
CS415 Compilers

Syntax Analysis

These slides are based on slides copyrighted by
Keith Cooper, Ken Kennedy & Linda Torczon at Rice

University

cs415, spring 22 Lecture 12

Announcements

• Third homework has been posted. Due Monday, March 7

• First project (local instruction scheduler) NEW deadlines:
code: March 9 @ 11:59pm – single tar file
report: March 11 @ 11:59pm – single pdf file

Submission site is now open on canvas

• Late policy:
® Grace period: 1 hour
® 20% penalty for every started 24 hour period after the deadline.
® Saturday/Sunday count as a single 24 hour period.

2

cs415, spring 22

Parsing
(Syntax Analysis)

EAC Chapters 3.1 - 3.2

cs415, spring 22 Lecture 12 4

Review: The Front End

Parser
• Checks the stream of words and their parts of speech

(produced by the scanner) for grammatical correctness
• Determines if the input is syntactically well formed
• Guides checking at deeper levels than syntax
• Builds an IR representation of the code

Source
code Scanner

IR
Parser

Errors

tokens

cs415, spring 22 Lecture 12 5

The Study of Parsing

The process of discovering a derivation for some sentence
• Need a mathematical model of syntax — a grammar G
• Need an algorithm for testing membership in L(G)
• Need to keep in mind that our goal is building parsers, not

studying the mathematics of arbitrary languages

Roadmap
1 Context-free grammars and derivations
2 Top-down parsing

® LL(1) parsers, hand-coded recursive descent parsers
3 Bottom-up parsing

® Automatically generated LR(1) parsers

cs415, spring 22 Lecture 12 6

Specifying Syntax with a Grammar

Context-free syntax is specified with a context-free grammar
SheepNoise ® SheepNoise baa

| baa
This CFG defines the set of noises sheep normally make

It is written in a variant of Backus–Naur form

Formally, a grammar is a four tuple, G = (S,N,T,P)
• S is the start symbol (set of strings in L(G))
• N is a set of non-terminal symbols (syntactic variables)
• T is a set of terminal symbols (words or tokens)
• P is a set of productions or rewrite rules (P : N® (NÈT)*)

L(G) = { w Î T* | S Þ* w}

cs415, spring 22 Lecture 12 7

Deriving Syntax

We can use the SheepNoise grammar to create sentences
® use the productions as rewriting rules

And so on ...

cs415, spring 22 Lecture 12 8

A Simple Expression Grammar

To explore the uses of CFGs, we need a more complex grammar G:

• Such a sequence of rewrites is called a derivation

• Process of discovering a derivation is called parsing

We denote this derivation: Expr Þ* id – num * id

1 Expr ® Expr Op Expr
2 ê number
3 ê id
4 Op ® +
5 ê –
6 ê *
7 ê /

x – 2 * y Î L(G) ?

cs415, spring 22 Lecture 12 9

Derivations

• At each step, we choose a non-terminal to replace
• Different choices can lead to different derivations

Two derivations are of interest
• Leftmost derivation — replace leftmost NT at each step;

generates left sentential forms (Þ*lm)
• Rightmost derivation — replace rightmost NT at each step;

generates right sentential forms (Þ*rm)

These are the two systematic derivations
(We don’t care about randomly-ordered derivations!)

The example on the preceding slide was a leftmost derivation
• Of course, there is also a rightmost derivation
• Interestingly, the resulting parse trees may be different

cs415, spring 22 Lecture 12 10

Parse Trees

E

E

EOp

Rule in our grammar:
E ® E Op E

A single derivation step

can be represented as a tree structure
with the left-hand side non-terminal
as the root, and all right-hand side
symbols as the children (ordered left
to right).

… E … Þ … E Op E …

The entire derivation of a sentence in the language
can be represented as a parse tree with the start symbol
as its root, and leave nodes that are all terminal symbols.

NOTE: The structure of the parse tree has semantic significance!

cs415, spring 22 Lecture 12 11

Structure Encodes Semantics

<sentence> ::= <subject> <verb> <rest>

Example:

time flies like an arrow
fruit flies like a banana.

cs415, spring 22 Lecture 12 12

The Two Derivations for x – 2 * y

In both cases, Expr Þ* id – num * id

• The two derivations produce different parse trees
• The parse trees imply different evaluation orders!

Leftmost derivation Rightmost derivation

cs415, spring 22 Lecture 12 13

Derivations and Parse Trees

Leftmost derivation

Rule Sentential Form
— Expr
1 Expr Op Expr
3 <id,x> Op Expr
5 <id,x> – Expr
1 <id,x> – Expr Op Expr
2 <id,x> – <num,2> Op Expr
6 <id,x> – <num,2> * Expr
3 <id,x> – <num,2> * <id,y>

x

E

E Op

–

2

E

E

E

y

Op

*
This evaluates as x – (2 * y)

cs415, spring 22 Lecture 12 14

Derivations and Parse Trees

This corresponds to our rightmost derivation.
Can we get this with another
leftmost derivation as well?

x 2

E

Op EE

E Op E y

–

*

This evaluates as (x – 2) * y

cs415, spring 22 Lecture 12 15

Two Leftmost Derivations for x – 2 * y

The Difference:
Ø Different productions chosen on the second step

Ø Both derivations succeed in producing x - 2 * y

Rule Sentential Form
— Expr
1 Expr Op Expr
3 <id,x> Op Expr
5 <id,x> – Expr
1 <id,x> – Expr Op Expr
2 <id,x> – <num,2> Op Expr
6 <id,x> – <num,2> * Expr
3 <id,x> – <num,2> * <id,y>

Original choice New choice

cs415, spring 22 Lecture 12 16

Derivations and Precedence

These two derivations point out a problem with the grammar.
How to resolve ambiguity?

Answer: Change expression grammar to enforce operator
precedence and associativity

To add precedence
• Create a non-terminal for each level of precedence
• Isolate the corresponding part of the grammar
• Force the parser to recognize high precedence

subexpressions first

For algebraic expressions
• Multiplication and division, first (level one)
• Subtraction and addition, next (level two)

Note: we are ignoring the issue of associativity for now

cs415, spring 22 Lecture 12 17

Derivations and Precedence

Adding the standard algebraic precedence produces:

This grammar is slightly larger
• Takes more rewriting to reach

some of the terminal symbols
• Encodes expected precedence
• Produces same parse tree

under leftmost & rightmost
derivations

Let’s see how it parses x - 2 * y

level
one

level
two

cs415, spring 22 Lecture 12 18

Derivations and Precedence

The rightmost derivation

This produces x – (2 * y), along with an appropriate parse tree.
Both the leftmost and rightmost derivations give the same expression,
because the grammar directly encodes the desired precedence.

G

E

–E

T

F

<id,x>

T

T

F

F*

<num,2>

<id,y>

Its parse tree

cs415, spring 22 Lecture 12 19

Ambiguous Grammars

Definitions
• If a grammar has more than one leftmost derivation for a

single sentential form, the grammar is ambiguous
• If a grammar has more than one rightmost derivation for a

single sentential form, the grammar is ambiguous
• The leftmost and rightmost derivations for a sentential

form may differ, even in an unambiguous grammar

Classic example — the if-then-else problem
Stmt ® if Expr then Stmt

| if Expr then Stmt else Stmt
| … other stmts …

This ambiguity is entirely grammatical in nature

cs415, spring 22 Lecture 12 20

Ambiguity

This sentential form has two derivations
if Expr1 then if Expr2 then Stmt1 else Stmt2

cs415, spring 22 Lecture 12 21

Ambiguity

Removing the ambiguity
• Must rewrite the grammar to avoid generating the problem
• Match each else to innermost unmatched if (common sense rule)

With this grammar, the example has only one derivation

1 Stmt ® WithElse
2 | NoElse

3 WithElse ® if Expr then WithElse else WithElse
4 | OtherStmt
5 NoElse ® if Expr then Stmt
6 | if Expr then WithElse else NoElse

cs415, spring 22 Lecture 12 22

Ambiguity

if Expr1 then if Expr2 then Stmt1 else Stmt2

This binds the else controlling S2 to the inner if

cs415, spring 22 Lecture 12 23

Deeper Ambiguity

Ambiguity usually refers to confusion in the CFG

Overloading can create deeper ambiguity
a = f(17)

In many Algol-like languages, f could be either a function or a
subscripted array variable

Disambiguating this one requires context
• Really an issue of type, not context-free syntax
• Requires an extra-grammatical solution (not in CFG)
• Must handle these with a different mechanism

® Step outside grammar rather than use a more complex grammar

cs415, spring 22 Lecture 12 24

Ambiguity - the Final Word

Ambiguity arises from two distinct sources
• Confusion in the context-free syntax (if-then-else)
• Confusion that requires context to resolve (overloading)

Resolving ambiguity
• To remove context-free ambiguity, rewrite the grammar
• Change language (e.g.: if … endif)
• To handle context-sensitive ambiguity takes cooperation

® Knowledge of declarations, types, …
® Accept a superset of L(G) & check it by other means†

® This is a language design problem

Sometimes, the compiler writer accepts an ambiguous grammar
® Parsing techniques that “do the right thing”
® i.e., always select the same derivation

†See Chapter 4

cs415, spring 22

Parsing
(Syntax Analysis)

Top-Down Parsing
EAC Chapters 3.3

cs415, spring 22 Lecture 12

Parsing Techniques: Top-down parsers

LL(1), recursive descent

S Þ*lm x A b Þlm x d b Þ*lm x y

x y

S

A
b

input: read left-to-right
construct leftmost deriviation (forwards)

1 input symbol lookahead

26

cs415, spring 22 Lecture 12

Parsing Techniques: Top-down parsers

LL(1), recursive descent

S Þ*lm x A b Þlm x d b Þ*lm x y

x y

S

A
b

d

input: read left-to-right
construct leftmost deriviation (forwards)

1 input symbol lookahead

rule A ® d

27

cs415, spring 22 Lecture 12

LL(1), recursive descent

S Þ*lm x A b Þlm x d b Þ*lm x y

x y

S

A
b

input: read left-to-right
construct leftmost deriviation (forwards)

1 input symbol lookahead

28

?

? Means that we
don’t know yet this
part of the parse tree

Parsing Techniques: Top-down parsers

cs415, spring 22 Lecture 12

Parsing Techniques: Bottom-up parsers

LR(1), operator precedence

input: read left-to-right
construct rightmost deriviation (backwards)

1 input symbol lookahead

x y

S

a

g

S Þ*rm a B y Þ rm a g y Þ*rm x y

rule B ::= g

29

?
? Means that we
don’t know yet this
part of the parse tree

?

cs415, spring 22 Lecture 12

Top-down vs. Bottom-up decision

30

Scientist ® Richard_Feynman | Albert_Einstein

Top-down This is what you see on the input
before you make your rule decision:

Are we looking at either Richard
Feynman or Albert Einstein ?

? ?

cs415, spring 22 Lecture 12

Top-down vs. Bottom-up decision

31

Scientist ® Richard_Feynman | Albert_Einstein

Is this the scientist
Richard Feynman or Albert Einstein ?

Bottom-up This is what you see on the input
before you make your rule decision:

?

cs415, spring 22 Lecture 12

Syntax Analysis (top-down)

Read EaC: Chapter 3.3

Syntax Analysis (bottom-up)

Read EaC: Chapter 3.4

Next class

32

