
CS415 Compilers

Lexical Analysis
Part 2

These slides are based on slides copyrighted by
Keith Cooper, Ken Kennedy & Linda Torczon at Rice

University

cs415, spring 22 Lecture 9

Announcements

• Second homework due this Friday, February 18.

• First project (local instruction scheduler) has been posted
Deadline for code: March 2
Deadline for report: March 4

• First midterm: Wednesday, February 23
In class exam, 60 minutes,
Topics: ILOC, instruction scheduling, register allocation

• Spring recess: March 12 - 20

• Final exam (exam code C): Tuesday, May 10
1:00pm – 2:00pm
In person, location TBD

2

cs415, spring 22

The purpose of the front end is to deal with the input language
• Perform a membership test: code Î source language?
• Is the program well-formed (semantically) ?
• Build an IR version of the code for the rest of the compiler

The front end is not monolithic

Source
code

Front
End

Errors

Machine
code

Back
End

IR

EaC Chapter 2

3Lecture 9

Review - The Front End

cs415, spring 22

Scanner
• Maps stream of characters into words/tokens

® Basic unit of syntax
® x = x + y ; becomes

<id,x> <eq,=> <id,x> <pl,+> <id,y> <sc,; >

• Character sequence that forms a word/token is its lexeme
• Its part of speech (or syntactic category) is called its token type
• Scanner discards white space & (often) comments

Source
code Scanner

IR
Parser

Errors

tokens

Speed is an issue in
scanning
Þ use a specialized
recognizer

4Lecture 9

Review - The Front End

cs415, spring 22

Parser
• Checks stream of classified words (tokens) for grammatical

correctness
• Determines if code is syntactically well-formed
• Guides checking at deeper levels than syntax (static semantics)
• Builds an IR representation of the code

We’ll get to parsing in the next lectures

Source
code Scanner

IR
Parser

Errors

tokens

5Lecture 9

Review - The Front End

cs415, spring 22

Parser - The Big Picture

• Language syntax is specified over parts of speech (tokens)
• Syntax checking matches sequence of tokens against a grammar
• Here is an example context free grammar (CFG) G:

G in BNF form G = (S, T, N, P)

1. goal ® expr

2. expr ® expr op term
3. | term
4. term ® number
5. | id

6. op ® +
7. | –

S = goal

T = { number, id, +, - }

N = { goal, expr, term, op }

P = { 1, 2, 3, 4, 5, 6, 7}

Lecture 9 6

cs415, spring 22

Scanner - The Big Picture

Why study lexical analysis?

• We want to avoid writing scanners by hand

Goals:

® To simplify specification & implementation of scanners
® To understand the underlying techniques and technologies

Scanner

Scanner
Generator

specifications

source code parts of speech &
words (tokens)

tables
or code

7Lecture 9

cs415, spring 22

The Big Picture

Why study lexical analysis?

• We want to avoid writing scanners by hand

Goals:

® To simplify specification & implementation of scanners
® To understand the underlying techniques and technologies

Scanner

Scanner
Generator

specifications

source code parts of speech &
words (tokens)

tables
or code

Specifications written as
“regular expressions”

8Lecture 9

cs415, spring 22

The Big Picture

Why study lexical analysis?

• We want to avoid writing scanners by hand

Goals:

® To simplify specification & implementation of scanners
® To understand the underlying techniques and technologies

Scanner

Scanner
Generator

specifications

source code parts of speech &
words (tokens)

tables
or code

Specifications written as
“regular expressions”

Represent
words as
indices into a
global table

9Lecture 9

cs415, spring 22

Regular Expressions

Lexical patterns form a regular language
*** any finite language is regular ***

Regular expressions (REs) describe regular languages

Regular Expression (over an alphabet S, a finite set of symbols):
• e is a RE denoting the set {e}

• If “a” is in S, then a is a RE denoting {a}
• If x and y are REs denoting L(x) and L(y) then

® x |y is an RE denoting L(x) È L(y)
® xy is an RE denoting L(x)L(y)
® x* is an RE denoting L(x)*
® (x) is an RE denoting L(x)

Precedence is
closure, then
concatenation,
then alternation

Ever type
“rm *.o a.out” ?

10Lecture 9

cs415, spring 22

These definitions should be well known

Set Operations

11Lecture 9

cs415, spring 22

Examples of Regular Expressions

Identifiers:
Letter ® (a|b|c| … |z|A|B|C| … |Z)
Digit ® (0|1|2| … |9)
Identifier ® Letter (Letter | Digit)*

Numbers:
Integer ® (+|-|e) (0| (1|2|3| … |9)(Digit *))
Decimal ® Integer . Digit *

Real ® (Integer | Decimal) E (+|-|e) Digit *

Complex ® (Real , Real)

Numbers can get much more complicated!

12Lecture 9

cs415, spring 22

Regular Expressions (the point)

Regular expressions can be used to specify the words to be
translated to parts of speech (tokens) by a lexical analyzer

Using results from automata theory and theory of algorithms,
we can automatically build recognizers from regular
expressions

Þ We study REs and associated theory to automate scanner
construction !

13Lecture 9

cs415, spring 22

Consider the problem of recognizing ILOC register names

Register ® r (0|1|2| … | 9) (0|1|2| … | 9)*

• Allows registers of arbitrary number
• Requires at least one digit

RE corresponds to a recognizer (or DFA)

Transitions on other inputs go to an error state, se

Example

S0 S2 S1

r

(0|1|2| … 9)

accepting state

(0|1|2| … 9)

Recognizer for Register

14Lecture 9

cs415, spring 22

DFA operation
• Start in state S0 & take transitions on each input character
• DFA accepts a word x iff x leaves it in a final state (S2)

So,
• r17 takes it through s0, s1, s2 and accepts
• r takes it through s0, s1 and fails
• a takes it straight to error state se (not shown here)

Example (continued)

S0 S2 S1

r

(0|1|2| … 9)

accepting state

(0|1|2| … 9)

Recognizer for Register

15Lecture 9

cs415, spring 22

To be useful, recognizer must turn into code

sesesese

ses2ses2

ses2ses1

seses1s0

All
others

0,1,2,3,4,
5,6,7,8,9rdChar ¬ next character

State ¬ s0
while (Char ¹ EOF)

State ¬ d(State,Char)
Char ¬ next character

if (State is a final state)
then report success
else report failure

Skeleton recognizer Table encoding RE

Example (continued)

16Lecture 9

d(sx, a) = sy

cs415, spring 22

Example (continued)

To be useful, recognizer must turn into code

se
error

se
error

se
error

se

se
error

s2
add

se
error

s2

se
error

s2
add

se
error

s1

se
error

se
error

s1
start

s0

All
others

0,1,2,3,4,
5,6,7,8,9rdChar ¬ next character

State ¬ s0
while (Char ¹ EOF)

State ¬ d(State,Char)
perform specified action
Char ¬ next character

if (State is a final state)
then report success
else report failure

Skeleton recognizer Table encoding RE

17Lecture 9

cs415, spring 22 Lecture 9 18

r Digit Digit* allows arbitrary numbers
• Accepts r00000
• Accepts r99999
• What if we want to limit it to r0 through r31 ?

Write a tighter regular expression
® Register ® r ((0|1|2) (Digit | e) | (4|5|6|7|8|9) | (3|30|31))
® Register ® r0|r1|r2| … |r31|r00|r01|r02| … |r09

Produces a more complex DFA
• Has more states
• Same cost per transition
• Same basic implementation

What if we need a tighter specification?

cs415, spring 22 Lecture 9 19

The DFA for
Register ® r ((0|1|2) (Digit | e) | (4|5|6|7|8|9) | (3|30|31))

• Accepts a more constrained set of registers
• Same set of actions, more states

S0 S5 S1

r

S4

S3

S6

S2

0,1,2

3 0,1

4,5,6,7,8,9

(0|1|2| … 9)

Tighter register specification (continued)

cs415, spring 22 Lecture 9 20

Tighter register specification (continued)

seseseseses1s0

sesesesesesese

seseseseseses6

seseseses6ses5

seseseseseses4

seseseseseses3

ses3s3s3s3ses2

ses4s5s2s2ses1

All
others4-9320,1rd

Table encoding RE for the tighter register specification

Runs in the
same
skeleton
recognizer

cs415, spring 22 Lecture 9 21

Constructing a Scanner - Quick Review

® The scanner is the first stage in the front end
® Specifications can be expressed using regular expressions
® Build tables and code from a DFA

Scanner

Scanner
Generator

specifications

source code parts of speech & words

tables
or code

cs415, spring 22 Lecture 9

More Lexical Analysis

Syntax Analysis (top-down)

Read EaC: Chapter 3.1 – 3.3

Next class

22

