CS415 Compilers

Lexical Analysis

Part 4

These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University
• Third homework has been posted. Due Monday, March 7

• First project (local instruction scheduler) NEW deadlines:
 code: March 9
 report: March 11
1. The order in which programs perform I/O has to be preserved. This requires a dependence notion on output instructions.

2. Benchmark codes have store and load memory accesses only, with r0 as the base register. You must use the offset to determine whether a dependence exists or not.

3. We will have some private tests that have store and load memory accesses. This is for extra credit.

4. Project reports should be around 6 pages long, with a max of 8 pages. We will not read your report beyond 8 pages. The report should include a short description of what you did, the outcome of your experiments, and how you interpret these outcomes. Use graphs/figures to show your results.
Example of Thompson’s Construction

Let’s try $a (b \mid c)^*$

1. $a, b, \& c$

2. $b \mid c$

3. $(b \mid c)^*$
4. \(a (b \mid c)^* \)

Of course, a human would design something simpler ...

But, we can automate production of the more complex one ...
Need to build a simulation of the NFA

Two key functions
• $\text{move}(s_i, a)$ is set of states reachable from set of states s_i by a
• ε-closure(s_i) is set of states reachable from set of states s_i by ε

The algorithm (sketch):
• Start state derived from s_0 of the NFA
• Take its ε-closure $S_0 = \varepsilon$-closure(s_0)
• For each state S, compute $\text{move}(S, a)$ for each $a \in \Sigma$, and take its ε-closure
• Iterate until no more states are added

Sounds more complex than it is...
The algorithm:

\[s_0 \rightarrow \varepsilon\text{-closure}(q_0) \]
add \(s_0 \) to \(S \)
while (\(S \) is still changing)
for each \(s_i \in S \)
for each \(a \in \Sigma \)
\[s_? \leftarrow \varepsilon\text{-closure}(\text{move}(s_i, a)) \]
if (\(s_? \notin S \)) then
add \(s_? \) to \(S \) as \(s_j \)
\[T[s_i, a] \leftarrow s_j \]
else
\[T[s_i, a] \leftarrow s_? \]

Let’s think about why this works

The algorithm halts:

1. \(S \) contains no duplicates
 (test before adding)
2. \(2^\mathcal{Q} \) is finite
3. while loop adds to \(S \), but does not remove from \(S \) (monotone)
\[\Rightarrow \text{the loop halts} \]
\(S \) contains all the reachable NFA states
It tries each symbol in each \(s_i \).
It builds every possible NFA configuration.
\[\Rightarrow S \text{ and } T \text{ form the DFA} \]
Example of a \textit{fixed-point} computation
\begin{itemize}
 \item Monotone construction of some finite set
 \item Halts when it stops adding to the set
 \item Proofs of halting & correctness are similar
 \item These computations arise in many contexts
\end{itemize}

Other fixed-point computations
\begin{itemize}
 \item \textit{Canonical} construction of sets of LR(1) items
 \begin{itemize}
 \item Quite similar to the subset construction
 \end{itemize}
 \item Classic data-flow analysis
 \begin{itemize}
 \item Solving sets of simultaneous set equations
 \end{itemize}
 \item DFA minimization algorithm (coming up!)
\end{itemize}

\textit{We will see many more fixed-point computations}
NFA → DFA with Subset Construction

Applying the subset construction:

\[a (b | c)^* : \]

\[q_0 \overset{a}{\rightarrow} q_1 \overset{\varepsilon}{\rightarrow} q_2 \overset{\varepsilon}{\rightarrow} q_3 \overset{\varepsilon}{\rightarrow} q_4 \overset{b}{\rightarrow} q_5 \overset{\varepsilon}{\rightarrow} q_6 \overset{c}{\rightarrow} q_7 \overset{\varepsilon}{\rightarrow} q_8 \overset{\varepsilon}{\rightarrow} q_9 \]
NFA → DFA with Subset Construction

a (b | c)*:

![Diagram](image)

Applying the subset construction:

<table>
<thead>
<tr>
<th>Sets of NFA states</th>
<th>ε-closure(move(s,*))</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>s₀</td>
<td>{q₀}</td>
<td>{q₁, q₂, q₃, q₄, q₆, q₉}</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>s₁</td>
<td>{q₁, q₂, q₃, q₄, q₆, q₉}</td>
<td>none</td>
<td>{q₅, q₆, q₉, q₃, q₄, q₆}</td>
<td>{q₇, q₈, q₉, q₃, q₄, q₆}</td>
</tr>
<tr>
<td>s₂</td>
<td>{q₅, q₆, q₉, q₃, q₄, q₆}</td>
<td>none</td>
<td>s₂</td>
<td>s₃</td>
</tr>
<tr>
<td>s₃</td>
<td>{q₇, q₈, q₉, q₃, q₄, q₆}</td>
<td>none</td>
<td>s₂</td>
<td>s₃</td>
</tr>
</tbody>
</table>

Final states
The DFA for $a(\ b \ | \ c \)^*$

- Ends up smaller than the NFA
- All transitions are deterministic
Automating Scanner Construction

- RE \rightarrow NFA (*Thompson’s construction*)
 - Build an NFA for each term
 - Combine them with ε-moves

- NFA \rightarrow DFA (*subset construction*)
 - Build the simulation

- DFA \rightarrow Minimal DFA
 - Hopcroft’s algorithm

- DFA \rightarrow RE (*not really part of scanner construction*)
 - All pairs, all paths problem
 - Union together paths from s_0 to a final state

The Cycle of Constructions
How do we know whether two states encode the same information?

Intuition: Two states are equivalent if for all sequences of input symbols “w” they both lead to an accepting state, or both end up in a non-accepting state.

q_1 and q_2 are not equivalent. “w” is a witness that they are not equivalent.
DFA Minimization

The Big Picture

• Discover sets of equivalent states
• Represent each such set with just one state
The Big Picture

• Discover sets of equivalent states
• Represent each such set with just one state

Two states are equivalent if and only if:

• $\forall a \in \Sigma$, transitions on a lead to equivalent states \hspace{1cm} \text{(DFA)}
• if a-transitions to different sets \Rightarrow two states must be in different sets, i.e., cannot be equivalent
The Big Picture

• Discover sets of equivalent states
• Represent each such set with just one state

Two states are equivalent if and only if:

• \(\forall a \in \Sigma, \) transitions on \(a \) lead to equivalent states \hspace{1cm} \text{(DFA)}
• if \(a \)-transitions to different sets \(\Rightarrow \) two states must be in different sets, i.e., cannot be equivalent

A partition \(P \) of \(S \)

• Each state \(s \in S \) is in exactly one set \(p_i \in P \)
• The algorithm iteratively partitions the DFA’s states
Details of the algorithm

- Group states into maximal size sets, optimistically
- Iteratively subdivide those sets, as needed
- States that remain grouped together are equivalent

Initial partition, P_0, has two sets: \{F\} & \{Q-F\} \quad (D = (Q, \Sigma, \delta, q_0, F))

Splitting a set (“partitioning a set s by a”)

- Assume $q_a, q_b \in s$, and $\delta(q_a, a) = q_x, \delta(q_b, a) = q_y$
- If q_x & q_y are not in the same set, i.e., are considered equivalent, then s must be split
 \[\rightarrow q_a \text{ has transition on } a, q_b \text{ does not } \Rightarrow a \text{ splits } s \]
The algorithm

\[P \leftarrow \{ F, \{Q - F\}\} \]

while (P is still changing)
\[T \leftarrow \{\} \]
for each set \(S \in P \)
\[T \leftarrow T \cup \text{split}(S) \]
\[P \leftarrow T \]

\text{split}(S):
for each \(a \in \Sigma \)
if \(a \) splits \(S \) into \(S_1, S_2, \ldots \) then
return \(\{S_1, S_2, \ldots\} \)
else return \(S \)

Why does this work?
\begin{itemize}
 \item Start off with 2 subsets of \(Q \) \{\(F \)\} and \(\{Q - F\} \)
 \item While loop takes \(P_i \rightarrow P_{i+1} \) by splitting 1 or more sets
 \item \(P_{i+1} \) is at least one step closer to the partition with \(|Q|\) sets
 \item Maximum of \(|Q|\) splits
\end{itemize}

Note that
\begin{itemize}
 \item Partitions are never combined
\end{itemize}

This is a fixed-point algorithm!
Then, apply the minimization algorithm

<table>
<thead>
<tr>
<th>Current Partition</th>
<th>Split on</th>
<th>(\varepsilon)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_0) {(s_1, s_2, s_3 }} {s_0}</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>

We observed that a human would design a simpler automaton than Thompson's construction & the subset construction did.

Minimizing that DFA produces the one that a human would design!
Another Example Register Specification

Start with a regular expression

\(r_0 \mid r_1 \mid r_2 \mid r_3 \mid r_4 \mid r_5 \mid r_6 \mid r_7 \mid r_8 \mid r_9 \)

The Cycle of Constructions
Thompson’s construction produces

The Cycle of Constructions
The subset construction builds

This is a DFA, but it has a lot of states ...

The Cycle of Constructions
The DFA minimization algorithm builds

This looks like what a skilled compiler writer would do!
Advantages of Regular Expressions

- Simple & powerful notation for specifying patterns
- Automatic construction of fast recognizers
- Many kinds of syntax can be specified with REs

Example — an expression grammar

\[
\begin{align*}
Term & \rightarrow \ [a-zA-Z]\ ([a-zA-Z] \ | \ [0-9])^* \\
Op & \rightarrow + \ | - \ | \ast \ | \div \\
Expr & \rightarrow (\ Term \ Op)^* \ Term
\end{align*}
\]

Of course, this would generate a DFA ...

If REs are so useful ...

Why not use them for everything?
Limits of Regular Languages

Not all languages are regular
RL’s ⊂ CFL’s ⊂ CSL’s

You cannot construct DFA’s to recognize these languages
• $L = \{ p^k q^k \}$ (parenthesis languages)
• $L = \{ wcw^r \mid w \in \Sigma^* \}$

Neither of these is a regular language

But, this is a little subtle. You can construct DFA’s for
• Strings with alternating 0’s and 1’s
 $(\varepsilon | 1)(01)^*(\varepsilon | 0)$
• Strings with and even number of 0’s and 1’s
• Strings of bit patterns that represent binary numbers which are divisible by 5
Poor language design can complicate scanning

- **Reserved words are important**

  ```plaintext
  if then then then = else; else else = then
  (PL/I)
  ```

- **Insignificant blanks**

  ```plaintext
  do 10 i = 1,25
  do 10 i = 1.25
  (Fortran & Algol68)
  ```

- **String constants with special characters**

 newline, tab, quote, comment delimiters, ...

  ```plaintext
  (C, C++, Java, ...)
  ```

- **Limited identifier “length”**

  ```plaintext
  (Fortran 66 & PL/I)
  ```
Parsing
(Syntax Analysis)

EAC Chapters 3.1 - 3.2