
CS415 Compilers

Lexical Analysis
Part 4

These slides are based on slides copyrighted by
Keith Cooper, Ken Kennedy & Linda Torczon at Rice

University

cs415, spring 22 Lecture 11

Announcements

• Third homework has been posted. Due Monday, March 7

• First project (local instruction scheduler) NEW deadlines:
code: March 9
report: March 11

2

cs415, spring 22 Lecture 11

Project 1 clarifications

1. The order in which programs perform I/O has to be
preserved. This requires a dependence notion on outputAI
instructions.

2. Benchmark codes have storeAI and loadAI memory accesses
only, with r0 as the base register. You must use the offset to
determine whether a dependence exists or not.

3. We will have some private tests that have store and load
memory accesses. This is for extra credit.

4. Project reports should be around 6 pages long, with a max of 8
pages. We will not read your report beyond 8 pages. The report
should include a short description of what you did, the outcome
of your experiments, and how you interpret these outcomes. Use
graphs/figures to show your results.

3

cs415, spring 22 Lecture 11 4

Example of Thompson’s Construction

Let’s try a (b | c)*

1. a, b, & c

2. b | c

3. (b | c)*

S0 S1
a

S0 S1
b

S0 S1
c

S2 S3
b

S4 S5
c

S1 S6 S0 S7

e

e

e e

e e

e e

S1 S2
b

S3 S4
c

S0 S5

e

e

e

e

cs415, spring 22 Lecture 11 5

Example of Thompson’s Construction (con’t)

4. a (b | c)*

Of course, a human would design something simpler ...

S0 S1
a

b | c
But, we can automate production of
the more complex one ...

S0 S1
a e

S4 S5
b

S6 S7
c

S3 S8 S2 S9

e

e

e e

e e

e e

cs415, spring 22 Lecture 11 6

NFA ®DFA with Subset Construction

Need to build a simulation of the NFA

Two key functions
• move(si , a) is set of states reachable from set of states si by a
• e-closure(si) is set of states reachable from set of states si by e

The algorithm (sketch):
• Start state derived from s0 of the NFA

• Take its e-closure S0 = e-closure(s0)
• For each state S, compute move(S, a) for each a Î S, and take

its e-closure
• Iterate until no more states are added

Sounds more complex than it is…

cs415, spring 22 Lecture 11 7

NFA ®DFA with Subset Construction

The algorithm:

s0 ¬ e-closure(q0)

add s0 to S

while (S is still changing)
for each si Î S

for each aÎ S
s?¬ e-closure(move(si,a))
if (s? Ï S) then

add s? to S as sj
T[si,a] ¬ sj

else
T[si,a] ¬ s?

Let’s think about why this works

The algorithm halts:

1. S contains no duplicates
(test before adding)

2. 2Q is finite

3. while loop adds to S, but does
not remove from S (monotone)

Þ the loop halts

S contains all the reachable
NFA states
It tries each symbol in each si.

It builds every possible NFA
configuration.

Þ S and T form the DFA

cs415, spring 22 Lecture 11 8

NFA ®DFA with Subset Construction

Example of a fixed-point computation
• Monotone construction of some finite set
• Halts when it stops adding to the set
• Proofs of halting & correctness are similar
• These computations arise in many contexts

Other fixed-point computations
• Canonical construction of sets of LR(1) items

® Quite similar to the subset construction
• Classic data-flow analysis

® Solving sets of simultaneous set equations
• DFA minimization algorithm (coming up!)

We will see many more fixed-point computations

cs415, spring 22 Lecture 11 9

q0 q1
a e

q4 q5
b

q6 q7
c

q3 q8 q2 q9

e

e e

e e

e e

NFA ®DFA with Subset Construction

Applying the subset construction:

a (b | c)* :
e

cs415, spring 22 Lecture 11 10

q0 q1
a e

q4 q5
b

q6 q7
c

q3 q8 q2 q9

e

e e

e e

e e

 e-closure(move(s,*))

 Sets of NFA
states

a b c

s0 {q0} {q1, q2, q3,
 q4, q6, q9}

none none

s1 {q1, q2, q3,
q4, q6, q9}

none {q5, q8, q9,
q3, q4, q6}

{q7, q8, q9,
q3, q4, q6}

s2 {q5, q8, q9,
q3, q4, q6}

none s2 s3

s3 {q7, q8, q9,
q3, q4, q6}

none s2 s3

Final states

NFA ®DFA with Subset Construction

Applying the subset construction:

a (b | c)* :
e

cs415, spring 22 Lecture 11 11

NFA ®DFA with Subset Construction

The DFA for a (b | c)*

• Ends up smaller than the NFA
• All transitions are deterministic

s3

s2

s0 s1

c

b
a

b

c

c

b

cs415, spring 22 Lecture 11 12

Automating Scanner Construction

RE®NFA (Thompson’s construction)
• Build an NFA for each term

• Combine them with e-moves

NFA ®DFA (subset construction)
• Build the simulation

DFA ®Minimal DFA
• Hopcroft’s algorithm

DFA ®RE (not really part of scanner construction)
• All pairs, all paths problem
• Union together paths from s0 to a final state

minimal
DFA

RE NFA DFA

The Cycle of Constructions

cs415, spring 22 Lecture 11 13

DFA Minimization

q1

q2

How do we know whether two states
encode the same information?

accepting state

Non-accepting state

w

w

Intuition: Two states are
equivalent if for all
sequences of input
symbols “w” they both
lead to an accepting state,
or both end up in a non-
accepting state.

q1 and q2 are not equivalent.
“w” is a witness that they
are not equivalent.

cs415, spring 22 Lecture 11 14

DFA Minimization

The Big Picture
• Discover sets of equivalent states
• Represent each such set with just one state

cs415, spring 22 Lecture 11 15

DFA Minimization

The Big Picture
• Discover sets of equivalent states
• Represent each such set with just one state

Two states are equivalent if and only if:

• " a Î S, transitions on a lead to equivalent states (DFA)
• if a-transitions to different sets Þ two states must be in

different sets, i.e., cannot be equivalent

cs415, spring 22 Lecture 11 16

DFA Minimization

The Big Picture
• Discover sets of equivalent states
• Represent each such set with just one state

Two states are equivalent if and only if:

• " a Î S, transitions on a lead to equivalent states (DFA)
• if a-transitions to different sets Þ two states must be in

different sets, i.e., cannot be equivalent

A partition P of S
• Each state s Î S is in exactly one set pi Î P
• The algorithm iteratively partitions the DFA’s states

cs415, spring 22 Lecture 11 17

DFA Minimization

Details of the algorithm
• Group states into maximal size sets, optimistically
• Iteratively subdivide those sets, as needed
• States that remain grouped together are equivalent

Initial partition, P0 , has two sets: {F} & {Q-F} (D =(Q,S,d,q0,F))

Splitting a set (“partitioning a set s by a”)
• Assume qa, & qb Î s, and d(qa,a) = qx, & d(qb,a) = qy

• If qx & qy are not in the same set, i.e., are considered
equivalent, then s must be split
® qa has transition on a, qb does not Þ a splits s

cs415, spring 22 Lecture 11 18

DFA Minimization

The algorithm
P ¬ { F, {Q-F}}
while (P is still changing)

T ¬ { }
for each set S Î P

T ¬ T È split(S)
P ¬ T

split(S):
for each aÎ S

if a splits S into
S1 , S2 , … then

return {S1 , S2, …}
else return S

Why does this work?
• Start off with 2 subsets of Q

{F} and {Q-F}
• While loop takes Pi®Pi+1 by

splitting 1 or more sets
• Pi+1 is at least one step closer

to the partition with |Q| sets
• Maximum of |Q | splits
Note that
• Partitions are never combined

This is a fixed-point algorithm!

cs415, spring 22 Lecture 11 19

Back to our DFA Minimization example

Then, apply the minimization algorithm

To produce the minimal DFA

s3

s2

s0 s1

c

b
a

b

b

c

c

s0 s1
a

b | c
We observed that a human would
design a simpler automaton than
Thompson’s construction & the subset
construction did.

Minimizing that DFA produces the one
that a human would design!

final states

cs415, spring 22 Lecture 11 20

Another Example Register Specification

Start with a regular expression
r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9

minimal
DFA

RE NFA DFA

The Cycle of Constructions

cs415, spring 22 Lecture 11 21

Abbreviated Register Specification

Thompson’s construction produces
r 0

r 1

r 2

r 8

r 9

… …

s0 sf

e

e

e

e

e

e

ee
e

e

e

e e

ee

e

e

e

e
e

…

minimal
DFA

RE NFA DFA

The Cycle of Constructions

cs415, spring 22 Lecture 11 22

Abbreviated Register Specification

The subset construction builds

This is a DFA, but it has a lot of states …

r
0

sf0

s0

sf11
sf22

sf9

sf8

…
9

8

minimal
DFA

RE NFA DFA

The Cycle of Constructions

cs415, spring 22 Lecture 11 23

Abbreviated Register Specification

The DFA minimization algorithm builds

This looks like what a skilled compiler writer would do!

r
s0 sf

0,1,2,3,4,
5,6,7,8,9

minimal
DFA

RE NFA DFA

The Cycle of Constructions

cs415, spring 22 Lecture 11 24

Limits of Regular Languages

Advantages of Regular Expressions
• Simple & powerful notation for specifying patterns
• Automatic construction of fast recognizers
• Many kinds of syntax can be specified with REs

Example — an expression grammar
Term ® [a-zA-Z] ([a-zA-z] | [0-9])*

Op ® + | - | * | /
Expr ® (Term Op)* Term

Of course, this would generate a DFA …

If REs are so useful …
Why not use them for everything?

cs415, spring 22 Lecture 11 25

Limits of Regular Languages

Not all languages are regular
RL’s Ì CFL’s Ì CSL’s

You cannot construct DFA’s to recognize these languages
• L = { pkqk } (parenthesis languages)

• L = { wcw r | w Î S*}
Neither of these is a regular language

But, this is a little subtle. You can construct DFA’s for
• Strings with alternating 0’s and 1’s

(e | 1) (01)* (e | 0)
• Strings with and even number of 0’s and 1’s
• Strings of bit patterns that represent binary numbers which

are divisible by 5

cs415, spring 22 Lecture 11 26

What can be so hard?

Poor language design can complicate scanning
• Reserved words are important

if then then then = else; else else = then (PL/I)

• Insignificant blanks (Fortran & Algol68)
do 10 i = 1,25
do 10 i = 1.25

• String constants with special characters (C, C++, Java, …)
newline, tab, quote, comment delimiters, …

• Limited identifier “length” (Fortran 66 & PL/I)

cs415, spring 22

Parsing
(Syntax Analysis)

EAC Chapters 3.1 - 3.2

Next class topic

