RUTGERS

CS5415 Compilers

Syntax Analysis
Part 5

RUTGERS Announcements

Roadmap for the remainder of the course

* Fourth homework:
Due Monday, March 28

* Project #2 - Bottom-up parser and compiler
Will be posted next week, due April 13 (tentative)

* Project #3 - Peephole optimizer for ILOC
Will be posted April 13, due May 2 (tentative)

e Second midterm on Wednesday, April 6 (60 minutes in class)
 Final exam on May 10 (60 minutes at assigned location)

e At least 3 more homeworks

cs415, spring 22 Lecture 16 2

Bottom-up Parsing
(Syntax Analysis)

EAC Chapters 3.4

cs415, spring 22

RUTGERS LR(1) Skeleton Parser

stack.push(INVALID); stack.push(sy);
not_found = true;
token = scanner.next_token();

do while (not_found) {

s = stack.top(): The skeleton parser
if (ACTION[s,token] == "reduce A—B") then{

stack.popnum(2*|B); // pop 2%|B| symbols * uses ACTION & GOTO
s = stack.top(); tables
stack.push(A); ,
stack.push(60TO[s,A); * does |words| shifts

else if (ACTION[s token] == "sh/ft 5!) then { ' d°§5 | derivation|
stack push(token); stack push(s): reauctions
token « scanner.next_token(); * does 1 accept

}
else if (ACTION[s,token] == "accep?"
& token == EOF)
then not_found = false;

else report a syntax error and recover;

}

report success;

cs415, spring 22 Lecture 16 4

RUTGERS Building LR(1) Parsers

How do we generate the ACTION and GOTO tables?
* Use the grammar to build a model of the DFA

* Use the model to build ACTION & GOTO tables

* TIf construction succeeds, the grammar is LR(1)

The Big Picture

* Model the state of the parser

* Use two functions goto('s, X) and closure(s)
— goto()is analogous to move() in the subset construction
— closure() adds information to round out a state

Terminal or
non-terminal

* Build up the states and transition functions of the DFA
* Use this information to fill in the ACTION and GOTO tables

cs415, spring 22

Lecture 16

RUTGERS Lr(4 items

The LR(1) table construction algorithm uses LR(1) items to
represent valid configurations of an LR(1) parser

An LR(k) item is a pair [P, 5], where
Pis a production A—p with a - at some position in the rAs

5 is a lookahead string of length < & (words or EOF)
The * in an item indicates the position of the top of the stack

LR(1):
[A—-+By,a] means that the input seen so far is consistent with the use
of A —Py immediately after the symbol on top of the stack

[A —B+y,a] means that the input seen so far is consistent with the use
of A >y at this point in the parse, and that the parser has already
recoghized p.

[A —By:.a] means that the parser has seen By, and that a lookahead
symbol of a is consistent with reducing to A.

cs415, spring 22 Lecture 16 6

RUTGERS LR(1) Items

The production A—f, where 3 = B8 B8, with lookahead g,
can give rise to 4 items

[A—>:B1B,83,a], [A—>B*B>585,0], [A—> BB B3,a], & [A—>B158:85° a]
The set of LR(1) items for a grammar is finite

What's the point of all these lookahead symbols?

* Carry them along to choose the correct reduction, /¥ there isa
choice

* Lookaheads are bookkeeping, unless item has * at the right end
— Has no direct use in [A—>B+y,a]
— In[A—B*,a], a lookahead of a implies a reduction by A —f3
— For { [A—B-.a].[B—y*c,b]}, a = reduce to A; c = shift

— Limited right context is enough to pick the actions (unique, i.e.,
deterministic choice)

cs415, spring 22 Lecture 16 7

RUTGERS LR(1) Table Construction

High-level overview

1 Build the canonical collection of sets of LR(1) Items, I
a Begin in an appropriate state, s,

¢ Assume: 5’5, and S’ is unique start symbol that does not
occur onh any RHS of a production (extended CFG - ECFG)

¢ [S5'—-S5,EOF], along with any equivalent items
¢ Derive equivalent items as closure(s,)
b Repeatedly compute, for each sy, and each X, goto(s,,X)
¢ If the set is not already in the collection, add it
¢ Record all the transitions created by goto(’)
This eventually reaches a fixed point

2 Fill in the table from the collection of sets of LR(1) items

The canonical collection completely encodes the
transition diagram for the handle-finding DFA

cs415, spring 22 Lecture 16 8

RUTGERS Computing Closures

Closure(s) adds all the items implied by items already in s

* Any item [A—>BeB 5,a] implies [B—e1,x] for each production
with Bon the /As, and each x ¢ FIRST(8a)

The algorithm

Closure('s)
while (s is still changing)
V items[A—> B+-BSa]l e s
Y productions B—t e P
V b e FIRsT(8a) // & might be ¢
if[B—>-tble¢s
then add [B— * tb] to s

> Classic fixed-point method
> Halts because s — ITEMS
Closure "fills out” a state

cs415, spring 22 Lecture 16

RUTGERS ~ Computing Gotos

Goto(s,x) computes the state that the parser would reach
if it recognized an X' while in state s

* Goto({ [A—>PeX3d,a]}, X)produces [A—pXed,a] (easy part)
* Should also includes closure([A—pBXe5,a]) (Fill out the state)

The algorithm

Goto(s, X')
new <&
V items[A—>B-Xo,a] € s

return closure(new)

new <« hew v [A—BX5,a]

> Not a fixed-point method!
> Straightforward computation
> Uses closure()

Goto() moves forward

cs415, spring 22

Lecture 16 10

RUTGERS Building the Canonical Collection

Start from s, = closure([S—>S, EOF])

Repeatedly construct new states, until all are found

> Fixed-point
computation

The algorithm
ccp « closure([S—>+S, EOF])

CC « {ccy} (worklist version)
] . . > Loop adds to £C
while (new sets are still being added to CC) rente
for each unmarked set cc; e CC > CCc 2 ,
mark cc; as processed so CCis finite

for each x following a e in an item in cc;
femp « goto(cc, x)
if temp ¢ CC
then CC « CC U { temp }
record transitions from cc; to temp on x

cs415, spring 22 Lecture 16 11

RUTGERS

Simplified, right recursive expression grammar

1: Goal - Expr

2. Expr — Term - Expr
3. Expr — Term

4: Term — Factor * Term
5: Term — Factor

6. Factor — ident

cs415, spring 22

Lecture 16

Another Example (grammar & sets)

Symbol | FIRST
Goal | {ident }
Expr | {ident }
Term | {ident }

Factor | {ident }

{-1}
* {*}
ident | {ident }

12

RUTGERS Another Example (grammar & sets)

Symbol | FIRST

1: Goal - Expr

2: Expr — Term - Expr Goal | { !dent }
Expr | {ident }
3. Expr — Term .
, " Term | {ident }
4: Term — Factor * Term)
Factor | {ident }

5: Term — Factor
6. Factor — ident

ident | {ident }

Sp <« closure([Goal — < Expr , EOF]) =
{ [6oal - - Expr , EOF), [Expr - + Term - Expr, EOF],
[Expr — - Term , EOF], [Term —» -« Factor™ Term , EOF],
[Term — - Factor * Term, -], [Term — -« Factor , EOF],
[Term — - Factor, -], [Factor - -ident , EOF],
[Factor — - ident , -], [Factor — - ident ,*] }

cs415, spring 22 Lecture 16 13

RUTGERS Example (building the collection)

Iteration 1
s; « goto(sy, Expr)
s, « goto(s,, Term)
s3; « goto(sy, Factor)
s4 « goto(sy, ident)
Iteration 2
S5 « goto(sz , -)
Ss < goto(sz, ™)
Iteration 3
57« goto(ss, Expr)
Sg < goto(ss, Term)

cs415, spring 22 Lecture 16 14

RUTGERS Example (Summary)

So :{[6oal — - Expr ,EOF], [Expr — * Term - Expr , EOF],
[Expr — ¢ Term ,EOF], [Term — - Factor * Term , EOF],
[Term — - Factor * Term , -], [Term — ¢ Factor , EOF],
[Term — -« Factor , -], [Factor — - ident , EOF],
[Factor — -ident , -], [Factor— -ident, *]}

S::{[Goal - Expr -, EOF]}
S, :{[Expr — Term- - Expr , EOF], [Expr — Term -+, EOF] }

Ss;: {[Term — Factor+ * Term , EOF],[Term — Factor+ * Term, -],
[Term — Factor«, EOF], [Term — Factor -+, -]}

S, : { [Factor — ident -, EOF],[Factor — ident *, -], [Factor — ident -, *]}

Ss:{ [Expr — Term - * Expr ,EOF], [Expr — < Term - Expr , EOF],
[Expr — < Term ,EOF], [Term — -+ Factor * Term , -],
[Term — - Factor, -], [Term — * Factor * Term , EOF],
[Term — - Factor , EOF], [Factor — - ident , *],
[Factor — - ident , -], [Factor — - ident , EOF] }

cs415, spring 22 Lecture 16 15

RUTGERS ~ Example (Summary)

S¢: {[Term — Factor * - Term , EOF], [Term — Factor * - Term , -],
[Term — - Factor * Term , EOF], [Term — - Factor * Term , -],
[Term — - Factor ,EOF], [Term — - Factor , -],
[Factor — -ident , EOF], [Factor — -ident , -], [Factor - -ident , *]}

Sy { [Expr — Term - Expr -, EOF] }

Sg :{ [Term — Factor * Term -, EOF], [Term — Factor * Term -, -]}

cs415, spring 22 Lecture 16 16

RUTGERS Example (Summary)

The Goto Relationship (from the construction)

State | Expr | Term | Factor | - | * | ident

o) 1 2 3 4
1
2 5
3 6
4
5 7 2 3 4
6 8 3 4
7
8

cs415, spring 22 Lecture 16

17

RUTGERS ~ Example

cs415, spring 22 Lecture 16 18

RUTGERS Filling in the ACTION and GOTO Tables

‘ xis the number of the state for s,

The algorithm

_ Many items
v sef sy e S5 generate no
Vv ifem i< sy table entry
if 1is[A-B +ad,b] and goto(s,a)=s,ae T
then ACTION[x.a] < “shift k”
else if /is[S>S ¢ EOF] e.g., [A—P-Ba,a]
then ACTION[x , EOF] « “accept” does not, but
else if /is[A-p +.a] closure ensures
then ACTION[x.a] < "reduce A—-B" that all the rhs'
VY ne NT for Bare in s,
if goto(s, ,n) = sy
then GOTO[x,n] « k

cs415, spring 22 Lecture 16 19

RUTGERS

Example (Filling in the tables)

The algorithm produces the following table

ACTION GoTo
ident - * | EOF |Expr | Term | Factor
0 s4 1 2 3
1 acc
2 sb r3
3 ro |sé6| rb
4 re |(ré| ré
5 s4 7 2 3
6 s4 8 3
7 r2
8 ré r4

cs415, spring 22

Plugs into the skeleton LR(1) parser

Lecture 16

20

RUTGERS ~ What can go wrong?

What if set s contains [A—B-ay,b] and [B—p+,a]?
* First item generates "shift", second generates "reduce”

* Both define ACTIONIs,a] — cannot do both actions

* This is a fundamental ambiquity, called a sh/ft/reduce error
* Modify the grammar to eliminate it (if-then-else)
* Shifting will often resolve it correctly

EaC includes a
worked example

What is set s contains [A—y'*, a] and [B—>y*, a] ?
* Each generates "reduce”, but with a different production

* Both define ACTION[s,a] — cannot do both reductions

* This fundamental ambiquity is called a reduce/reduce error
* Modify the grammar to eliminate it

In either case, the grammar is not LR(1)

cs415, spring 22 Lecture 16 21

RUTGERS ~ Computing Closures - LR(0) items

Closure(s) adds all the items implied by items already in s
* Any item [A—>BeB5] implies [B—~et] for each production

with Bon the /hs

The algorithm

Closure(s)
while (s is still changing)
V items[A— B+Bd] € s
Y productions B—t e P

fF[B>-1]¢s
then add [B— * t] to s

> Classic fixed-point method
> Halts because s — ITEMS
Closure "fills out” a state

cs415, spring 22 Lecture 16

22

KUT GERS Next class

Context-Sensitive Analysis

cs415, spring 22 Lecture 16 23

