
CS415 Compilers

Lexical Analysis
Part 3

These slides are based on slides copyrighted by
Keith Cooper, Ken Kennedy & Linda Torczon at Rice

University

cs415, spring 22 Lecture 10

Announcements

• Homework solutions for homeworks 1 and 2 have been posted
on canvas under “Files” tab

• Third homework will be posted after exam.

• First project (local instruction scheduler) has been posted
Deadline for code: March 2
Deadline for report: March 4

• First midterm: This Wednesday, February 23
In class exam, 60 minutes,
Topics: ILOC, instruction scheduling, register allocation

11

cs415, spring 22 Lecture 10 12

Constructing a Scanner - Quick Review

® The scanner is the first stage in the front end
® Specifications can be expressed using regular expressions
® Build tables and code from a DFA

Scanner

Scanner
Generator

specifications

source code parts of speech & words

tables
or code

cs415, spring 22 Lecture 10 13

Goal

• We will show how to construct a finite state automaton to
recognize any RE

• Overview:
® Direct construction of a nondeterministic finite automaton

(NFA) to recognize a given RE
§ Requires e-transitions to combine regular subexpressions

® Construct a deterministic finite automaton (DFA) to simulate
the NFA
§ Use a set-of-states construction

® Minimize the number of states
§ Hopcroft state minimization algorithm

® Generate the scanner code
§ Additional specifications needed for details

cs415, spring 22 Lecture 10 14

More Regular Expressions

• All strings of 1s and 0s ending in a 1

(0 | 1)* 1

• All strings over lowercase letters where the vowels (a,e,i,o,
& u) occur exactly once, in ascending order

Cons ® (b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z)

• All strings of 1s and 0s that do not contain three 0s in a row:

cs415, spring 22 Lecture 10 15

More Regular Expressions

• All strings of 1s and 0s ending in a 1

(0 | 1)* 1

• All strings over lowercase letters where the vowels (a,e,i,o,
& u) occur exactly once, in ascending order

Cons ® (b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z)
Cons* a Cons* e Cons* i Cons* o Cons* u Cons*

• All strings of 1s and 0s that do not contain three 0s in a row:

cs415, spring 22 Lecture 10 16

More Regular Expressions

• All strings of 1s and 0s ending in a 1

(0 | 1)* 1

• All strings over lowercase letters where the vowels (a,e,i,o,
& u) occur exactly once, in ascending order

Cons ® (b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z)
Cons* a Cons* e Cons* i Cons* o Cons* u Cons*

• All strings of 1s and 0s that do not contain three 0s in a row:
(1* (e |01 | 001) 1*)* (e | 0 | 00)

cs415, spring 22 Lecture 10 17

Non-deterministic Finite Automata

Each RE corresponds to a deterministic finite automaton (DFA)
• May be hard to directly construct the right DFA

What about an RE such as (a | b)* abb ?

This is a little different

• S0 has a transition on e
• S1 has two transitions on a
This is a non-deterministic finite automaton (NFA)

a | b

S0 S1 S4 S2 S3

e a bb

cs415, spring 22 Lecture 10 18

Non-deterministic Finite Automata

• An NFA accepts a string x iff $ a path though the transition
graph from s0 to a final state such that the edge labels spell x

• Transitions on e consume no input
• To “run” the NFA, start in s0 and guess the right transition at

each step
® Always guess correctly
® If some sequence of correct guesses accepts x then accept

Why study NFAs?
• They are the key to automating the RE®DFA construction
• We can paste together NFAs with e-transitions

NFA NFA becomes an NFA
e

cs415, spring 22 Lecture 10 19

Relationship between NFAs and DFAs

DFA is a special case of an NFA

• DFA has no e transitions
• DFA’s transition function is single-valued
• Same rules will work

DFA can be simulated with an NFA
® Obviously

NFA can be simulated with a DFA (less obvious)
• Simulate sets of possible states
• Possible exponential blowup in the state space
• Still, one state transition per character in the input stream

cs415, spring 22 Lecture 10 20

Automating Scanner Construction

To convert a specification into code:
1 Write down the RE for the input language
2 Build a big NFA
3 Build the DFA that simulates the NFA
4 Systematically shrink the DFA
5 Turn it into code

Scanner generators
• Lex and Flex work along these lines
• Algorithms are well-known and well-understood
• Key issue is interface to parser
• You could build one in a weekend!

cs415, spring 22 Lecture 10 21

Automating Scanner Construction

RE® NFA (Thompson’s construction)
• Build an NFA for each term
• Combine them with e-moves

NFA ® DFA (subset construction)
• Build the simulation

DFA ® Minimal DFA
• Hopcroft’s algorithm

DFA ®RE (Not part of the scanner construction)
• All pairs, all paths problem
• Take the union of all paths from s0 to an accepting state

minimal
DFA

RE NFA DFA

The Cycle of Constructions

cs415, spring 22 Lecture 10 22

RE ®NFA using Thompson’s Construction

Key idea
• NFA pattern for each symbol and each operator
• Each NFA has a single start and accept state
• Join them with e moves in precedence order

S0 S1
a

NFA for a

S0 S1
a

S3 S4
b

NFA for ab

e

NFA for a | b

S0

S1 S2
a

S3 S4
b

S5

e

e e

e
S0 S1

e S3 S4
e

NFA for a*

a

e

e

Ken Thompson, CACM, 1968

cs415, spring 22 Lecture 10 23

Example of Thompson’s Construction

Let’s try a (b | c)*

1. a, b, & c

2. b | c

3. (b | c)*

S0 S1
a

S0 S1
b

S0 S1
c

S2 S3
b

S4 S5
c

S1 S6 S0 S7

e

e

e e

e e

e e

S1 S2
b

S3 S4
c

S0 S5

e

e

e

e

cs415, spring 22 Lecture 10 24

Example of Thompson’s Construction (con’t)

4. a (b | c)*

Of course, a human would design something simpler ...

S0 S1
a

b | c
But, we can automate production of
the more complex one ...

S0 S1
a e

S4 S5
b

S6 S7
c

S3 S8 S2 S9

e

e

e e

e e

e e

cs415, spring 22 Lecture 10 25

NFA ®DFA with Subset Construction

Need to build a simulation of the NFA
Note: si are sets of states of the NFA, which together

constitute a single state in the simulating DFA

Two key functions
• move(si , a) is set of states reachable from si by a
• e-closure(si) is set of states reachable from si by e

The algorithm (sketch):
• Start state derived from s0 of the NFA

• Take its e-closure S0 = e-closure(s0)
• For each state S, compute move(S, a) for each a Î S, and

take its e-closure
• Iterate until no more states are added

Sounds more complex than it is…

cs415, spring 22 Lecture 10 26

NFA ®DFA with Subset Construction

The algorithm:

s0 ¬ e-closure({ q0 })

add s0 to S

while (S is still changing)
for each si Î S

for each aÎ S
s?¬ e-closure(move(si,a))
if (s? Ï S) then

add s? to S as sj
T[si,a] ¬ sj

else
T[si,a] ¬ s?

Let’s think about why this works

The algorithm halts:

1. S contains no duplicates
(test before adding)

2. 2Q is finite

3. while loop adds to S, but does
not remove from S (monotone)

Þ the loop halts

S contains all the reachable
NFA states
It tries each symbol in each si.

It builds every possible NFA
configuration.

Þ S and T form the DFA

cs415, spring 22 Lecture 10 27

NFA ®DFA with Subset Construction

Example of a fixed-point computation
• Monotone construction of some finite set
• Halts when it stops adding to the set
• Proofs of halting & correctness are similar
• These computations arise in many contexts

Other fixed-point computations
• Canonical construction of sets of LR(1) items

® Quite similar to the subset construction
• Classic data-flow analysis

® Solving sets of simultaneous set equations
• DFA minimization algorithm (coming up!)

We will see many more fixed-point computations

cs415, spring 22 Lecture 10 28

q0 q1
a e

q4 q5
b

q6 q7
c

q3 q8 q2 q9

e

e e

e e

e e

NFA ®DFA with Subset Construction

Applying the subset construction:

a (b | c)* :
e

cs415, spring 22 Lecture 10 29

q0 q1
a e

q4 q5
b

q6 q7
c

q3 q8 q2 q9

e

e e

e e

e e

Final states

NFA ®DFA with Subset Construction

Applying the subset construction:

a (b | c)* :
e

cs415, spring 22 Lecture 10 30

NFA ®DFA with Subset Construction

The DFA for a (b | c)*

• Ends up smaller than the NFA
• All transitions are deterministic

s3

s2

s0 s1

c

b
a

b

c

c

b

cs415, spring 22 Lecture 10

More Lexical Analysis

Syntax Analysis (top-down parsing)

Read EaC: Chapter 3.1 - 3.3

Next class

31

