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Announcements

• Third homework has been posted. Due Monday, March 7

• First project (local instruction scheduler) NEW deadlines:
code: March 9 @ 11:59pm – single tar file
report: March 11 @ 11:59pm – single pdf file

Submission site is now open on canvas

• Late policy: 
® Grace period: 1 hour
® 20% penalty for every started 24 hour period after the deadline.
® Saturday/Sunday count as a single 24 hour period.
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Parsing
(Syntax Analysis)

EAC Chapters 3.1 - 3.2
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Review: The Front End

Parser
• Checks the stream of words and their parts of speech

(produced by the scanner) for grammatical correctness
• Determines if the input is syntactically well formed
• Guides checking at deeper levels than syntax
• Builds an IR representation of the code

Source
code Scanner

IR
Parser

Errors

tokens
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The Study of Parsing

The process of discovering a derivation for some sentence
• Need a mathematical model of syntax — a grammar G
• Need an algorithm for testing membership in L(G)
• Need to keep in mind that our goal is building parsers, not 

studying the mathematics of arbitrary languages

Roadmap
1 Context-free grammars and derivations
2 Top-down parsing

® LL(1) parsers, hand-coded recursive descent parsers
3 Bottom-up parsing

® Automatically generated LR(1) parsers
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Specifying Syntax with a Grammar

Context-free syntax is specified with a context-free grammar
SheepNoise ® SheepNoise baa

|  baa
This CFG defines the set of noises sheep normally make 

It is written in a variant of Backus–Naur form

Formally, a grammar is a four tuple, G = (S,N,T,P)
• S is the start symbol                         (set of strings in L(G))
• N is a set of non-terminal symbols        (syntactic variables)
• T is a set of terminal symbols                    (words or tokens)
• P is a set of productions or rewrite rules    (P : N® (NÈT)* )

L(G) = { w Î T* |  S Þ* w}
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Deriving Syntax

We can use the SheepNoise grammar to create sentences
® use the productions as rewriting rules

And so on ...
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A Simple Expression Grammar

To explore the uses of CFGs, we need a more complex grammar G:

• Such a sequence of rewrites is called a derivation

• Process of discovering a derivation is called parsing

We denote this derivation:    Expr    Þ*      id – num * id

1 Expr ® Expr Op Expr 
2  ê number 
3  ê id 
4 Op ® + 
5  ê – 
6  ê * 
7  ê / 

 

 

x – 2 * y Î L(G) ?
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Derivations

• At each step, we choose a non-terminal to replace
• Different choices can lead to different derivations

Two derivations are of interest
• Leftmost derivation — replace leftmost NT at each step;

generates left sentential forms ( Þ*lm )
• Rightmost derivation — replace rightmost NT at each step;

generates right sentential forms ( Þ*rm )

These are the two systematic derivations
(We don’t care about randomly-ordered derivations!)

The example on the preceding slide was a leftmost derivation
• Of course, there is also a rightmost derivation
• Interestingly, the resulting parse trees may be different
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Parse Trees

E

E

EOp

Rule in our grammar: 
E ® E Op E

A single derivation step

can be represented as a tree structure
with the left-hand side non-terminal
as the root, and all right-hand side 
symbols as the children (ordered left
to right). 

… E … Þ … E Op E … 

The entire derivation of a sentence in the language
can be represented as a parse tree with the start symbol 
as its root, and leave nodes that are all terminal symbols.

NOTE: The structure of the parse tree has semantic significance!
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Structure Encodes Semantics

<sentence> ::= <subject> <verb> <rest>

Example: 

time flies like an arrow
fruit flies like a banana.
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The Two Derivations for  x – 2 * y

In both cases, Expr Þ*  id – num * id

• The two derivations produce different parse trees
• The parse trees imply different evaluation orders! 

Leftmost derivation Rightmost derivation
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Derivations and Parse Trees

Leftmost derivation

Rule Sentential Form 
— Expr 
1 Expr Op Expr 
3 <id,x> Op Expr  
5 <id,x> – Expr  
1 <id,x> – Expr Op Expr 
2 <id,x> – <num,2> Op Expr 
6 <id,x> – <num,2> * Expr 
3 <id,x> – <num,2> * <id,y> 

 

 
x

E

E Op

–

2

E

E

E

y

Op

*
This evaluates as   x – ( 2 * y )
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Derivations and Parse Trees

This corresponds to our rightmost derivation. 
Can we get this with another 
leftmost derivation as well?

x 2

E

Op EE

E Op E y

–

*

This evaluates as   ( x – 2 ) * y
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Two Leftmost Derivations for x – 2 * y

The Difference: 
Ø Different productions chosen on the second step

Ø Both derivations succeed in producing x - 2 * y

Rule Sentential Form 
— Expr 
1 Expr Op Expr 
3 <id,x> Op Expr  
5 <id,x> – Expr  
1 <id,x> – Expr Op Expr 
2 <id,x> – <num,2> Op Expr 
6 <id,x> – <num,2> * Expr 
3 <id,x> – <num,2> * <id,y> 

 

 
Original choice New choice
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Derivations and Precedence

These two derivations point out a problem with the grammar.
How to resolve ambiguity?

Answer: Change expression grammar to enforce  operator 
precedence and associativity

To add precedence
• Create a non-terminal for each level of precedence
• Isolate the corresponding part of the grammar
• Force the parser to recognize high precedence 

subexpressions first

For algebraic expressions 
• Multiplication and division, first                              (level one)
• Subtraction and addition, next                                (level two)

Note: we are ignoring the issue of associativity for now
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Derivations and Precedence

Adding the standard algebraic precedence produces:

This grammar is slightly larger
• Takes more rewriting to reach 

some of the terminal symbols
• Encodes expected precedence
• Produces same parse tree

under leftmost & rightmost 
derivations

Let’s see how it parses  x - 2 * y

level
one

level
two



cs415, spring 22 Lecture 12 18

Derivations and Precedence

The rightmost derivation

This produces  x – ( 2 * y ), along with an appropriate parse tree.
Both the leftmost and rightmost derivations give the same expression, 
because the grammar directly encodes the desired precedence.

G

E

–E

T

F

<id,x>

T

T

F

F*

<num,2>

<id,y>

Its parse tree
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Ambiguous Grammars

Definitions
• If a grammar has more than one leftmost derivation for a 

single sentential form, the grammar is ambiguous
• If a grammar has more than one rightmost derivation for a 

single sentential form, the grammar is ambiguous
• The leftmost and rightmost derivations for a sentential 

form may differ, even in an unambiguous grammar

Classic example — the if-then-else problem
Stmt ® if Expr then Stmt

|   if Expr then Stmt  else Stmt
|   … other stmts …

This ambiguity is entirely grammatical in nature
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Ambiguity

This sentential form has two derivations
if Expr1 then if Expr2 then Stmt1 else Stmt2
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Ambiguity

Removing the ambiguity
• Must rewrite the grammar to avoid generating the problem
• Match each else to innermost unmatched if (common sense rule)

With this grammar, the example has only one derivation

1 Stmt ® WithElse 
2  | NoElse 

3 WithElse ® if Expr  then WithElse else WithElse 
4  | OtherStmt 
5 NoElse ® if Expr  then Stmt 
6  | if Expr  then WithElse else NoElse 
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Ambiguity 

if Expr1 then if Expr2 then Stmt1 else Stmt2 

This binds the else controlling S2 to the inner if
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Deeper Ambiguity

Ambiguity usually refers to confusion in the CFG

Overloading can create deeper ambiguity
a = f(17)

In many Algol-like languages, f could be either a function or a 
subscripted array variable

Disambiguating this one requires context
• Really an issue of type, not context-free syntax
• Requires an extra-grammatical solution (not in CFG)
• Must handle these with a different mechanism

® Step outside grammar rather than use a more complex grammar
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Ambiguity - the Final Word

Ambiguity arises from two distinct sources
• Confusion in the context-free syntax                (if-then-else)
• Confusion that requires context to resolve        (overloading)

Resolving ambiguity
• To remove context-free ambiguity, rewrite the grammar
• Change language (e.g.: if … endif)
• To handle context-sensitive ambiguity takes cooperation

® Knowledge of declarations, types, …
® Accept a superset of L(G) & check it by other means†

® This is a language design problem

Sometimes, the compiler writer accepts an ambiguous grammar
® Parsing techniques that “do the right thing”
® i.e., always select the same derivation

†See Chapter 4
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Parsing
(Syntax Analysis)

Top-Down Parsing
EAC Chapters 3.3
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Parsing Techniques: Top-down parsers

LL(1), recursive descent

S Þ*lm  x A b Þlm x d b Þ*lm x y

x y

S

A
b

input: read left-to-right
construct leftmost deriviation (forwards)

1 input symbol lookahead

26
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Parsing Techniques: Top-down parsers

LL(1), recursive descent

S Þ*lm  x A b Þlm x d b Þ*lm x y

x y

S

A
b

d

input: read left-to-right
construct leftmost deriviation (forwards)

1 input symbol lookahead

rule A ® d

27
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LL(1), recursive descent

S Þ*lm  x A b Þlm x d b Þ*lm x y

x y

S

A
b

input: read left-to-right
construct leftmost deriviation (forwards)

1 input symbol lookahead

28

?

? Means that we
don’t know yet this 
part of the parse tree

Parsing Techniques: Top-down parsers
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Parsing Techniques: Bottom-up parsers

LR(1), operator precedence

input: read left-to-right
construct rightmost deriviation (backwards)

1 input symbol lookahead

x y

S

a

g

S Þ*rm a B y Þ rm a g y Þ*rm x y

rule  B ::= g

29

?
? Means that we
don’t know yet this 
part of the parse tree

?
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Top-down vs. Bottom-up decision

30

Scientist ® Richard_Feynman | Albert_Einstein

Top-down This is what you see on the input 
before you make your rule decision:

Are we looking at either Richard 
Feynman or Albert Einstein ?

? ?
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Top-down vs. Bottom-up decision

31

Scientist ® Richard_Feynman | Albert_Einstein

Is this the scientist 
Richard Feynman or Albert Einstein ?

Bottom-up This is what you see on the input 
before you make your rule decision:

?
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Syntax Analysis (top-down)

Read EaC: Chapter 3.3 

Syntax Analysis (bottom-up)

Read EaC: Chapter 3.4 

Next class
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