
CS415 Compilers

Syntax Analysis
Part 2

These slides are based on slides copyrighted by
Keith Cooper, Ken Kennedy & Linda Torczon at Rice

University

cs415, spring 22 Lecture 13

Announcements

• Midterm has been grades. Exams will be handed out in
recitation on Wednesday. Please see canvas for grades.

• Third homework has been posted. NEW deadline:
Due Thursday, March 10

• First project (local instruction scheduler) deadlines:
code: March 9 @ 11:59pm – single tar file
report: March 11 @ 11:59pm – single pdf file

Late policy:
® Grace period: 1 hour
® 20% penalty for every started 24 hour period after the deadline.
® Saturday/Sunday count as a single 24 hour period.

• Warning grades will be submitted by Friday, March 11

2

cs415, spring 22

Parsing
(Syntax Analysis)

Top-Down Parsing
EAC Chapters 3.3

cs415, spring 22 Lecture 13

Parsing Techniques: Top-down parsers

LL(1), recursive descent

S Þ*lm x A b Þlm x d b Þ*lm x y

x y

S

A
b

input: read left-to-right
construct leftmost deriviation (forwards)

1 input symbol lookahead

4

cs415, spring 22 Lecture 13

Parsing Techniques: Top-down parsers

LL(1), recursive descent

S Þ*lm x A b Þlm x d b Þ*lm x y

x y

S

A
b

d

input: read left-to-right
construct leftmost deriviation (forwards)

1 input symbol lookahead

rule A ® d

5

cs415, spring 22 Lecture 13

Top-down vs. Bottom-up decision

6

Scientist ® Richard_Feynman | Albert_Einstein

Top-down This is what you see on the input
before you make your rule decision:

Are we looking at either Richard
Feynman or Albert Einstein ?

? ?

How
much

lookahead
do you
need?

cs415, spring 22 Lecture 13

Top-down vs. Bottom-up decision

7

Scientist ® Richard_Feynman | Albert_Einstein

Top-down This is what you see on the input
before you make your rule decision:

Are we looking at either Richard
Feynman or Albert Einstein ?

? ?

How
much

lookahead
do you
need?

cs415, spring 22 Lecture 13

Top-down vs. Bottom-up decision

8

Scientist ® Richard_Feynman | Albert_Einstein

Top-down This is what you see on the input
before you make your rule decision:

Are we looking at either Richard
Feynman or Albert Einstein ?

? ?

How
much

lookahead
do you
need?

cs415, spring 22 Lecture 13

Remember the expression grammar?

And the input x – 2 * y

Version with precedence

9

cs415, spring 22 Lecture 13

Left Recursion

Top-down parsers cannot handle left-recursive grammars

Formally,
A grammar is left recursive if $ A Î NT such that
$ a derivation A Þ+ Aa, for some string a Î (NT È T)+

Our expression grammar is left recursive
• This can lead to non-termination in a top-down parser
• For a top-down parser, any recursion must be right recursion
• We would like to convert the left recursion to right recursion

Non-termination is a bad property in any part of a compiler

10

cs415, spring 22 Lecture 13

Eliminating Left Recursion

To remove left recursion, we can transform the grammar

Consider a grammar fragment of the form
Fee ® Fee a

| b
where neither a nor b start with Fee

We can rewrite this as
Fee ® b Fie
Fie ® a Fie

| e
where Fie is a new non-terminal

This accepts the same language, but uses only right recursion

11

cs415, spring 22 Lecture 13

Eliminating Left Recursion

The expression grammar contains two cases of left recursion

Applying the transformation yields

These fragments use only right recursion

Expr ® Term Expr’
Expr¢ | + Term Expr’
 | – Term Expr’
 | e

Term ® Factor Term’
Term¢ | * Factor Term’
 | / Factor Term’
 | e

12

cs415, spring 22 Lecture 13

Eliminating Left Recursion

Substituting them back into the grammar yields

• This grammar is correct,
if somewhat non-intuitive.

• A top-down parser will
terminate using it.

• A top-down parser may
need to backtrack with it.

• General left recursion
removal algorithm in EAC

1 Goal ® Expr
2 Expr ® Term Expr’
3 Expr¢ ® + Term Expr’
4 | – Term Expr’
5 | e
6 Term ® Factor Term’
7 Term¢ ® * Factor

Term’
8 | / Factor

Term’
9 | e
10 Factor ® number
11 | id
12 | (Expr)

13

cs415, spring 22 Lecture 13

Roadmap (Where are we?)

We set out to study parsing
• Specifying syntax

® Context-free grammars
® Ambiguity

• Top-down parsers
® Algorithm & its problem with left recursion
® Left-recursion removal
® Left factoring (will discuss later)

• Predictive top-down parsing
® The LL(1) condition
® Table-driven LL(1) parsers
® Recursive descent parsers

§ Syntax directed translation (example)
14

cs415, spring 22 Lecture 13

Picking the “Right” Production

If it picks the wrong production, a top-down parser may backtrack
Alternative is to look ahead in input & use context to pick correctly

How much lookahead is needed?
• In general, an arbitrarily large amount
• Use the Cocke-Younger, Kasami algorithm or Earley’s algorithm

Fortunately,
• Large subclasses of CFGs can be parsed with limited lookahead
• Most programming language constructs fall in those subclasses

Among the interesting subclasses are LL(1) and LR(1) grammars

15

cs415, spring 22 Lecture 13

Predictive Parsing

Basic idea
Given A ® a | b, the parser should be able to choose between a & b

FIRST sets
For some rhs aÎG, define FIRST(a) as the set of tokens that

appear as the first symbol in some string that derives from a
That is, a Î FIRST(a) iff a Þ* a g, for some g

The LL(1) Property
If A ® a and A ® b both appear in the grammar, we would like

FIRST(a) Ç FIRST(b) = Æ
This would allow the parser to make a correct choice with a lookahead

of exactly one symbol !
This is almost correct,
but not quite

16

cs415, spring 22 Lecture 13

The FIRST Set – 1 symbol lookahead

a Î FIRST1(a) iff a Þ* a g, for some g

To build FIRST(X) for all grammar symbols X:
1. if X is a terminal (token), FIRST(X) := { X }
2. if X ® e, then e Î FIRST(X)

3. iterate until no more terminals or e can be added
to any FIRST(X):

if X ® Y1 Y2 … Yk then
a ÎFIRST(X) if a ÎFIRST(Yi) and

e Î FIRST(Yj) for all 1 £ j < i
e Î FIRST(X) if e Î FIRST(Yi) for all 1 £ i £ k

end iterate

Note: if e Ï FIRST(Y1), then FIRST(Yi) is irrelevant, for 1 < i

17

cs415, spring 22 Lecture 13

The FIRST Set

a Î FIRST(a) iff a Þ* a g, for some g

To build FIRST(a) for a = X1 X2 … Xn :

1. a Î FIRST(a) if a Î FIRST(Xi) and
e Î FIRST(Xj) for all 1 £ j < i

2. e Î FIRST(a) if e Î FIRST(Xi) for all 1 £ i £ n

18

cs415, spring 22 Lecture 13

The FOLLOW Set – 1 symbol

For a non-terminal A, define FOLLOW(A) as

FOLLOW(A) := the set of terminals that can appear immediately to
the right of A in some sentential form.

Thus, a non-terminal’s FOLLOW set specifies the tokens that
can legally appear after it; a terminal has no FOLLOW set

FOLLOW(A) = { a Î (T È {eof}) | S eof Þ* a A a g }

19

cs415, spring 22 Lecture 13

The FOLLOW Set

To build FOLLOW(X) for all non-terminal X:

1. Place eof in FOLLOW(<goal>)

iterate until no more terminals or eof can be added
to any FOLLOW(X):

2. If A ® aBb then
put {FIRST(b) - e} in FOLLOW(B)

3. If A ® aB then
put FOLLOW(A) in FOLLOW(B)

4. If A ® aBb and e Î FIRST(b) then
put FOLLOW(A) in FOLLOW(B)

20

cs415, spring 22 Lecture 13

Predictive Parsing

If A ® a and A ® b and e Î FIRST(a), then we need to ensure
that FIRST(b) is disjoint from FOLLOW(A), too

Define FIRST+(d) for rule A ® d as
• (FIRST(d) - { e }) È FOLLOW(A), if e Î FIRST(d)
• FIRST(d), otherwise

21

cs415, spring 22 Lecture 13

The LL(1) Property

A grammar is LL(1) iff A ® a and A ® b implies
FIRST+(a) Ç FIRST+(b) = Æ

This would allow the parser to make a correct choice with a lookahead
of exactly one symbol !

Question: Can there be two rules A ® a and A ® b in a LL(1)
grammar such that e Î FIRST(a) and e Î FIRST(b)?

Predictive Parsing

22

cs415, spring 22 Lecture 13

Predictive Parsing

Given a grammar that has the LL(1) property
• Problem: NT A needs to be replaced in next derivation step
• Assume A ® b1 | b2 | b3, with

FIRST+(b1) Ç FIRST+ (b2) = Æ, FIRST+(b1) Ç FIRST+ (b3) = Æ, and
FIRST+(b2) Ç FIRST+ (b3) = Æ (pair-wise disjoint sets)

/* find rule for A */
if (current token Î FIRST+ (b1))

select A ® b1
else if (current token Î FIRST+(b2))

select A ® b2
else if (current token Î FIRST+(b3))

select A ® b3
else

report an error and return false

Grammars with the LL(1)
property are called predictive
grammars because the parser
can “predict” the correct
expansion at each point in the
parse.
Parsers that capitalize on the
LL(1) property are called
predictive parsers.
One kind of predictive parser
is the recursive descent
parser. The other is a table-
driven parser table-driven
parser.

23

cs415, spring 22 Lecture 13

More Syntax Analysis

Top-down: Read EaC: Chapter 3.3

Bottom-up: Read EaC: Chapter 3.4

Next class

24

