C5415 Compilers
Lexical Analysis Part 3

These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy \& Linda Torczon at Rice University

- Homework solutions for homeworks 1 and 2 have been posted on canvas under "Files" tab
- Third homework will be posted after exam.
- First project (local instruction scheduler) has been posted

Deadline for code: March 2
Deadline for report: March 4

- First midterm: This Wednesday, February 23

In class exam, 60 minutes,
Topics: ILOC, instruction scheduling, register allocation

\rightarrow The scanner is the first stage in the front end
\rightarrow Specifications can be expressed using regular expressions
\rightarrow Build tables and code from a DFA

- We will show how to construct a finite state automaton to recognize any RE
- Overview:
\rightarrow Direct construction of a nondeterministic finite automaton (NFA) to recognize a given RE
- Requires ε-transitions to combine regular subexpressions
\rightarrow Construct a deterministic finite automaton (DFA) to simulate the NFA
- Use a set-of-states construction
\rightarrow Minimize the number of states
- Hopcroft state minimization algorithm
\rightarrow Generate the scanner code
- Additional specifications needed for details
- All strings of 1 s and 0 s ending in a $\underline{1}$
$(\underline{0} \mid \underline{1})^{*} \underline{1}$
- All strings over lowercase letters where the vowels ($a, e, i, 0$, \& u) occur exactly once, in ascending order

Cons \rightarrow (b|c|d|f|g|h|j|k|||m|n|p|q|r|s|t|v|w|x|y|z)

- All strings of $\underline{1} s$ and $\underline{0} s$ that do not contain three $\underline{0} s$ in a row:
- All strings of 1 s and 0 s ending in a $\underline{1}$
$(\underline{0} \mid \underline{1})^{*} \underline{1}$
- All strings over lowercase letters where the vowels ($a, e, i, 0$, \& u) occur exactly once, in ascending order

```
Cons }->\mathrm{ (b|c|d|f|g|h|j|k||m|n|p|q|r|s | |v|w|x|y|z)
Cons** © Cons*}\underline{e}\mp@subsup{\mathrm{ Cons}}{}{*}\underline{\underline{i}}\mp@subsup{\mathrm{ Cons}}{}{*}\underline{\underline{o}}\mp@subsup{\mathrm{ Conss}}{}{*}\underline{u}\mp@subsup{\mathrm{ Cons}}{}{*
```

- All strings of $\underline{1} s$ and $\underline{0} s$ that do not contain three $\underline{0} s$ in a row:
- All strings of 1 s and 0 s ending in a $\underline{1}$

$$
(\underline{0} \mid \underline{1})^{*} \underline{1}
$$

- All strings over lowercase letters where the vowels ($a, e, i, 0$, \& u) occur exactly once, in ascending order

```
Cons }->\mathrm{ (b|c|d|f|g|h|j|k||m|n|p|q|r|s | |v|w|x|y|z)
Cons** © Cons*}\underline{e}\mp@subsup{\mathrm{ Cons}}{}{*}\underline{\underline{i}}\mp@subsup{\mathrm{ Cons}}{}{*}\underline{\underline{o}}\mp@subsup{\mathrm{ Conss}}{}{*}\underline{u}\mp@subsup{\mathrm{ Cons}}{}{*
```

- All strings of $\underline{1} s$ and $\underline{0}$ that do not contain three $\underline{0}$ in a row: $\left(\underline{1}^{*}(\varepsilon|\underline{01}| \underline{001}) \underline{1}^{*}\right)^{*}(\varepsilon|\underline{0}| \underline{00})$

Each RE corresponds to a deterministic finite automaton (DFA)

- May be hard to directly construct the right DFA

What about an RE such as $(\underline{a} \mid \underline{b})^{*} \underline{a b b}$?

This is a little different

- So has a transition on ε
- S_{1} has two transitions on a

This is a non-deterministic finite automaton (NFA)

RUTGERS Non-deterministic Finite Automata

- An NFA accepts a string x iff \exists a path though the transition graph from s_{0} to a final state such that the edge labels spell x
- Transitions on ε consume no input
- To "run" the NFA, start in so and guess the right transition at each step
\rightarrow Always guess correctly
\rightarrow If some sequence of correct guesses accepts x then accept
Why study NFAs?
- They are the key to automating the RE \rightarrow DFA construction
- We can paste together NFAs with ε-transitions

DFA is a special case of an NFA

- DFA has no ε transitions
- DFA's transition function is single-valued
- Same rules will work

DFA can be simulated with an NFA
\rightarrow Obviously
NFA can be simulated with a DFA

- Simulate sets of possible states
- Possible exponential blowup in the state space
- Still, one state transition per character in the input stream

To convert a specification into code:
1 Write down the RE for the input language
2 Build a big NFA
3 Build the DFA that simulates the NFA
4 Systematically shrink the DFA
5 Turn it into code

Scanner generators

- Lex and Flex work along these lines
- Algorithms are well-known and well-understood
- Key issue is interface to parser
- You could build one in a weekend!

RuTGERS Automating Scanner Construction

RE \rightarrow NFA (Thompson's construction)

- Build an NFA for each term
- Combine them with ε-moves

NFA \rightarrow DFA (subset construction)

- Build the simulation

DFA \rightarrow Minimal DFA

- Hopcroft's algorithm

DFA \rightarrow RE (Not part of the scanner construction)

- All pairs, all paths problem
- Take the union of all paths from s_{0} to an accepting state

RUTGERS RE \rightarrow NFA using Thompson's Construction

Key idea

- NFA pattern for each symbol and each operator
- Each NFA has a single start and accept state
- Join them with ε moves in precedence order

NFA for \mathbf{a}

NFA for $\underline{\mathbf{a}} \mid \underline{\mathbf{b}}$

NFA for \underline{a}^{*}

Ken Thompson, CACM, 1968

RUTGERS Example of Thompson's Construction

Let's try $\underline{a}(\underline{b} \mid \underline{c})^{*}$

1. $\underline{a}, \underline{b}, \& \underline{c}$

2. $\underline{b} \mid \underline{c}$

3. $(\underline{b} \mid \underline{c})^{*}$

4. $\underline{a}(\underline{b} \mid \underline{c})^{*}$

Of course, a human would design something simpler ...

But, we can automate production of the more complex one ...

RUTGERS NFA \rightarrow DFA with Subset Construction

Need to build a simulation of the NFA
Note: s_{i} are sets of states of the NFA, which together constitute a single state in the simulating DFA

Two key functions

- move $\left(s_{i}, \underline{a}\right)$ is set of states reachable from s_{i} by \underline{a}
- ε-closure (s_{i}) is set of states reachable from s_{i} by ε

The algorithm (sketch):

- Start state derived from s_{0} of the NFA
- Take its ε-closure $S_{0}=\varepsilon$-closure $\left(s_{0}\right)$
- For each state S, compute move(S, a) for each $a \in \Sigma$, and take its ε-closure
- Iterate until no more states are added

Sounds more complex than it is...

RUTGERS NFA \rightarrow DFA with Subset Construction

The algorithm:
$s_{0} \leftarrow \varepsilon$-closure ($\left\{q_{0}\right\}$)
add s_{o} to S
while (S is still changing)
for each $s_{i} \in S$
for each $a \in \Sigma$
$s_{p} \leftarrow \varepsilon$-closure(move($\left.s_{i}, a\right)$)
if $(s, \notin S$) then add $s_{?}$ to S as s_{j} $T\left[s_{i}, a\right] \leftarrow s_{j}$
else

$$
T\left[s_{i j}, a\right] \leftarrow s_{?}
$$

Let's think about why this works

The algorithm halts:

1. S contains no duplicates (test before adding)
2. 2^{Q} is finite
3. while loop adds to S, but does not remove from S (monotone)
\Rightarrow the loop halts
S contains all the reachable NFA states

It tries each symbol in each s_{i}. It builds every possible NFA configuration.
$\Rightarrow S$ and T form the DFA

Example of a fixed-point computation

- Monotone construction of some finite set
- Halts when it stops adding to the set
- Proofs of halting \& correctness are similar
- These computations arise in many contexts

Other fixed-point computations

- Canonical construction of sets of LR(1) items
\rightarrow Quite similar to the subset construction
- Classic data-flow analysis
\rightarrow Solving sets of simultaneous set equations
- DFA minimization algorithm (coming up!)

We will see many more fixed-point computations

RUTGERS NFA \rightarrow DFA with Subset Construction

$\underline{a}(\underline{b} \mid \underline{c})^{*}$:

Applying the subset construction:

RUTGERS NFA \rightarrow DFA with Subset Construction

$\underline{a}(\underline{b} \mid \underline{c})^{*}$:

Applying the subset construction:

		ε-closure (move (s,*))		
	NFA states	a	b	C
S_{0}	90	$\begin{array}{r} q_{1}, q_{2}, q_{3} \\ q_{4}, q_{6}, q_{9} \end{array}$	none	none
S_{1}	$\begin{aligned} & q_{1}, q_{2}, q_{3}, \\ & q_{4}, q_{6}, q_{9} \end{aligned}$	none	$\begin{aligned} & q_{5}, q_{8}, q_{9} \\ & q_{3}, q_{4}, q_{6} \end{aligned}$	$\begin{array}{ll} q_{7}, & q_{8}, \\ q_{9} \\ q_{3}, & q_{4}, \\ q_{6} \end{array}$
s_{2}	$\begin{aligned} & q_{5}, q_{8}, q_{9} \\ & q_{3}, q_{4}, q_{5} \end{aligned}$	none	S_{2}	S_{3}
s_{3}	$\begin{aligned} & q_{7}, q_{8},\left(q_{9}\right) \\ & q_{3}, q_{4}, q_{6} \end{aligned}$	pone	S_{2}	S_{3}

RUTGERS NFA \rightarrow DFA with Subset Construction

The DFA for $\underline{a}(\underline{b} \mid \underline{c})^{*}$

δ	$\underline{\mathbf{a}}$	$\underline{\mathbf{b}}$	$\underline{\mathrm{c}}$
S_{0}	S_{1}	-	-
S_{1}	-	S_{2}	S_{3}
S_{2}	-	S_{2}	S_{3}
S_{3}	-	S_{2}	S_{3}

- Ends up smaller than the NFA
- All transitions are deterministic

More Lexical Analysis

Syntax Analysis (top-down parsing)
Read EaC: Chapter 3.1-3.3

