
CS415 Compilers

Syntax Analysis
Part 6

and
Context-Sensitive Analysis

These slides are based on slides copyrighted by
Keith Cooper, Ken Kennedy & Linda Torczon at Rice

University

cs415, spring 22 Lecture 17

Announcements

Roadmap for the remainder of the course

• Fourth homework:
Due Friday, April 1

• Project #2 – Bottom-up parser and compiler
Has been posted; due date Friday April 15

• Project #3 – Peephole optimizer for ILOC
Will be posted April 15, due May 2 (tentative)

• Second midterm on Wednesday, April 6 (60 minutes in class)

• Final exam on May 10 (60 minutes at assigned location)

• At least 3 more homeworks

2

cs415, spring 22

Bottom-up Parsing
(Syntax Analysis)

EAC Chapters 3.4

cs415, spring 22 Lecture 17 4

YACC : parse.y (preview project #2)

%{
#include <stdio.h>
#include "attr.h"
int yylex();
void yyerror(char * s);
#include "symtab.h"
%}

%union {tokentype token; }

%token PROG PERIOD PROC VAR ARRAY RANGE OF
%token INT REAL DOUBLE WRITELN THEN ELSE IF
%token BEG END ASG NOT
%token EQ NEQ LT LEQ GEQ GT OR EXOR AND DIV NOT
%token ID CCONST ICONST RCONST

%start program

%%
program : PROG ID ';' block PERIOD

;
block : BEG ID ASG ICONST END

;

%%

void yyerror(char* s) {
fprintf(stderr,"%s\n",s);
}

int
main() {

printf("1\t");
yyparse();
return 1;
}

parse.y : Will be included verbatim
in parse.tab.c

CFG rules

Main program and “helper”
functions; may contain
initialization code of global
structures. Will be included
verbatim in parse.tab.c

List of tokens

cs415, spring 22 Lecture 17 5

Error Recovery in Shift-Reduce Parsers

The problem: parser encounters an invalid token
Goal: Want to parse the rest of the file

Basic idea (panic mode):
® Assume something went wrong while trying to find handle for

nonterminal A
® Pretend handle for A has been found; pop “handle”, skip over

input to find terminal that can follow A
Restarting the parser (panic mode):

® find a restartable state on the stack (has transition for
nonterminal A)

® move to a consistent place in the input (token that can follow A)
® perform (error) reduction (for nonterminal A)
® print an informative message

cs415, spring 22 Lecture 17 6

Error Recovery in YACC

Yacc’s (bison’s) error mechanism (note: version dependent!)
• designated token error
• used in error productions of the form

A ® error a // basic case
• a specifies synchronization points

When error is discovered
• pops stack until it finds state where it can shift the error token
• resumes parsing to match a

special cases:
® a = w, where w is string of terminals: skip input until w has been read
® a = e : skip input until state transition on input token is defined

• error productions can have actions

cs415, spring 22 Lecture 17 7

Error Recovery in YACC

cmpdstmt: BEG stmt_list END
stmt_list : stmt

| stmt_list ‘;’ stmt
| error { yyerror(“\n***Error: illegal statement\n”);}

This should
• throw out the erroneous statement
• synchronize at “;” or “end” (implicit: a = e)
• writes message “***Error: illegal statement” to stderr

Example: begin a & 5 | hello ; a := 3 end
­ ­ resume parsing

***Error: illegal statement

cs415, spring 22

Context-Sensitive
Analysis

EaC Chapter 4
ALSU Chapter 5

cs415, spring 22 Lecture 17 9

Beyond Syntax

There is a level of correctness that is deeper than grammar

To generate code, we need to understand its meaning !

fie(a,b,c,d)
int a, b, c, d;

{ … }

fee() {
int f[3],g[1],

h, i, j, k;
char *p;

fie(h,i,“ab”,j, k);
k = f * i + j;
h = g[17];
printf(“<%s,%s>.\n”,

p, q);
p = 10;

}

What is wrong with this program?
(let me count the ways …)

• declared g[1], used g[17]

• wrong number of args to fie()

• “ab” is not an int

• wrong dimension on use of f

• undeclared variable q

• 10 is not a character string

All of these are

“deeper than syntax”

cs415, spring 22 Lecture 17 10

Beyond Syntax

These questions are part of context-sensitive analysis
• Answers depend on “values”, i.e., something that needs

computation; not parts of speech
• Questions & answers involve non-local information

How can we answer these questions?
• Use formal methods

® Context-sensitive grammars
® Attribute grammars (attributed grammars)

• Use ad-hoc techniques
® Symbol tables
® Ad-hoc code (action routines)

In scanning & parsing, formalism won; somewhat different story
here.

cs415, spring 22 Lecture 17 11

Beyond Syntax

Telling the story
• The attribute grammar formalism is important

® Succinctly makes many points clear
® Sets the stage for actual, ad-hoc practice (e.g.: yacc/bison)

• The problems with attribute grammars motivate practice
® Non-local computation
® Need for centralized information

We will cover attribute grammars, then move on to ad-hoc ideas
(syntax-directed translation schemes)

cs415, spring 22 Lecture 17 12

Attribute Grammars (AGs)

What is an attribute grammar?
• Each symbol in the derivation (instance of a token or non-

terminal) may have a value, or attribute;
• A context-free grammar augmented with a set of rules
• The rules specify how to compute a value for each attribute

Example grammar

This grammar describes
signed binary numbers

We would like to augment it
with rules that compute the
decimal value of each valid
input string

cs415, spring 22 Lecture 17 13

Example parse tree

Number

Sign List

BitList

BitList

Bit

–

1

0

1 For “–101”

compute the decimal value of a signed binary number

cs415, spring 22 Lecture 17 14

Example parse tree

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos:
val:

pos:
val:

pos:
val:

pos:
val:

pos:
val:

pos: 0
val:

val:

neg:

For “–101”

compute the decimal value of a signed binary number

cs415, spring 22 Lecture 17 15

Example parse tree

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val:

pos: 0
val:

pos: 2
val:

pos: 2
val:

pos: 1
val:

pos: 0
val:

val:

neg:

For “–101”

Inherited Attributes

compute the decimal value of a signed binary number

cs415, spring 22 Lecture 17 16

Example parse tree

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val:

pos: 1
val:

pos: 0
val:

val:

neg: true

For “–101”

Synthesized attributes

compute the decimal value of a signed binary number

cs415, spring 22 Lecture 17 17

Example parse tree

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

Synthesized attributes

compute the decimal value of a signed binary number

cs415, spring 22 Lecture 17 18

Attribute Grammars

Add rules to compute the decimal value of a signed binary number

Productions Attribution Rules
Number ® Sign List List.pos ¬ 0

If Sign.neg
 then Number.val ¬ – List.val
 else Number.val ¬ List.val

Sign ® + Sign.neg ¬ false
 | – Sign.neg ¬ true
List0 ® List1 Bit List1.pos ¬ List0.pos + 1

Bit.pos ¬ List0.pos
List0.val ¬ List1.val + Bit.val

 | Bit Bit.pos ¬ List.pos
List.val ¬ Bit.val

Bit ® 0 Bit.val ¬ 0
 | 1 Bit.val ¬ 2Bit.pos

cs415, spring 22 Lecture 17 19

Attribute Grammars

Productions Attribution Rules
List0 ® List1 Bit List1.pos ¬ List0.pos + 1

Bit.pos ¬ List0.pos
List0.val ¬ List1.val + Bit.val

pos

val

pos

val

pos

val

LIST0

LIST1

BIT

• semantic rules define partial dependency graph
• value flow top down or across: inherited attributes
• value flow bottom-up: synthesized attributes

cs415, spring 22 Lecture 17 20

Attribute Grammars

pos

val

pos

val

pos

val

LIST0

LIST1

BIT

• semantic rules associated with production A ® a have to specify
the values for all

- synthesized attributes for A (root)
- inherited attributes for grammar symbols in a (children)

Þ rules must specify local value flow!

• terminals can be associated with values returned by the scanner.
These input values are associated with a synthesized attribute.

• Starting symbol cannot have inherited attributes.

Note:

cs415, spring 22 Lecture 17 21

Example revisited

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

& then peel away the parse tree ...

If we show the computation ...

compute the decimal value of a signed binary number

cs415, spring 22 Lecture 17 22

Example revisited

–

1

0

1

pos:
val:

pos:
val:

pos:
val:

pos:
val:

pos:
val:

pos: 0
val:

val:

neg:

For “–101”

All that is left is the attribute
dependence graph.

This succinctly represents the
flow of values in the problem
instance.

The dependence graph must be acyclic

compute the decimal value of a signed binary number

cs415, spring 22 Lecture 17 23

Example revisited

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

All that is left is the attribute
dependence graph.

This succinctly represents the
flow of values in the problem
instance.

The dynamic methods
topologically sort this graph,
then evaluates edges/nodes in
that order

The rule-based methods try to
discover “good” orders by
analyzing the rules.

The oblivious methods ignore
the structure of this graph.

The dependence graph must be acyclic

compute the decimal value of a signed binary number

cs415, spring 22 Lecture 17 24

Using Attribute Grammars

Attribute grammars can specify context-sensitive actions
• Take values from syntax
• Perform computations with values
• Insert tests, logic, …

Synthesized Attributes

• Use values from children
& from constants

• S-attributed grammars:
synthesized attributes only

• Evaluate in a single
bottom-up pass

Good match to LR parsing

Inherited Attributes

• Use values from parent,
constants, & siblings

• L-attributed grammars:

A ® X1 X2 … Xn and each
inherited attribute of Xi

depends on
- attributes of X1 X2 … Xi-1 , and
- inherited attributes of A

• Evaluate in a single top-down
pass (left to right)

Good match for LL parsing

S-attributed Ì L-attributed

cs415, spring 22 Lecture 17 25

More syntax-directed translation

Type checking

Symbol tables

Intermediate representations

Read EaC: Chapters 5.1 – 5.3

Next class

