
CS415 Compilers

Syntax Analysis
Part 5

These slides are based on slides copyrighted by
Keith Cooper, Ken Kennedy & Linda Torczon at Rice

University

cs415, spring 22 Lecture 16

Announcements

Roadmap for the remainder of the course

• Fourth homework:
Due Monday, March 28

• Project #2 – Bottom-up parser and compiler
Will be posted next week, due April 13 (tentative)

• Project #3 – Peephole optimizer for ILOC
Will be posted April 13, due May 2 (tentative)

• Second midterm on Wednesday, April 6 (60 minutes in class)

• Final exam on May 10 (60 minutes at assigned location)

• At least 3 more homeworks

2

cs415, spring 22

Bottom-up Parsing
(Syntax Analysis)

EAC Chapters 3.4

cs415, spring 22 Lecture 16

LR(1) Skeleton Parser

stack.push(INVALID); stack.push(s0);
not_found = true;
token = scanner.next_token();
do while (not_found) {

s = stack.top();
if (ACTION[s,token] == “reduce A®b”) then {

stack.popnum(2*|b|); // pop 2*|b| symbols
s = stack.top();
stack.push(A);
stack.push(GOTO[s,A]);
}
else if (ACTION[s,token] == “shift si”) then {

stack.push(token); stack.push(si);
token ¬ scanner.next_token();

}
else if (ACTION[s,token] == “accept”

& token == EOF)
then not_found = false;

else report a syntax error and recover;
}
report success;

The skeleton parser
• uses ACTION & GOTO

tables
• does |words| shifts

• does |derivation|
reductions

• does 1 accept

4

cs415, spring 22 Lecture 16 5

Building LR(1) Parsers

How do we generate the ACTION and GOTO tables?
• Use the grammar to build a model of the DFA
• Use the model to build ACTION & GOTO tables
• If construction succeeds, the grammar is LR(1)

The Big Picture
• Model the state of the parser
• Use two functions goto(s, X) and closure(s)

® goto() is analogous to move() in the subset construction
® closure() adds information to round out a state

• Build up the states and transition functions of the DFA
• Use this information to fill in the ACTION and GOTO tables

Terminal or
non-terminal

cs415, spring 22 Lecture 16 6

LR(k) items

The LR(1) table construction algorithm uses LR(1) items to
represent valid configurations of an LR(1) parser

An LR(k) item is a pair [P, d], where
P is a production A®b with a • at some position in the rhs
d is a lookahead string of length ≤ k (words or EOF)

The • in an item indicates the position of the top of the stack

LR(1):
[A®•bg,a] means that the input seen so far is consistent with the use

of A ®bg immediately after the symbol on top of the stack
[A ®b•g,a] means that the input seen so far is consistent with the use

of A ®bg at this point in the parse, and that the parser has already
recognized b.

[A ®bg•,a] means that the parser has seen bg, and that a lookahead
symbol of a is consistent with reducing to A.

cs415, spring 22 Lecture 16 7

LR(1) Items

The production A®b, where b = B1B1B1 with lookahead a,
can give rise to 4 items

[A®•B1B2B3,a], [A®B1•B2B3,a], [A®B1B2•B3,a], & [A®B1B2B3•,a]

The set of LR(1) items for a grammar is finite

What’s the point of all these lookahead symbols?
• Carry them along to choose the correct reduction, if there is a

choice
• Lookaheads are bookkeeping, unless item has • at the right end

® Has no direct use in [A®b•g,a]
® In [A®b•,a], a lookahead of a implies a reduction by A ®b
® For { [A®b•,a],[B®g•c,b] }, a Þ reduce to A; c Þ shift

Þ Limited right context is enough to pick the actions (unique, i.e.,
deterministic choice)

cs415, spring 22 Lecture 16 8

High-level overview
1 Build the canonical collection of sets of LR(1) Items, I

a Begin in an appropriate state, s0
¨ Assume: S’ ®S, and S’ is unique start symbol that does not

occur on any RHS of a production (extended CFG - ECFG)
¨ [S’ ®•S,EOF], along with any equivalent items
¨ Derive equivalent items as closure(s0)

b Repeatedly compute, for each sk, and each X, goto(sk,X)
¨ If the set is not already in the collection, add it
¨ Record all the transitions created by goto()

This eventually reaches a fixed point

2 Fill in the table from the collection of sets of LR(1) items
The canonical collection completely encodes the
transition diagram for the handle-finding DFA

LR(1) Table Construction

cs415, spring 22 Lecture 16 9

Computing Closures

Closure(s) adds all the items implied by items already in s
• Any item [A®b•B d,a] implies [B®•t,x] for each production

with B on the lhs, and each x Î FIRST(da)

The algorithm

Closure(s)
while (s is still changing)
" items [A ® b •Bd,a] Î s
" productions B ® t Î P
" b Î FIRST(da) // d might be e

if [B ® • t,b] Ï s
then add [B® • t,b] to s

Ø Classic fixed-point method
Ø Halts because s Ì ITEMS

Closure “fills out” a state

cs415, spring 22 Lecture 16 10

Computing Gotos

Goto(s,x) computes the state that the parser would reach
if it recognized an X while in state s
• Goto({ [A®b•X d,a] }, X) produces [A®bX•d,a] (easy part)
• Should also includes closure([A®bX•d,a]) (fill out the state)

The algorithm

Goto(s, X)
new ¬Ø
" items [A®b•Xd,a] Î s

new ¬ new È [A®bX•d,a]
return closure(new)

Ø Not a fixed-point method!
Ø Straightforward computation
Ø Uses closure ()

Goto() moves forward

cs415, spring 22 Lecture 16 11

Building the Canonical Collection

Start from s0 = closure([S’®S, EOF])
Repeatedly construct new states, until all are found

The algorithm
cc0 ¬ closure ([S’® •S, EOF])
CC ¬ { cc0 }
while (new sets are still being added to CC)

for each unmarked set ccj Î CC
mark ccj as processed
for each x following a • in an item in ccj

temp ¬ goto(ccj, x)
if temp Ï CC

then CC ¬ CC È { temp }
record transitions from ccj to temp on x

Ø Fixed-point
computation
(worklist version)

Ø Loop adds to CC
Ø CC Í 2ITEMS,

so CC is finite

cs415, spring 22 Lecture 16 12

Another Example (grammar & sets)

Simplified, right recursive expression grammar

1: Goal ® Expr
2: Expr ® Term – Expr
3: Expr ® Term
4: Term ® Factor * Term
5: Term ® Factor
6: Factor ® ident

cs415, spring 22 Lecture 16 13

Another Example (grammar & sets)

1: Goal ® Expr
2: Expr ® Term – Expr
3: Expr ® Term
4: Term ® Factor * Term
5: Term ® Factor
6: Factor ® ident

s0 ¬ closure([Goal ® • Expr , EOF]) =
{ [Goal ® • Expr , EOF], [Expr ® • Term – Expr , EOF],

[Expr ® • Term , EOF], [Term ® • Factor * Term , EOF],
[Term ® • Factor * Term , –], [Term ® • Factor , EOF],
[Term ® • Factor , –], [Factor ® • ident , EOF],
[Factor ® • ident , –], [Factor ® • ident , *] }

cs415, spring 22 Lecture 16 14

Example (building the collection)

Iteration 1
s1 ¬ goto(s0 , Expr)
s2 ¬ goto(s0 , Term)
s3 ¬ goto(s0 , Factor)
s4 ¬ goto(s0 , ident)

Iteration 2
s5 ¬ goto(s2 , –)
s6 ¬ goto(s3 , *)

Iteration 3
s7 ¬ goto(s5 , Expr)
s8 ¬ goto(s6 , Term)

cs415, spring 22 Lecture 16 15

Example (Summary)

S0 : { [Goal ® • Expr , EOF], [Expr ® • Term – Expr , EOF],
[Expr ® • Term , EOF], [Term ® • Factor * Term , EOF],
[Term ® • Factor * Term , –], [Term ® • Factor , EOF],
[Term ® • Factor , –], [Factor ® • ident , EOF],
[Factor ® • ident , –], [Factor® • ident, *] }

S1 : { [Goal ® Expr •, EOF] }

S2 : { [Expr ® Term • – Expr , EOF], [Expr ® Term •, EOF] }

S3 : { [Term ® Factor • * Term , EOF],[Term ® Factor • * Term , –],
[Term ® Factor •, EOF], [Term ® Factor •, –] }

S4 : { [Factor ® ident •, EOF],[Factor ® ident •, –], [Factor ® ident •, *] }

S5 : { [Expr ® Term – • Expr , EOF], [Expr ® • Term – Expr , EOF],
[Expr ® • Term , EOF], [Term ® • Factor * Term , –],
[Term ® • Factor , –], [Term ® • Factor * Term , EOF],
[Term ® • Factor , EOF], [Factor ® • ident , *],
[Factor ® • ident , –], [Factor ® • ident , EOF] }

cs415, spring 22 Lecture 16 16

Example (Summary)

S6 : { [Term ® Factor * • Term , EOF], [Term ® Factor * • Term , –],
[Term ® • Factor * Term , EOF], [Term ® • Factor * Term , –],
[Term ® • Factor , EOF], [Term ® • Factor , –],
[Factor ® • ident , EOF], [Factor ® • ident , –], [Factor ® • ident , *] }

S7: { [Expr ® Term – Expr •, EOF] }

S8 : { [Term ® Factor * Term •, EOF], [Term ® Factor * Term •, –] }

cs415, spring 22 Lecture 16 17

Example (Summary)

The Goto Relationship (from the construction)

State Expr Term Factor - * ident

0 1 2 3 4

1

2 5

3 6
4

5 7 2 3 4

6 8 3 4

7
8

cs415, spring 22 Lecture 16 18

Example (DFA)

s0 s4 s5

s1 s2 s7

s6 s3

s8

ident

term

factor

-

term

expr
ident

factor

expr

*

factor
term

cs415, spring 22 Lecture 16 19

Filling in the ACTION and GOTO Tables

The algorithm

" set sx Î S
" item i Î sx

if i is [A®b •ad,b] and goto(sx,a) = sk, a Î T
then ACTION[x,a] ¬ “shift k”

else if i is [S’®S •,EOF]
then ACTION[x , EOF] ¬ “accept”

else if i is [A®b •,a]
then ACTION[x,a] ¬ “reduce A®b”

" n Î NT
if goto(sx ,n) = sk

then GOTO[x,n] ¬ k

x is the number of the state for sx

Many items
generate no
table entry

e.g., [A®b×Ba,a]
does not, but
closure ensures
that all the rhs’
for B are in sx

cs415, spring 22 Lecture 16 20

Example (Filling in the tables)

The algorithm produces the following table

 ACTION GOTO
 ident - * EOF Expr Term Factor

0 s 4 1 2 3
1 acc
2 s 5 r 3
3 r 5 s 6 r 5
4 r 6 r 6 r 6
5 s 4 7 2 3
6 s 4 8 3
7 r 2
8 r 4 r 4

 Plugs into the skeleton LR(1) parser

cs415, spring 22 Lecture 16 21

What can go wrong?

What if set s contains [A®b•ag,b] and [B®b•,a] ?
• First item generates “shift”, second generates “reduce”
• Both define ACTION[s,a] — cannot do both actions
• This is a fundamental ambiguity, called a shift/reduce error
• Modify the grammar to eliminate it (if-then-else)
• Shifting will often resolve it correctly

What is set s contains [A®g’•, a] and [B®g•, a] ?
• Each generates “reduce”, but with a different production
• Both define ACTION[s,a] — cannot do both reductions
• This fundamental ambiguity is called a reduce/reduce error
• Modify the grammar to eliminate it

In either case, the grammar is not LR(1)

EaC includes a
worked example

cs415, spring 22 Lecture 16 22

Computing Closures – LR(0) items

Closure(s) adds all the items implied by items already in s
• Any item [A®b•Bd] implies [B®•t] for each production

with B on the lhs

The algorithm

Closure(s)
while (s is still changing)
" items [A ® b •Bd] Î s
" productions B ® t Î P

if [B ® • t] Ï s
then add [B® • t] to s

Ø Classic fixed-point method
Ø Halts because s Ì ITEMS

Closure “fills out” a state

cs415, spring 22 Lecture 16 23

Context-Sensitive Analysis

Next class

