

CS415 Compilers

Lexical Analysis
Part 4

These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University • Third homework has been posted. Due Monday, March 7

• First project (local instruction scheduler) NEW deadlines:

code: March 9

report: March 11

RUTGERS Project 1 clarifications

- 1. The order in which programs perform I/O has to be preserved. This requires a dependence notion on outputAI instructions.
- 2. Benchmark codes have storeAI and loadAI memory accesses only, with r0 as the base register. You must use the offset to determine whether a dependence exists or not.
- 3. We will have some private tests that have store and load memory accesses. This is for extra credit.
- 4. Project reports should be around 6 pages long, with a max of 8 pages. We will not read your report beyond 8 pages. The report should include a short description of what you did, the outcome of your experiments, and how you interpret these outcomes. Use graphs/figures to show your results.

ITGERS Example of Thompson's Construction

Let's try $\underline{a} (\underline{b} | \underline{c})^*$

RUTGERS Example of Thompson's Construction (con't)

Of course, a human would design something simpler ...

But, we can automate production of the more complex one ...

NFA →DFA with Subset Construction

Need to build a simulation of the NFA

Two key functions

- $move(s_i, \underline{a})$ is set of states reachable from set of states s_i by \underline{a}
- ε -closure(s_i) is set of states reachable from set of states s_i by ε

The algorithm (sketch):

- Start state derived from s_0 of the NFA
- Take its ε -closure $S_0 = \varepsilon$ -closure(s_0)
- For each state S, compute move(S, a) for each $a \in \Sigma$, and take its ϵ -closure
- Iterate until no more states are added

Sounds more complex than it is...

NFA → DFA with Subset Construction

The algorithm:

```
s_0 \leftarrow \varepsilon-closure(q_0)

add \ s_0 to S

while \ (S \ is \ still \ changing \ )

for \ each \ s_i \in S

for \ each \ a \in \Sigma

s_i \leftarrow \varepsilon-closure(move(s_i, a))

if \ (s_i \notin S) \ then

add \ s_i \ to \ S \ as \ s_i

T[s_i, a] \leftarrow s_i

else

T[s_i, a] \leftarrow s_i
```

Let's think about why this works

The algorithm halts:

- S contains no duplicates (test before adding)
- 2. 20 is finite
- 3. while loop adds to S, but does not remove from S (monotone)
- ⇒ the loop halts

S contains all the reachable NFA states

It tries each symbol in each s_i.

It builds every possible NFA configuration.

⇒ S and T form the DFA

NFA → DFA with Subset Construction

Example of a fixed-point computation

- Monotone construction of some finite set
- Halts when it stops adding to the set
- Proofs of halting & correctness are similar
- These computations arise in many contexts

Other fixed-point computations

- Canonical construction of sets of LR(1) items
 - → Quite similar to the subset construction
- Classic data-flow analysis
 - → Solving sets of simultaneous set equations
- DFA minimization algorithm (coming up!)

We will see many more fixed-point computations

RUTGERS NFA -> DFA with Subset Construction

Applying the subset construction:

RUTGERS NFA -> DFA with Subset Construction

Applying the subset construction:

		ε-closure(move(s,*))				
	Sets of NFA states	<u>a</u>	<u>b</u>	<u>c</u>		
S ₀	<i>{9o}</i>	{q ₁ , q ₂ , q ₃ , q ₄ , q ₆ , q ₉ }	none	none		
S ₁	{ q ₁ , q ₂ , q ₃ , q ₄ , q ₆ , q ₉ }	none	{ q 5, q 8, q 9, q 3, q 4, q 6}	{q ₇ , q ₈ , q ₉ , q ₃ , q ₄ , q ₆ }		
S ₂	{q ₅ , q ₈ , q ₉ , q ₃ , q ₄ , q ₆ }	none	s_2	s_3		
S ₃	{q ₇ , q ₈ , q ₉ , q ₃ , q ₄ , q ₆ }	none	s_2	$oldsymbol{\mathcal{S}_{\mathcal{J}}}$		

Lecture 11

Final states

The DFA for $\underline{a} (\underline{b} | \underline{c})^*$

δ	<u>a</u>	<u>b</u>	<u>c</u>
s_0	s_1	-	1
s ₁	-	s ₂	s_3
s ₂	-	s ₂	s_3
S ₃	-	s ₂	s ₃

- Ends up smaller than the NFA
- All transitions are deterministic

Automating Scanner Construction

RE-NFA (Thompson's construction)

- Build an NFA for each term
- Combine them with ε-moves

NFA → DFA (subset construction)

Build the simulation

 $DFA \rightarrow Minimal DFA$

Hopcroft's algorithm

DFA →RE (not really part of scanner construction)

- All pairs, all paths problem
- Union together paths from s_0 to a final state

How do we know whether two states encode the same information?

Intuition: Two states are equivalent if for all sequences of input symbols "w" they both lead to an accepting state, or both end up in a non-accepting state.

 q_1 and q_2 are not equivalent. "w" is a witness that they are not equivalent.

The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state

The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state

Two states are equivalent if and only if:

- $\forall a \in \Sigma$, transitions on a lead to equivalent states (DFA)
- if a-transitions to different sets \Rightarrow two states must be in different sets, i.e., cannot be equivalent

The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state

Two states are equivalent if and only if:

- $\forall a \in \Sigma$, transitions on a lead to equivalent states (DFA)
- if a-transitions to different sets \Rightarrow two states must be in different sets, i.e., cannot be equivalent

A partition P of S

- Each state $s \in S$ is in exactly one set $p_i \in P$
- The algorithm iteratively partitions the DFA's states

Details of the algorithm

- Group states into maximal size sets, optimistically
- Iteratively subdivide those sets, as needed
- States that remain grouped together are equivalent

Initial partition, P_0 , has two sets: $\{F\}$ & $\{Q-F\}$ $(D = (Q, \Sigma, \delta, q_0, F))$

Splitting a set ("partitioning a set s by \underline{a} ")

- Assume q_a , & $q_b \in s$, and $\delta(q_a,\underline{a}) = q_x$, & $\delta(q_b,\underline{a}) = q_y$
- If $q_x \& q_y$ are not in the same set, i.e., are considered equivalent, then s must be split
 - \rightarrow q_a has transition on a, q_b does not \Rightarrow <u>a</u> splits s

The algorithm

```
P \leftarrow \{F, \{Q-F\}\}\}
while (P is still changing)
    T \leftarrow \{\}
   for each set S \in P
         T \leftarrow T \cup split(S)
   P \leftarrow T
 split(S):
  for each a \in \Sigma
    if a splits S into
        S_1, S_2 then
           return \{S_1, S_2, \}
   else return S
```

Why does this work?

- Start off with 2 subsets of Q {F} and {Q-F}
- While loop takes $P_i \rightarrow P_{i+1}$ by splitting 1 or more sets
- P_{i+1} is at least one step closer to the partition with |Q| sets
- Maximum of |Q| splits Note that
- Partitions are never combined

This is a fixed-point algorithm!

Back to our DFA Minimization example

Then, apply the minimization algorithm

		Split on		
	Current Partition	<u>a</u>	<u>b</u>	<u>C</u>
P_{o}	$\{s_1, s_2, s_3\} \{s_0\}$	none	none	none

 $\begin{array}{c|c}
 & \underline{b} & \underline{s_2} \\
 & \underline{b} & \underline{c} \\
 & \underline{c} & \underline{s_3} \\
 & \underline{c} & \underline{c}
\end{array}$

final states

To produce the minimal DFA

We observed that a human would design a simpler automaton than Thompson's construction & the subset construction did.

Minimizing that DFA produces the one that a human would design!

RUTGERS Another Example Register Specification

Start with a regular expression

Abbreviated Register Specification

Thompson's construction produces

TGERS Abbreviated Register Specification

The subset construction builds

This is a DFA, but it has a lot of states ...

The Cycle of Constructions

TGERS Abbreviated Register Specification

The DFA minimization algorithm builds

This looks like what a skilled compiler writer would do!

The Cycle of Constructions

RUTGERS Limits of Regular Languages

Advantages of Regular Expressions

- Simple & powerful notation for specifying patterns
- Automatic construction of fast recognizers
- Many kinds of syntax can be specified with REs

```
Example — an expression grammar
```

Term →
$$[a-zA-Z]([a-zA-z] | [0-9])^*$$

Op → $\pm | - | * | /$
Expr → $(Term Op)^*$ Term

Of course, this would generate a DFA ...

If REs are so useful ...

Why not use them for everything?

RUTGERS Limits of Regular Languages

Not all languages are regular

$$RL's \subset CFL's \subset CSL's$$

You cannot construct DFA's to recognize these languages

• $L = \{ p^k q^k \}$

(parenthesis languages)

• $L = \{ wcw^r \mid w \in \Sigma^* \}$

Neither of these is a regular language

But, this is a little subtle. You can construct DFA's for

- Strings with alternating 0's and 1's $(\epsilon \mid 1)(01)^*(\epsilon \mid 0)$
- Strings with and even number of 0's and 1's
- Strings of bit patterns that represent binary numbers which are divisible by 5

RUTGERS What can be so hard?

Poor language design can complicate scanning

Reserved words are important
 if then then then = else; else else = then

(PL/I)

Insignificant blanks do 10 i = 1,25 (Fortran & Algol68)

- do 10 i = 1.25
- String constants with special characters newline, tab, quote, comment delimiters, ...

(C, C++, Java, ...)

Limited identifier "length"

(Fortran 66 & PL/I)

Parsing (Syntax Analysis)

EAC Chapters 3.1 - 3.2