RUTGERS

CS5415 Compilers

Lexical Analysis
Part 3

RUTGERS Announcements

« Homework solutions for homeworks 1 and 2 have been posted
on canvas under “Files" tab

« Third homework will be posted after exam.

* First project (local instruction scheduler) has been posted
Deadline for code: March 2
Deadline for report: March 4

e First midterm: This Wednesday, February 23

In class exam, 60 minutes,
Topics: ILOC, instruction scheduling, register allocation

cs415, spring 22 Lecture 10 11

RUTGERS Constructing a Scanner - Quick Review

source code parts of speech & words
*» Scanner >
AM tables
q | or code
specifications | Scanner
Generator

— The scanner is the first stage in the front end
— Specifications can be expressed using regular expressions
— Build tables and code from a DFA

cs415, spring 22 Lecture 10 12

RUTGERS ~ Goal

e We will show how to construct a finite state automaton to
recoghize any RE
e QOverview:

— Direct construction of a nondeterministic finite automaton
(NFA) fo recognize a given RE

= Requires e-transitions tfo combine regular subexpressions

— Construct a deterministic finite automaton (DFA) to simulate
the NFA

= Use a set-of-states construction
— Minimize the number of states
= Hopcroft state minimization algorithm
— Generate the scanner code
= Additional specifications needed for details

cs415, spring 22 Lecture 10 13

RUTGERS ~ More Regular Expressions

* All strings of 1s and Os ending ina 1
(0l1)1

* All strings over lowercase letters where the vowels (a,e,i,o,
& u) occur exactly once, in ascending order

Cons — (blcldlflglhljlklllmIn|plglrls|t]vIw]|x]y|Z)

* All strings of 1s and Os that do not contain three Os in a row:

cs415, spring 22 Lecture 10 14

RUTGERS ~ More Regular Expressions

* All strings of 1s and Os ending ina 1
(0l1)1

* All strings over lowercase letters where the vowels (a,e,i,o,
& u) occur exactly once, in ascending order

cons — (blcld|flglhljlkllIm|nlplqlr|s|t|v|w]|x]y|Zz)
Cons a Cons e Cons i Cons o Cons u Cons

* All strings of 1s and Os that do not contain three Os in a row:

cs415, spring 22 Lecture 10 15

RUTGERS ~ More Regular Expressions

* All strings of 1s and Os ending ina 1
(0l1)1

* All strings over lowercase letters where the vowels (a,e,i,o,
& u) occur exactly once, in ascending order

cons — (blcld|flglhljlkllIm|nlplqlr|s|t|v|w]|x]y|Zz)
Cons a Cons e Cons i Cons o Cons u Cons

* All strings of 1s and Os that do not contain three Os in a row:

(1" (e01]001)1") (e[0]00)

cs415, spring 22 Lecture 10 16

RUTGERS Non-deterministic Finite Automata

Each RE corresponds to a deterministic finite automaton (DFA)
* May be hard to directly construct the right DFA

What about an RE suchas (a | b)" abb ?

alb

This is a little different

* Sphas a transition on €

* S;has two transitions on a
This is a non-deterministic finite automaton (NFA)

cs415, spring 22 Lecture 10 17

RUTGERS Non-deterministic Finite Automata

° An NFA accepts a string x iff 3 a path though the transition
graph from s, to a final state such that the edge labels spell x

* Transitions on € consume no input

* To "run” the NFA, start in sp,and guess the right transition at
each step

— Always guess correctly
— If some sequence of correct guesses accepts x then accept

Why study NFAs?
* They are the key to automating the RE—>DFA construction

* We can paste together NFAs with g-transitions

[

cs415, spring 22 Lecture 10 18

RUTGERS Relationship between NFAs and DFAs

DFA is a special case of an NFA

e DFA has no € transitions
e DFA’s transition function is single-valued
e Same rules will work

DFA can be simulated with an NFA
— Obviously

NFA can be simulated with a DFA (less obvious)
* Simulate sets of possible states

* Possible exponential blowup in the state space

* Still, one state transition per character in the input stream

cs415, spring 22 Lecture 10

19

RUTGERS Automating Scannher Construction

To convert a specification into code:

Write down the RE for the input language
Build a big NFA

Build the DFA that simulates the NFA
Systematically shrink the DFA

Turn it into code

o b w N+

Scanner generators

* Lex and Flex work along these lines

* Algorithms are well-known and well-understood
* Key issue is intferface to parser

* You could build one in a weekend!

cs415, spring 22 Lecture 10

20

RUTGERS Automating Scannher Construction

RE—> NFA (Thompson's construction)
* Build an NFA for each term

° Combine them with e-moves i
’ The Cycle of Constructions ’

NFA — DFA (subset construction) '

e Build the simulation ; <)
| m/n/ma/
' RE—NFA —DFA —>

DFA — Minimal DFA >
* Hopcroft's algorithm ~ "oommmmmmmmmmmms s

DFA —RE (Not part of the scanner construction)
* All pairs, all paths problem
* Take the union of all paths from s, to an accepting state

cs415, spring 22 Lecture 10 21

RUTGERS RE —NFA using Thompson's Construction

Key idea
* NFA pattern for each symbol and each operator

* Each NFA has a single start and accept state
* Join them with € moves in precedence order

NFA for a NFA for ab

cocheae

NFA for a*

NFAfora|b

Ken Thompson, CACM, 1968

cs415, spring 22 Lecture 10 22

RUTGERS Example of Thompson's Construction

Let'strya(b|c)

1. g, b, &¢

2. blc

cs415, spring 22 Lecture 10 23

RUTGERS Example of Thompson's Construction (con

Of course, a human would desigh something simpler ...

b|c

a _ But, we can automate production of
@ = the more complex one ...

cs415, spring 22 Lecture 10 24

RUTGERS NFA —DFA with Subset Construction

Need to build a simulation of the NFA
Note: s; are sets of states of the NFA, which together
constitute a single state in the simulating DFA

Two key functions
* move(s;, a) is set of states reachable from s;by a

* ¢&-closure(s) is set of states reachable from s;by &

The algorithm (sketch):
* Start state derived from sy of the NFA

* Take its €-closure Sy = €-closure(sp)

* For each state S, compute move(S, a) for each a € 2, and

take its €-closure
e Tterate until no more states are added

Sound's more complex than it is...

cs415, spring 22 Lecture 10 25

RUTGERS

The algorithm:

Sy « e-closure({ q,})
addsytoS
while (S is still changing)
foreachs;c S
for each ac X2
S g-closure(move(s,a))
if(s,zS)then
adds,to S as s;
T[s,aj] < s;
else
T[s,a] < s,

Let’s think about why this works

NFA -»DFA with Subset Construction

The algorithm halts:
7. Scontains no duplicates
(test before adding)
2. 29js finite
3. while loop adds to S, but does
not remove from S (monotone)
= the loop halts

S contains all the reachable

NFA states

It tries each symbol in each s;.

It builds every possible NFA
configuration.

= S and T form the DFA

cs415, spring 22

Lecture 10

26

RUTGERS NFA —DFA with Subset Construction

Example of a fixed-point computation

* Monotone construction of some finite set
* Halts when it stops adding to the set

* Proofs of halting & correctness are similar
* These computations arise in many contexts

Other fixed-point computations

® (Canonical construction of sets of LR(1) items
— Quite similar to the subset construction

* Classic data-flow analysis
— Solving sets of simultaneous set equations

* DFA minimization algorithm (coming up!)

We will see many more fixed-point computations

cs415, spring 22 Lecture 10 27

KUTGERS NFA —»DFA with Subset Construction

Applying the subset construction:

cs415, spring 22 Lecture 10 28

RUTGERS NFA —DFA with Subset Construction

Applying the subset construction:

e-closure (move(s,*))
NFA states a b C
So do 91, 4z (s, none none
A4, s, do
37 qh QZ, q3J none QSy q8l q9: q7’ q8’ q9’
Q4 96 @9 43 44 s 43 44 s
Sz ds ds @\ none Sz Sz
Qs Qar dg
Ss3 Q7 s, Qa)w \’QQ"e S> Ss3
q31 q47 q6
’ Final states

cs415, spring 22 Lecture 10 29

RUTGERS NFA —»DFA with Subset Construction

The DFA fora(b | c)

o a b c
So s - -
s, - S, S,
2 - 2 S3
S3 - 2 S3

* Ends up smaller than the NFA
* All transitions are deterministic

cs415, spring 22 Lecture 10 30

RUTGERS Next class

More Lexical Analysis

Syntax Analysis (top-down parsing)

Read EaC: Chapter 3.1 - 3.3

cs415, spring 22 Lecture 10 31

