

CS415 Compilers

Lexical Analysis
Part 3

These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University

- Homework solutions for homeworks 1 and 2 have been posted on canvas under "Files" tab
- Third homework will be posted after exam.
- First project (local instruction scheduler) has been posted Deadline for code: March 2 Deadline for report: March 4
- First midterm: This Wednesday, February 23
 In class exam, 60 minutes,
 Topics: ILOC, instruction scheduling, register allocation

RUTGERS Constructing a Scanner - Quick Review

- → The scanner is the first stage in the front end
- → Specifications can be expressed using regular expressions
- → Build tables and code from a DFA

- We will show how to construct a finite state automaton to recognize any RE
- Overview:
 - → Direct construction of a nondeterministic finite automaton (NFA) to recognize a given RE
 - Requires ε -transitions to combine regular subexpressions
 - → Construct a deterministic finite automaton (DFA) to simulate the NFA
 - Use a set-of-states construction
 - → Minimize the number of states
 - Hopcroft state minimization algorithm
 - → Generate the scanner code
 - Additional specifications needed for details

RUTGERS More Regular Expressions

• All strings of 1s and 0s ending in a 1

```
(0 | 1)^{*}1
```

All strings over lowercase letters where the vowels (a,e,i,o, & u) occur exactly once, in ascending order

```
Cons \rightarrow (b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z)
```

All strings of 1s and 0s that do not contain three 0s in a row:

RUTGERS More Regular Expressions

• All strings of 1s and 0s ending in a 1

```
(0 | 1)^{*}1
```

All strings over lowercase letters where the vowels (a,e,i,o, & u) occur exactly once, in ascending order

```
Cons \rightarrow (b|c|d|f|g|h|j|k|||m|n|p|q|r|s|t|v|w|x|y|z)

Cons* a Cons* e Cons* i Cons* o Cons* u Cons*
```

• All strings of 1s and 0s that do not contain three 0s in a row:

RUTGERS More Regular Expressions

• All strings of 1s and 0s ending in a 1

```
(0 | 1)^{*}
```

All strings over lowercase letters where the vowels (a,e,i,o, & u) occur exactly once, in ascending order

```
Cons \rightarrow (b|c|d|f|g|h|j|k|||m|n|p|q|r|s|t|v|w|x|y|z)

Cons* a Cons* e Cons* i Cons* o Cons* u Cons*
```

• All strings of <u>1</u>s and <u>0</u>s that do not contain three <u>0</u>s in a row: $(1^* (\epsilon | 01 | 001) 1^*)^* (\epsilon | 0 | 00)$

Non-deterministic Finite Automata

Each RE corresponds to a deterministic finite automaton (DFA)

May be hard to directly construct the right DFA

What about an RE such as $(\underline{a} | \underline{b})^* \underline{abb}$?

This is a little different

- S_o has a transition on ϵ
- S_1 has two transitions on \underline{a}

This is a non-deterministic finite automaton (NFA)

RUTGERS

Non-deterministic Finite Automata

- An NFA accepts a string x iff \exists a path though the transition graph from s_0 to a final state such that the edge labels spell x
- Transitions on ε consume no input
- To "run" the NFA, start in $s_{\mathcal{O}}$ and guess the right transition at each step
 - → Always guess correctly
 - \rightarrow If some sequence of correct guesses accepts x then accept

Why study NFAs?

- They are the key to automating the RE \rightarrow DFA construction
- We can paste together NFAs with ε -transitions

Relationship between NFAs and DFAs

DFA is a special case of an NFA

- DFA has no ε transitions
- DFA's transition function is single-valued
- Same rules will work

DFA can be simulated with an NFA

→ Obviously

NFA can be simulated with a DFA

(less obvious)

- Simulate sets of possible states
- Possible exponential blowup in the state space
- Still, one state transition per character in the input stream

Automating Scanner Construction

To convert a specification into code:

- 1 Write down the RE for the input language
- 2 Build a big NFA
- 3 Build the DFA that simulates the NFA
- 4 Systematically shrink the DFA
- 5 Turn it into code

Scanner generators

- Lex and Flex work along these lines
- Algorithms are well-known and well-understood
- Key issue is interface to parser
- You could build one in a weekend!

Automating Scanner Construction

RE→ NFA (Thompson's construction)

- Build an NFA for each term
- Combine them with ε-moves

NFA → DFA (subset construction)

Build the simulation

$DFA \rightarrow Minimal DFA$

Hopcroft's algorithm

 $DFA \rightarrow RE$ (Not part of the scanner construction)

- All pairs, all paths problem
- Take the union of all paths from s_0 to an accepting state

RUTGERS RE -NFA using Thompson's Construction

Key idea

- NFA pattern for each symbol and each operator
- Each NFA has a single start and accept state
- Join them with ϵ moves in precedence order

NFA for <u>a</u>*

Ken Thompson, CACM, 1968

Let's try \underline{a} ($\underline{b} \mid \underline{c}$)*

RUTGERS Example of Thompson's Construction (con't)

Of course, a human would design something simpler ...

But, we can automate production of the more complex one ...

RUTGERS NFA -DFA with Subset Construction

Need to build a simulation of the NFA

Note: s_i are sets of states of the NFA, which together constitute a single state in the simulating DFA

Two key functions

- $move(s_i, \underline{a})$ is set of states reachable from s_i by \underline{a}
- \mathcal{E} -closure(s_i) is set of states reachable from s_i by \mathcal{E}

The algorithm (sketch):

- Start state derived from s₀ of the NFA
- Take its ε -closure $S_0 = \varepsilon$ -closure(s_0)
- For each state S, compute move(S, a) for each $a \in \Sigma$, and take its ϵ -closure
- Iterate until no more states are added

Sounds more complex than it is...

NFA → DFA with Subset Construction

The algorithm:

```
s_0 \leftarrow \varepsilon-closure(\{q_0\})

add \ s_0 \ to \ S

while \ (S \ is \ still \ changing \ )

for \ each \ s_i \in S

for \ each \ a \in \Sigma

s_i \leftarrow \varepsilon-closure(move(s_i, a))

if \ (s_i \notin S) \ then

add \ s_i \ to \ S \ as \ s_i

T[s_i, a] \leftarrow s_i

else

T[s_i, a] \leftarrow s_i
```

Let's think about why this works

The algorithm halts:

- S contains no duplicates (test before adding)
- 2. 20 is finite
- 3. while loop adds to S, but does not remove from S (monotone)
- ⇒ the loop halts

S contains all the reachable NFA states

It tries each symbol in each s_i.

It builds every possible NFA configuration.

 \Rightarrow S and T form the DFA

NFA → DFA with Subset Construction

Example of a fixed-point computation

- Monotone construction of some finite set
- Halts when it stops adding to the set
- Proofs of halting & correctness are similar
- These computations arise in many contexts

Other fixed-point computations

- Canonical construction of sets of LR(1) items
 - → Quite similar to the subset construction
- Classic data-flow analysis
 - → Solving sets of simultaneous set equations
- DFA minimization algorithm (coming up!)

We will see many more fixed-point computations

RUTGERS NFA -> DFA with Subset Construction

Applying the subset construction:

RUTGERS NFA -> DFA with Subset Construction

Applying the subset construction:

		ε-closure(move(s,*))		
	NFA states	<u>a</u>	<u>b</u>	<u>C</u>
s ₀	90	$q_1, q_2, q_3, q_4, q_6, q_9$	none	none
S ₁	$q_1, q_2, q_3, q_4, q_6, q_9$	none	9 ₅ , 9 ₈ , 9 ₉ , 9 ₃ , 9 ₄ , 9 ₆	97, 98, 99, 93, 94, 96
s ₂	$q_5, q_8, q_9, q_9, q_3, q_4, q_6$	none	s ₂	s_3
S ₃	q_7, q_8, q_9 q_3, q_4, q_6	none	s ₂	s_3

Final states

The DFA for $\underline{a} (\underline{b} | \underline{c})^*$

δ	<u>a</u>	<u>b</u>	<u>c</u>
s_0	s_1	-	-
S ₁	-	s ₂	s_3
s ₂	-	s ₂	s_3
S ₃	-	s ₂	S ₃

- Ends up smaller than the NFA
- All transitions are deterministic

More Lexical Analysis

Syntax Analysis (top-down parsing)

Read EaC: Chapter 3.1 - 3.3