:

neg:

For “–101”

All that is left is the attribute
dependence graph.

This succinctly represents the
flow of values in the problem
instance.

The dependence graph must be acyclic

compute the decimal value of a signed binary number

cs415, spring 22 Lecture 18 8

Example revisited

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

All that is left is the attribute
dependence graph.

This succinctly represents the
flow of values in the problem
instance.

The dynamic methods
topologically sort this graph,
then evaluates edges/nodes in
that order

The rule-based methods try to
discover “good” orders by
analyzing the rules.

The oblivious methods ignore
the structure of this graph.

The dependence graph must be acyclic

compute the decimal value of a signed binary number

cs415, spring 22 Lecture 18 9

Using Attribute Grammars

Attribute grammars can specify context-sensitive actions
• Take values from syntax
• Perform computations with values
• Insert tests, logic, …

Synthesized Attributes

• Use values from children
& from constants

• S-attributed grammars:
synthesized attributes only

• Evaluate in a single
bottom-up pass

Good match to LR parsing

Inherited Attributes

• Use values from parent,
constants, & siblings

• L-attributed grammars:

A ® X1 X2 … Xn and each
inherited attribute of Xi

depends on
- attributes of X1 X2 … Xi-1 , and
- inherited attributes of A

• Evaluate in a single top-down
pass (left to right)

Good match for LL parsing

S-attributed Ì L-attributed

cs415, spring 22 Lecture 18 10

Attribute Grammars

• Non-local computation needed lots of supporting rules
• “Complex” local computation is relatively easy

The Problems
• Copy rules increase cognitive overhead
• Copy rules increase space requirements

® Need copies of attributes
• Result is an attributed tree

® Must build the parse tree
® Either search tree for answers or copy them to the root

cs415, spring 22 Lecture 18 11

Addressing the Problem

What would a good programmer do?

• Introduce a central repository for facts
• Table of names

® Fields in table keep information for names
• Avoids all the copy rules, allocation & storage headaches
• All inter-assignment attribute flow is through table

® Clean, efficient implementation
® Good techniques for implementing the table (hashing,§ B.4)
® When its done, information is in the table !
® Cures most of the problems

• Unfortunately, this design violates the functional, AG
paradigm
® Do we care?

cs415, spring 22 Lecture 18 12

The Realist’s Alternative

Ad-hoc syntax-directed translation
• Associate pieces of code with each production
• At each reduction, the corresponding code is executed
• Allowing arbitrary code provides complete flexibility

® Includes ability to do tasteless & bad things

To make this work
• Need names for attributes of each symbol on lhs & rhs

® Typically, one attribute passed through parser + arbitrary code
(structures, globals, …)

® Yacc introduced $$, $1, $2, … $n, left to right
• Need an evaluation scheme

® Fits nicely into LR(1) parsing algorithm

cs415, spring 22 Lecture 18 13

Project #2 (see “lex & yacc”, Levine et al., O’Reilly)

® You do not have to change the scanner (scan.l)

® How to specify and use attributes in YACC?

§ Define attributes as types in attr.h

typedef struct info_node {int a; int b} infonode;
§ Include type attribute name in %union in parse.y

%union {tokentype token; infonode myinfo; … }
§ Assign attributes in parse.y to

– Terminals: %token <token> ID ICONST
– Non-terminals: %type <myinfo> block variables procdecls cmpdstmt

cs415, spring 22 Lecture 18 14

YACC : parse.y

%{
#include <stdio.h>
#include "attr.h"
int yylex();
void yyerror(char * s);
#include "symtab.h"
%}

%union {tokentype token;
regInfo targetReg;
}

%token PROG PERIOD VAR
%token INT BOOL PRT THEN IF DO FI ENDWHILE ENDFOR
%token ARRAY OF
%token BEG END ASG
%token EQ NEQ LT LEQ GT GEQ AND OR TRUE FALSE
%token WHILE FOR ELSE
%token <token> ID ICONST

%type <targetReg> exp
%type <targetReg> lhs

%start program

%nonassoc EQ NEQ LT LEQ GT GEQ
%left '+' '-' AND
%left '*' OR

%nonassoc THEN
%nonassoc ELSE

parse.y :

List and assign
attributes

Disambiguation rules

typedef union {int num; char *str;} tokentype;

typedef enum type_expression {TYPE_INT=0,

TYPE_BOOL, TYPE_ERROR} Type_Expression;

typedef struct {

Type_Expression type;
int targetRegister;

} regInfo;

attr.h :

cs415, spring 22 Lecture 18 15

Project #2 (see “lex & yacc”, Levine et al., O’Reilly)

At each reduction, the corresponding code is executed.

® Accessing attribute values in parse.y
– use $$, $1, $2 … etc. notation:

block : variables procdecls {$2.b = $1.b + 1;} cmpdstmt
{ $$.a = $1.a + $2.a + $4.b;}

– Implemented as
block : variables procdecls newsymbol cmpdstmt

{ $$.a = $1.a + $2.a + $4.b;}
newsymbol: ⍷ {$2.b = $1.b + 1;}

cs415, spring 22 Lecture 18 16

YACC : parse.y

%%

program : {emitComment("Assign STATIC_AREA_ADDRESS to register \"r0\"");
emit(NOLABEL, LOADI, STATIC_AREA_ADDRESS, 0, EMPTY);}

PROG ID ';' block PERIOD { }
;

block: variables cmpdstmt { }
;

variables: /* empty */
| VAR vardcls { }

;

vardcls: vardcls vardcl ';' { }
| vardcl ';' { }
| error ';' { yyerror("***Error: illegal variable declaration\n");}

;

. . .

exp : exp '+' exp {

int newReg = NextRegister();
if (!(($1.type == TYPE_INT) && ($3.type == TYPE_INT))) {

printf("*** ERROR ***: Operator types must be integer.\n");}
$$.type = $1.type;
$$.targetRegister = newReg;

emit(NOLABEL, ADD, $1.targetRegister, $3.targetRegister, newReg);

. . .

parse.y :

CFG rules with
embedded
actions

cs415, spring 22 Lecture 18 17

Summary: Is This Really “Ad-hoc” ?

Example on ilab: ~uli/cs415/examples/LexYacc

Relationship between practice and attribute grammars

Similarities
• Both rules & actions associated with productions
• Application order determined by tools
• (Somewhat) abstract names for symbols

Differences
• Actions applied as a unit; not true for AG rules
• Anything goes in ad-hoc actions; AG rules are (purely) functional
• AG rules are higher level than ad-hoc actions

cs415, spring 22 18

Types and Type Systems

Type: A set of values and meaningful operations on them

Types provide semantic “sanity checks” (consistency checks) and
determine efficient implementations for data objects

Types help identify
® errors, if an operator is applied to an incompatible operand

§ dereferencing of a non-pointer
§ adding a function to something
§ incorrect number of parameters to a procedure
§ …

® which operation to use for overloaded names and operators, or
what type coercion to use (e.g.: 3.0 + 1)

® identification of polymorphic functions

Lecture 18

cs415, spring 22 19

Types and Type Systems

Type system: Each language construct (operator, expression,
statement, …) is associated with a type expression. The type
system is a collection of rules for assigning type expressions
to these constructs.

Type expressions for
® basic types: integer, char, real, boolean, typeError
® constructed types, e.g., one-dimensional arrays:

array(lb, ub, elem_type) , where elem_type is a type expression

A type checker implements a type system. It computes or
“constructs” type expressions for each language construct.

Lecture 18

cs415, spring 22 20

Types and Type Systems

Example type inference rule:

E e1 : integer , E e2 : integer
E e1 + e2 : integer

where E is a type environment that maps constants and
variables to their type expressions.

Questions: How to specify rules that allow type coercion
(type widening) from integers to reals in arithmetic
expressions?

3.0 + 1 or 1 + 3.0

Lecture 18

cs415, spring 22 Lecture 18 21

Work on the project!

Type systems

Code generation (EaC Chapter 7)

Optimization: CSE

Things to do and next class

