RUTGERS

CS5415 Compilers

Syntax Analysis
Part 5




RUTGERS Announcements

Roadmap for the remainder of the course

* Fourth homework:
Due Monday, March 28

* Project #2 - Bottom-up parser and compiler
Will be posted next week, due April 13 (tentative)

* Project #3 - Peephole optimizer for ILOC
Will be posted April 13, due May 2 (tentative)

e Second midterm on Wednesday, April 6 (60 minutes in class)
 Final exam on May 10 (60 minutes at assigned location)

e At least 3 more homeworks
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Bottom-up Parsing
(Syntax Analysis)

EAC Chapters 3.4
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RUTGERS  LR(1) Skeleton Parser

stack.push(INVALID); stack.push(sy);
not_found = true;
token = scanner.next_token();

do while (not_found) {

s = stack.top(): The skeleton parser
if ( ACTION[s,token] == "reduce A—B" ) then{

stack.popnum(2*|B); // pop 2%|B| symbols * uses ACTION & GOTO
s = stack.top(); tables
stack.push(A); ,
stack.push(60TO[s,A); * does |words| shifts

else if ( ACTION[s token] == "sh/ft 5! ) then { ' d°§5 | derivation|
stack push(token); stack push(s): reauctions
token « scanner.next_token(); * does 1 accept

}
else if ( ACTION[s,token] == "accep?"
& token == EOF )
then not_found = false;

else report a syntax error and recover;

}

report success;
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RUTGERS  Building LR(1) Parsers

How do we generate the ACTION and GOTO tables?
* Use the grammar to build a model of the DFA

* Use the model to build ACTION & GOTO tables

* TIf construction succeeds, the grammar is LR(1)

The Big Picture

* Model the state of the parser

* Use two functions goto('s, X ) and closure(s )
— goto()is analogous to move() in the subset construction
— closure() adds information to round out a state

Terminal or
non-terminal

* Build up the states and transition functions of the DFA
* Use this information to fill in the ACTION and GOTO tables
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RUTGERS  Lr(4 items

The LR(1) table construction algorithm uses LR(1) items to
represent valid configurations of an LR(1) parser

An LR(k) item is a pair [P, 5], where
Pis a production A—p with a - at some position in the rAs

5 is a lookahead string of length < & (words or EOF)
The * in an item indicates the position of the top of the stack

LR(1):
[A—-+By,a] means that the input seen so far is consistent with the use
of A —Py immediately after the symbol on top of the stack

[A —B+y,a] means that the input seen so far is consistent with the use
of A >y at this point in the parse, and that the parser has already
recoghized p.

[A —By:.a] means that the parser has seen By, and that a lookahead
symbol of a is consistent with reducing to A.
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RUTGERS  LR(1) Items

The production A—f, where 3 = B8 B8, with lookahead g,
can give rise to 4 items

[A—>:B1B,83,a], [A—>B*B>585,0], [A—> BB B3,a], & [A—>B158:85° a]
The set of LR(1) items for a grammar is finite

What's the point of all these lookahead symbols?

* Carry them along to choose the correct reduction, /¥ there isa
choice

* Lookaheads are bookkeeping, unless item has * at the right end
— Has no direct use in [A—>B+y,a]
— In[A—B*,a], a lookahead of a implies a reduction by A —f3
— For { [A—B-.a].[B—y*c,b]}, a = reduce to A; c = shift

— Limited right context is enough to pick the actions (unique, i.e.,
deterministic choice)
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RUTGERS  LR(1) Table Construction

High-level overview

1 Build the canonical collection of sets of LR(1) Items, I
a Begin in an appropriate state, s,

¢ Assume: 5’5, and S’ is unique start symbol that does not
occur onh any RHS of a production (extended CFG - ECFG)

¢ [S5'—-S5,EOF], along with any equivalent items
¢ Derive equivalent items as closure( s, )
b Repeatedly compute, for each sy, and each X, goto(s,,X)
¢ If the set is not already in the collection, add it
¢ Record all the transitions created by goto(’)
This eventually reaches a fixed point

2 Fill in the table from the collection of sets of LR(1) items

The canonical collection completely encodes the
transition diagram for the handle-finding DFA
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RUTGERS  Computing Closures

Closure(s) adds all the items implied by items already in s

* Any item [A—>BeB 5,a] implies [B—e1,x] for each production
with Bon the /As, and each x ¢ FIRST(8a)

The algorithm

Closure('s )
while ( s is still changing )
V items[A—> B+-BSa]l e s
Y productions B—t e P
V b e FIRsT(8a) // & might be ¢
if[B—>-tble¢s
then add [B— * tb] to s

> Classic fixed-point method
> Halts because s — ITEMS
Closure "fills out” a state

cs415, spring 22 Lecture 16




RUTGERS ~ Computing Gotos

Goto(s,x) computes the state that the parser would reach
if it recognized an X' while in state s

* Goto({ [A—>PeX3d,a]}, X )produces [A—pXed,a] (easy part)
* Should also includes closure([A—pBXe5,a] ) (Fill out the state)

The algorithm

Goto(s, X' )
new <&
V items[A—>B-Xo,a] € s

return closure(new)

new <« hew v [A—BX5,a]

> Not a fixed-point method!
> Straightforward computation
> Uses closure()

Goto() moves forward
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RUTGERS  Building the Canonical Collection

Start from s, = closure([S—>S, EOF] )

Repeatedly construct new states, until all are found

> Fixed-point
computation

The algorithm
ccp « closure([S—>+S, EOF])

CC « {ccy} (worklist version)
] . . > Loop adds to £C
while ( new sets are still being added to CC) rente
for each unmarked set cc; e CC > CCc 2 ,
mark cc; as processed so CCis finite

for each x following a e in an item in cc;
femp « goto(cc, x)
if temp ¢ CC
then CC « CC U { temp }
record transitions from cc; to temp on x

cs415, spring 22 Lecture 16 11



RUTGERS

Simplified, right recursive expression grammar

1: Goal - Expr

2. Expr — Term - Expr
3. Expr — Term

4: Term — Factor * Term
5: Term — Factor

6. Factor — ident
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Another Example (grammar & sets)

Symbol | FIRST
Goal | {ident }
Expr | {ident }
Term | {ident }

Factor | {ident }

{-1}
* {*}
ident | {ident }
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RUTGERS  Another Example (grammar & sets)

Symbol | FIRST

1: Goal - Expr

2: Expr — Term - Expr Goal | { !dent }
Expr | {ident }
3. Expr — Term .
, " Term | {ident }
4: Term — Factor * Term )
Factor | {ident }

5: Term — Factor
6. Factor — ident

ident | {ident }

Sp <« closure( [Goal — < Expr , EOF] ) =
{ [6oal - - Expr , EOF), [Expr - + Term - Expr, EOF],
[Expr — - Term , EOF], [ Term —» -« Factor™ Term , EOF],
[ Term — - Factor * Term, -], [ Term — -« Factor , EOF],
[ Term — - Factor, -], [Factor - -ident , EOF],
[Factor — - ident , -], [Factor — - ident ,*] }
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RUTGERS  Example (building the collection)

Iteration 1
s; « goto(sy, Expr)
s, « goto(s,, Term)
s3; « goto(sy, Factor)
s4 « goto(sy, ident )
Iteration 2
S5 « goto(sz , - )
Ss < goto(sz, ™)
Iteration 3
57« goto(ss, Expr)
Sg < goto(ss, Term )
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RUTGERS  Example (Summary)

So :{[6oal — - Expr ,EOF], [Expr — * Term - Expr , EOF],
[Expr — ¢ Term ,EOF], [ Term — - Factor * Term , EOF],
[ Term — - Factor * Term , -], [ Term — ¢ Factor , EOF],
[ Term — -« Factor , -], [Factor — - ident , EOF],
[Factor — -ident , -], [Factor— -ident, *]}

S::{[Goal - Expr -, EOF]}
S, :{[Expr — Term- - Expr , EOF], [Expr — Term -+, EOF] }

Ss;: {[Term — Factor+ * Term , EOF],[ Term — Factor+ * Term, -],
[ Term — Factor«, EOF], [ Term — Factor -+, -]}

S, : { [Factor — ident -, EOF],[Factor — ident *, -], [ Factor — ident -, *]}

Ss:{ [Expr — Term - * Expr ,EOF], [Expr — < Term - Expr , EOF],
[Expr — < Term ,EOF], [ Term — -+ Factor * Term , -],
[ Term — - Factor, -], [ Term — * Factor * Term , EOF],
[ Term — - Factor , EOF], [Factor — - ident , *],
[Factor — - ident , -], [Factor — - ident , EOF] }
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RUTGERS ~ Example (Summary)

S¢: {[Term — Factor * - Term , EOF], [ Term — Factor * - Term , -],
[ Term — - Factor * Term , EOF], [ Term — - Factor * Term , -],
[ Term — - Factor ,EOF], [ Term — - Factor , -],
[Factor — -ident , EOF], [Factor — -ident , -], [Factor - -ident , *]}

Sy { [Expr — Term - Expr -, EOF] }

Sg :{ [ Term — Factor * Term -, EOF], [ Term — Factor * Term -, -]}
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RUTGERS  Example (Summary)

The Goto Relationship (from the construction)

State | Expr | Term | Factor | - | * | ident

o) 1 2 3 4
1
2 5
3 6
4
5 7 2 3 4
6 8 3 4
7
8
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RUTGERS ~ Example
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RUTGERS  Filling in the ACTION and GOTO Tables

‘ xis the number of the state for s,

The algorithm

_ Many items
v sef sy e S5 generate no
Vv ifem i< sy table entry
if 1is[A-B +ad,b] and goto(s,a)=s,ae T
then ACTION[x.a] < “shift k”
else if /is[S>S ¢ EOF] e.g., [A—P-Ba,a]
then ACTION[x , EOF] « “accept” does not, but
else if /is[A-p +.a] closure ensures
then ACTION[ x.a] < "reduce A—-B" that all the rhs'
VY ne NT for Bare in s,
if goto(s, ,n) = sy
then GOTO[x,n] « k
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RUTGERS

Example (Filling in the tables)

The algorithm produces the following table

ACTION GoTo
ident - * | EOF |Expr | Term | Factor
0 s4 1 2 3
1 acc
2 sb r3
3 ro |sé6| rb
4 re |(ré| ré
5 s4 7 2 3
6 s4 8 3
7 r2
8 ré r4
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RUTGERS ~ What can go wrong?

What if set s contains [A—B-ay,b] and [B—p+,a]?
* First item generates "shift", second generates "reduce”

* Both define ACTIONIs,a] — cannot do both actions

* This is a fundamental ambiquity, called a sh/ft/reduce error
* Modify the grammar to eliminate it (if-then-else)
* Shifting will often resolve it correctly

EaC includes a
worked example

What is set s contains [A—y'*, a] and [B—>y*, a] ?
* Each generates "reduce”, but with a different production

* Both define ACTION[s,a] — cannot do both reductions

* This fundamental ambiquity is called a reduce/reduce error
* Modify the grammar to eliminate it

In either case, the grammar is not LR(1)
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RUTGERS ~ Computing Closures - LR(0) items

Closure(s) adds all the items implied by items already in s
* Any item [A—>BeB5] implies [B—~et] for each production

with Bon the /hs

The algorithm

Closure( s )
while (s is still changing )
V items[A— B+Bd] € s
Y productions B—t e P

fF[B>-1]¢s
then add [B— * t] to s

> Classic fixed-point method
> Halts because s — ITEMS
Closure "fills out” a state
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KUT GERS  Next class

Context-Sensitive Analysis
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