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Announcements

• Third homework has been posted. Due Monday, March 7

• First project (local instruction scheduler) NEW deadlines:
code: March 9
report: March 11
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Project 1 clarifications

1. The order in which programs perform I/O has to be 
preserved. This requires a dependence notion on outputAI
instructions. 

2. Benchmark codes have storeAI and loadAI memory accesses 
only, with r0 as the base register. You must use the offset to 
determine whether a dependence exists or not.

3. We will have some private tests that have store and load 
memory accesses. This is for extra credit.

4. Project reports should be around 6 pages long, with a max of 8 
pages. We will not read your report beyond 8 pages. The report 
should include a short description of what you did, the outcome 
of your experiments, and how you interpret these outcomes. Use 
graphs/figures to show your results.  
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Example of Thompson’s Construction

Let’s try    a ( b | c )*

1.  a, b, & c

2.  b | c

3.  ( b | c )*

S0 S1 
a

S0 S1 
b

S0 S1 
c

S2 S3 
b

S4 S5 
c

S1 S6 S0 S7 

e

e

e e

e e

e e

S1 S2 
b

S3 S4 
c

S0 S5 

e

e

e

e
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Example of Thompson’s Construction  (con’t)

4.  a ( b | c )*

Of course, a human would design something simpler ...

S0 S1 
a

b | c
But, we can automate production of  
the more complex one ...

S0 S1 
a e

S4 S5 
b

S6 S7 
c

S3 S8 S2 S9 

e

e

e e

e e

e e
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NFA ®DFA with Subset Construction

Need to build a simulation of the NFA

Two key functions
• move(si , a) is set of states reachable from set of states si by a
• e-closure(si) is set of states reachable from set of states si by e

The algorithm (sketch):
• Start state derived from s0 of the NFA

• Take its e-closure S0 = e-closure(s0) 
• For each state S, compute move(S, a) for each  a Î S, and take 

its e-closure
• Iterate until no more states are added

Sounds more complex than it is…
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NFA ®DFA with Subset Construction

The algorithm:

s0 ¬ e-closure(q0 )

add s0 to S

while ( S is still changing )
for each si Î S

for each aÎ S
s?¬ e-closure(move(si,a))
if  ( s? Ï S ) then

add s? to S as sj
T[ si,a] ¬ sj

else
T[ si,a] ¬ s?

Let’s think about why this works

The algorithm halts:

1. S contains no duplicates
(test before adding)

2. 2Q is finite

3. while loop adds to S, but does 
not remove from S (monotone)

Þ the loop halts

S contains all the reachable  
NFA states
It tries each symbol in each si.

It builds every possible NFA
configuration.

Þ S and T form the DFA
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NFA ®DFA with Subset Construction

Example of a fixed-point computation
• Monotone construction of some finite set
• Halts when it stops adding to the set
• Proofs of halting & correctness are similar
• These computations arise in many contexts 

Other fixed-point computations
• Canonical construction of sets of LR(1) items

® Quite similar to the subset construction 
• Classic data-flow analysis

® Solving sets of simultaneous set equations
• DFA minimization algorithm (coming up!)

We will see many more fixed-point computations
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q0 q1 
a e

q4 q5 
b

q6 q7 
c

q3 q8 q2 q9 

e

e e

e e

e e

NFA ®DFA with Subset Construction

Applying the subset construction:

a ( b | c )* :
e
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q0 q1 
a e

q4 q5 
b

q6 q7 
c

q3 q8 q2 q9 

e

e e

e e

e e

  e-closure(move(s,*)) 

 Sets of NFA 
states 

a b c 

s0 {q0} {q1, q2, q3, 
 q4, q6, q9} 

none none 
 

s1 {q1, q2, q3, 
q4, q6, q9} 

none {q5, q8, q9,  
q3, q4, q6} 

{q7, q8, q9,  
q3, q4, q6} 

s2 {q5, q8, q9, 
q3, q4, q6} 

none s2 s3 

s3 {q7, q8, q9, 
q3, q4, q6} 

none s2 s3 
 

 

Final states

NFA ®DFA with Subset Construction

Applying the subset construction:

a ( b | c )* :
e
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NFA ®DFA with Subset Construction

The DFA for a ( b | c )*

• Ends up smaller than the NFA
• All transitions are deterministic 

s3 

s2

s0 s1

c

b
a

b

c

c

b
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Automating Scanner Construction

RE®NFA  (Thompson’s construction) 
• Build an NFA for each term

• Combine them with e-moves

NFA ®DFA (subset construction) 
• Build the simulation

DFA ®Minimal DFA   
• Hopcroft’s algorithm                         

DFA ®RE   (not really part of scanner construction)
• All pairs, all paths problem
• Union together paths from s0 to a final state

minimal 
DFA

RE NFA DFA

The Cycle of  Constructions
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DFA Minimization

q1

q2

How do we know whether two states 
encode the same information?

accepting state

Non-accepting state

w

w

Intuition: Two states are 
equivalent if for all 
sequences of input 
symbols “w” they both 
lead to an accepting state, 
or both end up in a non-
accepting state. 

q1 and q2 are not equivalent. 
“w” is a witness that they 
are not equivalent.
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DFA Minimization

The Big Picture
• Discover sets of equivalent states
• Represent each such set with just one state
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DFA Minimization

The Big Picture
• Discover sets of equivalent states
• Represent each such set with just one state

Two states are equivalent if and only if:

• " a Î S, transitions on a lead to equivalent states       (DFA)
• if a-transitions to different sets Þ two states must be in 

different sets, i.e., cannot be equivalent
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DFA Minimization

The Big Picture
• Discover sets of equivalent states
• Represent each such set with just one state

Two states are equivalent if and only if:

• " a Î S, transitions on a lead to equivalent states       (DFA)
• if a-transitions to different sets Þ two states must be in 

different sets, i.e., cannot be equivalent

A partition P of S
• Each state s Î S is in exactly one set pi Î P
• The algorithm iteratively partitions the DFA’s states 
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DFA Minimization

Details of the algorithm
• Group states into maximal size sets, optimistically
• Iteratively subdivide those sets, as needed 
• States that remain grouped together are equivalent

Initial partition, P0 , has two sets: {F} & {Q-F} (D =(Q,S,d,q0,F))

Splitting a set (“partitioning a set s by a”)
• Assume qa, & qb Î s, and d(qa,a) = qx, &  d(qb,a) = qy

• If qx & qy are not in the same set, i.e., are considered 
equivalent, then s must be split
® qa has transition on a, qb does not Þ a splits s
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DFA Minimization

The algorithm
P ¬ { F, {Q-F}}
while ( P is still changing)

T ¬ { }
for each set S Î P

T ¬ T È split(S)
P ¬ T

split(S): 
for each aÎ S

if a splits S into
S1 , S2 , … then

return {S1 , S2, …}
else return S 

Why does this work?
• Start off with 2 subsets of Q 

{F} and {Q-F}
• While loop takes Pi®Pi+1 by 

splitting 1 or more sets
• Pi+1 is at least one step closer 

to the partition with |Q| sets
• Maximum of |Q | splits
Note that
• Partitions are never combined

This is a fixed-point algorithm!
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Back to our DFA Minimization example

Then, apply the minimization algorithm

To produce the minimal DFA

s3 

s2 

s0 s1 

c

b
a

b

b

c

c

s0 s1 
a

b | c
We observed that a human would 
design a simpler automaton than 
Thompson’s construction & the subset 
construction did.

Minimizing that DFA produces the one 
that a human would design! 

final states
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Another Example Register Specification

Start with a regular expression
r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9

minimal 
DFA

RE NFA DFA

The Cycle of  Constructions
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Abbreviated Register Specification

Thompson’s construction produces
r 0

r 1

r 2

r 8

r 9

… …

s0 sf

e

e

e

e

e

e

ee
e

e

e

e e

ee

e

e

e

e
e

…

minimal 
DFA

RE NFA DFA

The Cycle of  Constructions
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Abbreviated Register Specification

The subset construction builds

This is a DFA, but it has a lot of states …

r
0

sf0

s0

sf11
sf22

sf9

sf8

…
9

8

minimal 
DFA

RE NFA DFA

The Cycle of  Constructions
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Abbreviated Register Specification

The DFA minimization algorithm builds

This looks like what a skilled compiler writer would do!

r
s0 sf

0,1,2,3,4,
5,6,7,8,9

minimal 
DFA

RE NFA DFA

The Cycle of  Constructions
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Limits of Regular Languages

Advantages of Regular Expressions
• Simple & powerful notation for specifying patterns
• Automatic construction of fast recognizers
• Many kinds of syntax can be specified with REs

Example — an expression grammar
Term ® [a-zA-Z] ([a-zA-z] | [0-9])*

Op ® + | - | * | /
Expr  ® ( Term Op )* Term

Of course, this would generate a DFA …

If REs are so useful …
Why not use them for everything?
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Limits of Regular Languages

Not all languages are regular
RL’s Ì CFL’s  Ì CSL’s

You cannot construct DFA’s to recognize these languages
• L =  { pkqk } (parenthesis languages)

• L =  { wcw r | w Î S*}
Neither of these is a regular language

But, this is a little subtle.  You can construct DFA’s for
• Strings with alternating 0’s and 1’s               

( e | 1 ) ( 01 )* ( e | 0 ) 
• Strings with and even number of 0’s and 1’s                    
• Strings of bit patterns that represent binary numbers which 

are divisible by 5 
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What can be so hard?

Poor language design can complicate scanning
• Reserved words are important

if then then then = else; else else = then                              (PL/I)

• Insignificant blanks                                    (Fortran & Algol68)
do 10 i = 1,25
do 10 i = 1.25

• String constants with special characters         (C, C++, Java, …)
newline, tab, quote, comment delimiters, …

• Limited identifier “length”                          (Fortran 66 & PL/I)
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Parsing
(Syntax Analysis)

EAC Chapters 3.1 - 3.2

Next class topic


