RUTGERS

C5415 Compilers
Syntax Analysis Part 5

These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy \& Linda Torczon at Rice University

Announcements

Roadmap for the remainder of the course

- Fourth homework:

Due Monday, March 28

- Project \#2-Bottom-up parser and compiler

Will be posted next week, due April 13 (tentative)

- Project \#3 - Peephole optimizer for ILOC Will be posted April 13, due May 2 (tentative)
- Second midterm on Wednesday, April 6 (60 minutes in class)
- Final exam on May 10 (60 minutes at assigned location)
- At least 3 more homeworks

Bottom-up Parsing (Syntax Analysis)

EAC Chapters 3.4

```
stack.push(INVALID); stack.push(so);
not_found = true;
token = scanner.next_token();
do while (not_found) {
    s = stack.top();
    if ( ACTION[s,token] == "reduce A->\beta" ) then {
        stack.popnum(2* }|\beta|); // pop 2*| \beta| symbol
    s = stack.top();
    stack.push(A);
    stack.push(GOTO[s,A]);
    }
    else if ( ACTION[s,token] == "shift s" ) then {
        stack.push(token); stack.push(si);
        token }\leftarrow\mathrm{ scanner.next_token();
    }
    else if ( ACTION[s,token] == "accept"
                            & token == EOF )
        then not_found = false;
    else report a syntax error and recover:
}
report success;
```


The skeleton parser

- uses ACTION \& GOTO tables
- does |words| shifts
- does |derivation| reductions
- does 1 accept \dagger

RUTGERS Building LR(1) Parsers

How do we generate the ACTION and GOTO tables?

- Use the grammar to build a model of the DFA
- Use the model to build ACTION \& GOTO tables
- If construction succeeds, the grammar is LR(1)

The Big Picture

- Model the state of the parser
- Use two functions goto(s, X) and closure (s)
\rightarrow goto() is analogous to move() in the subset construction
\rightarrow closure() adds information to round out a state
- Build up the states and transition functions of the DFA
- Use this information to fill in the ACTION and GOTO tables

The $L R(1)$ table construction algorithm uses $L R(1)$ items to represent valid configurations of an LR(1) parser

An $\operatorname{LR}(k)$ item is a pair $[P, \delta]$, where
P is a production $A \rightarrow \beta$ with a at some position in the rhs
δ is a lookahead string of length $\leq k \quad$ (words or EOF)
The \cdot in an item indicates the position of the top of the stack
LR(1):
[$A \rightarrow \cdot \beta \gamma, \underline{a}]$ means that the input seen so far is consistent with the use of $A \rightarrow \beta \gamma$ immediately after the symbol on top of the stack
$[A \rightarrow \beta \cdot \gamma, \underline{a}]$ means that the input seen so far is consistent with the use of $A \rightarrow \beta \gamma$ at this point in the parse, and that the parser has already recognized β.
[$\left.A \rightarrow \beta \gamma^{\circ}, a\right]$ means that the parser has seen $\beta \gamma$, and that a lookahead symbol of \underline{a} is consistent with reducing to A.

The production $A \rightarrow \beta$, where $\beta=B_{1} B_{1} B_{1}$ with lookahead \underline{a}, can give rise to 4 items

$$
\left[A \rightarrow \cdot B_{1} B_{2} B_{3}, a\right],\left[A \rightarrow B_{1} \cdot B_{2} B_{3}, q\right],\left[A \rightarrow B_{1} B_{2} \cdot B_{3}, a\right], \&\left[A \rightarrow B_{1} B_{2} B_{3} \cdot, a\right]
$$

The set of $\operatorname{LR}(1)$ items for a grammar is finite
What's the point of all these lookahead symbols?

- Carry them along to choose the correct reduction, if there is a choice
- Lookaheads are bookkeeping, unless item has • at the right end
\rightarrow Has no direct use in $[A \rightarrow \beta \cdot \gamma, \underline{a}]$
\rightarrow In $[A \rightarrow \beta \cdot, \underline{a}$, a lookahead of \underline{a} implies a reduction by $A \rightarrow \beta$
\rightarrow For $\{[A \rightarrow \beta \cdot, \underline{a}],[B \rightarrow \gamma \cdot c, \underline{b}]\}, \underline{a} \Rightarrow$ reduce to $A ; \underline{c} \Rightarrow$ shift
\Rightarrow Limited right context is enough to pick the actions (unique, i.e., deterministic choice)

High-level overview
1 Build the canonical collection of sets of LR(1) Items, I
a Begin in an appropriate state, so

- Assume: $S^{\prime} \rightarrow S$, and S^{\prime} is unique start symbol that does no \dagger occur on any RHS of a production (extended CFG - ECFG)
- [$S^{\prime} \rightarrow \cdot S$,EOF $]$, along with any equivalent items
- Derive equivalent items as closure (s_{0})
b Repeatedly compute, for each s_{k}, and each $X, \operatorname{goto}\left(s_{k}, X\right)$
- If the set is not already in the collection, add it
- Record all the transitions created by goto()

This eventually reaches a fixed point
2 Fill in the table from the collection of sets of LR(1) items
The canonical collection completely encodes the transition diagram for the handle-finding DFA

Closure(s) adds all the items implied by items already in s

- Any item $[A \rightarrow \beta \bullet B \delta, \underline{a}$ implies $[B \rightarrow \bullet \tau, x]$ for each production with B on the /hs, and each $x \in \operatorname{FIRST}(\delta \underline{)})$

The algorithm

```
Closure(s)
while (s is still changing)
    items [A->\beta\cdotB\delta,a] }\in
    productions B}->\tau\in
        \forall\underline{b}\in\operatorname{FIRST}(\delta\underline{a})// \delta might be }
        if [B->\bullet\tau,\underline{b}]\not\inS
            then add[B->•\tau,\underline{b}] to s
```

\rightarrow Classic fixed-point method
$>$ Halts because $s \subset$ ITEMS
Closure "fills out" a state

Goto(s, x) computes the state that the parser would reach if it recognized an X while in state s

- Goto($\{[A \rightarrow \beta \bullet X \delta, a]\}, X)$ produces $[A \rightarrow \beta X \bullet \delta, a] \quad$ (easy part)
- Should also includes closure $([A \rightarrow \beta X \bullet \delta, a]$) (fill out the state)

The algorithm

```
Goto(s,X)
    new \leftarrow\varnothing
    items [A->\beta\cdot\\delta,q] ] s
        new \leftarrownew }\cup[A->\betaX\cdot\delta,\textrm{a}
    return closure(new)
```

> Not a fixed-point method!
> Straightforward computation
> Uses closure()
Goto() moves forward

RUTGERS

Start from $s_{0}=$ closure $\left(\left[S^{\prime} \rightarrow S\right.\right.$, EOF $\left.]\right)$
Repeatedly construct new states, until all are found
The algorithm

```
cco\leftarrowclosure([S'->`S, EOF])
CC}\leftarrow{c\mp@subsup{c}{0}{}
while ( new sets are still being added to CC)
    for each unmarked set cc, }\inC
    mark ccj as processed
    for each x following a • in an item in cc, 
        temp}\leftarrow\operatorname{goto(ccj, x)
        if temp & CC
            then CC }\leftarrowCC\cup{\mathrm{ temp }
        record transitions from ccj to temp on }
```

Simplified, right recursive expression grammar

$$
\begin{aligned}
& \text { 1: Goal } \rightarrow \text { Expr } \\
& \text { 2: Expr } \rightarrow \text { Term }- \text { Expr } \\
& \text { 3: Expr } \rightarrow \text { Term } \\
& \text { 4: Term } \rightarrow \text { Factor } * \text { Term } \\
& \text { 5: Term } \rightarrow \text { Factor } \\
& \text { 6: Factor } \rightarrow \text { ident }
\end{aligned}
$$

Symbol	FIRST
Goal	\{ ident \}
Expr	\{ ident \}
Term	\{ident \}
Factor	\{ ident \}
-	\{-\}
*	\{ * $\}$
ident	\{ident \}

```
1:Goal }->\mathrm{ Expr
2: Expr }->\mathrm{ Term - Expr
3: Expr }->\mathrm{ Term
4: Term }->\mathrm{ Factor * Term
5: Term }->\mathrm{ Factor
6: Factor }->\mathrm{ ident
```

Symbol	FI RST
Goal	$\{$ ident $\}$
Expr	$\{$ ident $\}$
Term	$\{$ ident $\}$
Factor	$\left\{\begin{array}{c}\text { ident }\} \\ - \\ * \\ \text { ident } \\ \text { in } \\ \text { \{ ident }\} \\ \hline\end{array}\right.$

```
so}\leftarrow\mathrm{ closure([Goal }->\mathrm{ • Expr, EOF]) =
    { [Goal }->\mathrm{ - Expr , EOF], [Expr }->\mathrm{ • Term - Expr , EOF],
        [Expr }->\mathrm{ - Term , EOF],[Term }->\mathrm{ • Factor* Term , EOF],
        [Term -> . Factor * Term , -], [ Term }->\mathrm{ • Factor , EOF],
        [Term }->\mathrm{ - Factor, -], [Factor }->\mathrm{ • ident , EOF],
        [Factor }->\mathrm{ - ident , -], [Factor }->\mathrm{ • ident , *] }
```

Iteration 1

$$
\begin{aligned}
& s_{1} \leftarrow \operatorname{goto}\left(s_{0}, \text { Expr }\right) \\
& s_{2} \leftarrow \operatorname{goto}\left(s_{0}, \text { Term }\right) \\
& s_{3} \leftarrow \operatorname{goto}\left(s_{0}, \text { Factor }\right) \\
& s_{4} \leftarrow \operatorname{goto}\left(s_{0}, \text {, ident }\right)
\end{aligned}
$$

Iteration 2

$$
\begin{aligned}
& s_{5} \leftarrow \operatorname{goto}\left(s_{2},-\right) \\
& s_{6} \leftarrow \operatorname{goto}\left(s_{3}, *\right)
\end{aligned}
$$

Iteration 3

$$
\begin{aligned}
& s_{7} \leftarrow \operatorname{goto}\left(s_{5}, \text { Expr }\right) \\
& s_{8} \leftarrow \operatorname{goto}\left(s_{6}, \text { Term }\right)
\end{aligned}
$$

RUTGERS Example (Summary)

```
So:{[Goal ->- Expr,EOF],[Expr ->•Term-Expr,EOF],
    [Expr -> ' Term , EOF],[Term -> - Factor * Term, EOF],
    [ Term }->\mathrm{ • Factor * Term , -], [ Term }->\mathrm{ • Factor , EOF],
    [Term }->\mathrm{ ' Factor , -], [Factor }->\mathrm{ - ident , EOF],
    [Factor }->\mathrm{ - ident , -], [Factor }->\cdot\mathrm{ ident, *]}
S
S}\mp@subsup{S}{2}{}:{[\mathrm{ Expr }->\mathrm{ Term•-Expr,EOF],[Expr }->\mathrm{ Term •,EOF]}
S S :{[Term }->\mathrm{ Factor. * Term, EOF],[Term }->\mathrm{ Factor. * Term , -],
    [Term }->\mathrm{ Factor ', EOF], [Term }->\mathrm{ Factor •, -]}
S S :{[Factor }->\mathrm{ ident }\cdot,\mathrm{ EOF],[Factor }->\mathrm{ ident •, -], [Factor }->\mathrm{ ident }\cdot, *]
S5:{[Expr -> Term - - Expr,EOF],[Expr ->- Term-Expr,EOF],
    [Expr }->\mathrm{ • Term, EOF], [Term }->\mathrm{ • Factor * Term ,-],
    [Term ->- Factor, -], [Term ->- Factor * Term, EOF],
    [Term }->\mathrm{ • Factor , EOF], [Factor }->\mathrm{ • ident, *],
    [Factor }->\mathrm{ - ident , -], [Factor }->\mathrm{ - ident , EOF]}
```

RUTGERS Example (Summary)

```
S 
    [Term -> • Factor * Term , EOF], [Term -> • Factor * Term ,-],
    [Term }->\mathrm{ • Factor , EOF], [Term }->\mathrm{ - Factor, -],
    [Factor }->\mathrm{ - ident , EOF], [Factor }->\mathrm{ • ident , -], [Factor }->\mathrm{ • ident , *]}
S
S S :{[Term }->\mathrm{ Factor * Term :, EOF], [Term }->\mathrm{ Factor * Term ;,-]}
```


RUTGERS
 Example (Summary)

The Goto Relationship (from the construction)

State	Expr	Term	Factor	-	\star	ident
0	1	2	3			4
1						
2				5		
3					6	
4						
5	7	2	3			4
6		8	3			4
7						
8						

The algorithm

```
set sx
    |tem i\in Sx
```



```
        then ACTION[x,q] \leftarrow "shift k"
        else if i is [S'->S , EOF]
            then AcTION[x, EOF] }\leftarrow "accept
        else if i is [A->\beta \cdot,a]
            then AcTION[x,q]}\leftarrow "reduce A->\beta"
    \foralln\inNT
    if goto(s,n)=sk
        then GOTO[}x,n]\leftarrow
```

Many items generate no table entry
e.g., $[A \rightarrow \beta \cdot B \alpha, a]$ does not, but closure ensures that all the rhs' for Bare in s_{x}

RUTGERS Example (Filling in the tables)

The algorithm produces the following table

	ACtion				Gото		
	ident	-	*	EOF	Expr	Term	Factor
0	s 4				1	2	3
1				acc			
2		$s 5$		r 3			
3		r 5	s 6	r 5			
4		r6	r6	r6			
5	$s 4$				7	2	3
6	s 4					8	3
7				r 2			
8		r 4		r 4			

Plugs into the skeleton LR(1) parser

RUTGERS What can go wrong?

What if set s contains $[A \rightarrow \beta \cdot \underline{a} \gamma, \underline{b}]$ and $[B \rightarrow \beta \cdot, \underline{a}]$?

- First item generates "shift", second generates "reduce"
- Both define ACTION[s,a] - cannot do both actions
- This is a fundamental ambiguity, called a shift/reduce error
- Modify the grammar to eliminate it (if-then-else)
- Shifting will often resolve it correctly

What is set s contains $\left[A \rightarrow \gamma^{\prime} \cdot, \underline{a}\right.$] and [$B \rightarrow \gamma^{\cdot}, \underline{a}$] ? worked example

- Each generates "reduce", but with a different production
- Both define ACTION[s, \underline{a} - cannot do both reductions
- This fundamental ambiguity is called a reduce/reduce error
- Modify the grammar to eliminate it

$$
\text { In either case, the grammar is not } \angle R(1)
$$

RUTGERS Computing Closures - LR(0) items

Closure(s) adds all the items implied by items already in s

- Any item $[A \rightarrow \beta \bullet B \delta$] implies $[B \rightarrow \bullet \tau]$ for each production with B on the $/ h s$

The algorithm

```
Closure(s)
while (s is still changing)
    items [A->\beta\cdotB\delta] 
    productions }B->\tau\in
\[
\begin{aligned}
& \text { if }[B \rightarrow \cdot \tau] \notin s \\
& \quad \text { then add }[B \rightarrow \cdot \tau] \text { to } s
\end{aligned}
\]
```


Context-Sensitive Analysis

