
CS415 Compilers

Syntax Analysis
Part 4

These slides are based on slides copyrighted by 
Keith Cooper, Ken Kennedy & Linda Torczon at Rice 

University



cs415, spring 22 Lecture 15

Announcements

Roadmap for the remainder of the course

• Fourth homework: 
Due Monday, March 28

• Project #2 – Bottom-up parser and compiler 
Will be posted next week, due April 13 (tentative)

• Project #3 – Peephole optimizer for ILOC
Will be posted April 13, due May 2 (tentative)

• Second midterm on Wednesday, April 6 (60 minutes in class)

• Final exam on May 10 (60 minutes at assigned location)

• At least 3 more homeworks

2



cs415, spring 22

Bottom-up Parsing
(Syntax Analysis)

EAC Chapters 3.4 



cs415, spring 22 Lecture 15

Reminder: Top-down parsers

LL(1), recursive descent

S Þ*lm  x A b Þlm x d b Þ*lm x y

x y

S

A
b

input: read left-to-right
construct leftmost deriviation (forwards)

1 input symbol lookahead

4

?

? Means that we
don’t know yet this 
part of the parse tree



cs415, spring 22 Lecture 15

Parsing Techniques: Bottom-up parsers

LR(1), operator precedence

input: read left-to-right
construct rightmost deriviation (backwards)

1 input symbol lookahead

x y

S

a

g

S Þ*rm a B y Þ rm a g y Þ*rm x y

rule  B ::= g

5

?
? Means that we
don’t know yet this 
part of the parse tree

?

handle



cs415, spring 22 Lecture 15

Parsing Techniques: Bottom-up parsers

input: read left-to-right
construct rightmost deriviation (backwards)

1 input symbol lookahead

x y

S

B
a

S Þ*rm a B y Þ rm a g y Þ*rm x y

rule  B ::= g

upper fringe

LR(1), operator precedence

6

?
? Means that we
don’t know yet this 
part of the parse tree



cs415, spring 22

LR(1) Parser Example

Is the following grammar LL(1), L(2), or LR(1)?

S ::= a b | a b c 

Is the following grammar LR(1) or even LR(0)?

S ::= a S b | c

Lecture 15 7

Basic idea:
shift symbols from input onto the stack until top of the stack
is a RHS of a rule; if so, ”apply” rule backwards (reduce) by replacing 
top of the stack by the LHS non-terminal.

Challenge: When to shift, and when to reduce



cs415, spring 22 Lecture 15

Finding Reductions

Consider the simple grammar

And the input string abbcde

The trick is scanning the input and finding the next reduction
The mechanism for doing this must be efficient

8



cs415, spring 22 Lecture 15

Finding Reductions    (Handles)

The parser must find a substring b of the tree’s frontier that 
matches some production A ® b that occurs as one step 
in the rightmost derivation

Informally, we call this substring b a handle
Formally,

A handle of a right-sentential form g is a pair <A®b,k> where
A®b Î P and k is the position in g of b’s rightmost symbol.
If <A®b,k> is a handle, then replacing b at k with A produces the right 

sentential form from which g is derived in the rightmost derivation.
Because g is a right-sentential form, the substring to the right of a 

handle contains only terminal symbols
Þ the parser doesn’t need to scan past the handle  (only lookahead)
Þ The right end of the handle will be on top of the stack, not within the 

stack. Need lookahead to determine whether we reached the handle.

9



cs415, spring 22 Lecture 15

Critical Insight                                               (Theorem)
If G is unambiguous, then every right-sentential form has a 
unique handle. 

If we can find those handles, we can build a derivation !

Sketch of Proof:
1 G is unambiguous Þ rightmost derivation is unique
2 Þ a unique production A ® b applied to derive gi from gi–1
3 Þ a unique position k at which A®b is applied
4 Þ a unique handle <A®b,k>
This all follows from the definitions

Finding Reductions    (Handles)

10



cs415, spring 22 Lecture 15

Revisit previous example

Consider the simple grammar

And the input string abbcde

The trick is scanning the input and finding the next reduction
The mechanism for doing this must be efficient

11



cs415, spring 22

LR(0) items and LR(0) cannonical collection

S0: {[Goal  ® • a A B e]}

S1: {[Goal  ® a • A B e], [A ® • A b c], [A ® • b]}

S2: {[Goal  ® a A • B e], [A ® A • b c], [B® • d] }

S3: {[A® b •] }

S4: {[Goal  ® a A B • e] }  

S5: {[A ® A b • c] }  

S6: {[B® d •] }

S7: {[A ® A b c •] }  

S8: {[Goal  ® a A B e • ] }  

Lecture 15 12

s0

s1

s2

s4

s8

s3

s6

b

a

A

B

e

d
s5

b
s7

c

start



cs415, spring 22 Lecture 15

Another Example     (a very busy slide)

The expression grammar Handles for rightmost derivation of  x – 2 * y

13



cs415, spring 22 Lecture 15

Handle-pruning, Bottom-up Parsers

The process of discovering a handle & reducing it to the 
appropriate left-hand side is called handle pruning

Handle pruning forms the basis for a bottom-up parsing method

To construct a rightmost derivation
S Þ g0 Þ g1 Þ g2 Þ …  Þ gn–1 Þ gn Þ w

Apply the following simple algorithm
for i ¬ n to 1 by –1

Find the handle <Ai ®bi , ki > in gi
Replace bi with Ai to generate gi–1

This takes 2n steps

14



cs415, spring 22 Lecture 15

Handle-pruning, Bottom-up Parsers

One implementation technique is the shift-reduce parser
push INVALID // bottom of stack marker
token ¬ next_token( )
repeat until (top of stack = Goal and token = EOF)

if the top of the stack is a handle A®b
then      // reduce b to A

pop |b| symbols off the stack
push A onto the stack

else if (token ¹ EOF)
then // shift 

push token 
token ¬ next_token( )

else     // need to shift, but out of input 
report an error   

How do errors show up?

• failure to find a handle

• hitting EOF & needing to  
shift (final else clause)

Either generates an error

15



cs415, spring 22 Lecture 15

Back to x - 2 * y

1. Shift until the top of  the stack is the right end of  a handle
2. Find the left end of  the handle & reduce 

16



cs415, spring 22 Lecture 15

Back to x - 2 * y

1. Shift until the top of  the stack is the right end of  a handle
2. Find the left end of  the handle & reduce 

17



cs415, spring 22 Lecture 15

Back to x - 2 * y

1. Shift until the top of  the stack is the right end of  a handle
2. Find the left end of  the handle & reduce 

18



cs415, spring 22 Lecture 15

Back to x - 2 * y

1. Shift until the top of  the stack is the right end of  a handle
2. Find the left end of  the handle & reduce 

19



cs415, spring 22 Lecture 15

Back to x - 2 * y

1. Shift until the top of  the stack is the right end of  a handle
2. Find the left end of  the handle & reduce 

20



cs415, spring 22 Lecture 15

Back to x – 2 * y

1. Shift until the top of  the stack is the right end of  a handle
2. Find the left end of  the handle & reduce 

5 shifts + 
9 reduces + 
1 accept

21



cs415, spring 22 Lecture 15

Back to x – 2 * y

shift here

reduce here

1. Shift until the top of  the stack is the right end of  a handle
2. Find the left end of  the handle & reduce 

22



cs415, spring 22 Lecture 15

Goal

<id,x>

Term

Fact.

Expr –

Expr

<id,y>

<num,2>

Fact.

Fact.Term

Term

*

Stack Input Action 
$ id – num * id shift 
$ id – num * id red. 9 
$ Factor – num * id red. 7 
$ Term – num * id red. 4 
$ Expr – num * id shift 
$ Expr – num * id shift 
$ Expr – num * id red. 8 
$ Expr – Factor * id red. 7 
$ Expr – Term * id shift 
$ Expr – Term *   id shift 
$ Expr – Term * id  red. 9 
$ Expr – Term * Factor  red. 5 
$ Expr – Term  red. 3 
$ Expr   red. 1 
$ Goal  accept 

 

 

Back to x – 2 * y

23



cs415, spring 22 Lecture 15

LR(1) Skeleton Parser

stack.push(INVALID); stack.push(s0); 
not_found = true;
token = scanner.next_token();
do while (not_found) {

s = stack.top();
if ( ACTION[s,token] == “reduce A®b” ) then {

stack.popnum(2*|b|); // pop 2*|b| symbols
s = stack.top();
stack.push(A); 
stack.push(GOTO[s,A]);
}
else if ( ACTION[s,token] == “shift si” ) then {

stack.push(token); stack.push(si);
token ¬ scanner.next_token();

}
else if ( ACTION[s,token] == “accept”  

& token == EOF )
then not_found = false;

else report a syntax error and recover;
} 
report success;

The skeleton parser
• uses ACTION & GOTO 

tables
• does |words| shifts

• does |derivation|    
reductions 

• does 1 accept

24



cs415, spring 22 Lecture 15 25

More Bottom-up LR(1) parsing

Error Recovery

Next class


