RUTGERS

CS5415 Compilers

Register Allocation
Part 3

RUTGERS Announcements

* First homework due this Friday, February 11.
There is a two days extension from February 9

* First project (local instruction scheduler) will be posted later
today
Deadline for code: March 2
Deadline for report: March 4

» Second homework has been posted

cs415, spring 22 Lecture 7 2

RUTGERS Local Register Allocation (and Assignment)

Readings: EaC 13.1-13.2, Appendix A (ILOC)

Local: within single basic block
lobal: across procedure/function

@

cs415, spring 22 Lecture 7

RUTGERS Live Ranges (live on exit)

Assume i and j are two instructions in a basic block

A value (virtual register) is /ive between its definition and its uses
* Find definitions (x « ..) and uses (y « ... x ...)

* From definition to last use is its /ive range
— How many (static) definitions can you have for a virtual register?

* Can represent live range as an interval [/, /] (in block)
— live on exit

Let MAXLIVE be the maximum, over each instruction /in the block,
of the number of values (virtual registers) live at .

* If MAXLIVE ¢ 4, allocation should be easy
— ho need to reserve set of F registers for spilling

* Tf MAXLIVE > A, some values must be spilled to memory
Finding live ranges is harder in the global case

cs415, spring 22 Lecture 7 4

RUTGERS ~ Top-down Allocator

The idea:

* Machine has k physical registers

* Keep "busiest” values in an assighed register

* Use the feasible (reserved) set, £, for the rest

* Fis the minimal set of registers needed to execute any instruction
with all operands in memory:

— Move values with no assigned register from/to memory by adding LOADs
and STOREs (SPILL CODE)

— For ILOC, the feasible set needs 3 registers due to StoreAO instruction

Basic algorithm (not graph coloring!):

* Rank values by number of occurrences (or some other metric)
* Allocate first & - F values to registers

* Rewrite code (with spill code) to reflect these choices

cs415, spring 22 Lecture 7 5

RUTGERS An Example : Top-Down

> Live Ranges

1| loadI 1028 =1rl
2| load rl = ré
3 mult rl,r2 =r3
4 |oadI 5 = r4
B sub r4i re =—=rb
6| loadI 8 = ré
7| mult r5,r6 =r7
8 sub r7,r3 =r8
9 store r8 = rl

NOTE: live ranges (on exit) of each instruction

cs415, spring 22 Lecture 7 6

RUTGERS An Example : Top-Down

> Live Ranges

loadI
load
mult
loadI
sub
loadI
mult
sub
store

OCOoONSTTOTD,WN =

1028
ri
rl, r2
5
r4, r2
8
rb, ré
r7,r3
r8

= rl
= re
= r3
= r4
= rb
= ré
=>r/
= r8
= rl

WATIT: rl is reused as a target register?

NOTE: live ranges (on exit) of each instruction

cs415, spring 22

Lecture 7 7

RUTGERS

> Live Ranges

loadI
load
mult
loadI
sub
loadI
mult
sub
store

OCOoONSTTOTD,WN =

NOTE: live ranges (on exit) of each instruction

cs415, spring 22

1028
ri
rl, r2
5
r4, r2
8
rb, ré
r/7,r3
r8

= rl
= re
= r3
= r4
= rb
= ré
=>r/
= r8
= rl

An Example : Top-Down

// rl
/] rl
// rl
// rl
// rl
// rl
// rl
// rl
//

Lecture 7

RUTGERS

An Example : Top-Down

> Live Ranges

loadI
load
mult
loadI
sub
loadI
mult
sub
store

OCOoONSTTOTD,WN =

1028
ri
rl, r2
5
r4, r2
8
rb, ré
r/7,r3
r8

= rl
= re
= r3
= r4
= rb
= ré
=>r/
= r8
= rl

// rl
/! rir2
/! rlr2
/! rlr2
// rl
// rl
// rl
// rl
//

NOTE: live ranges (on exit) of each instruction

cs415, spring 22

Lecture 7

RUTGERS An Example : Top-Down

> Live Ranges

1| loadI 1028 =r1 // rf

2| load rl =r2 //rir2

3 mult rl,r2 =r3 //rircr3
4 loadI 5 =r4 //rir2r3
5 sub rd r2 =rb [/ ri r3
6 loadI 8 =r6 //rl r3
7| mult rb5,r6 =r7 [/ rli r3
8 sub r7,r3 =r8 //rf

9 store r8 =rl //

NOTE: live ranges (on exit) of each instruction

cs415, spring 22 Lecture 7 10

RUTGERS An Example : Top-Down

> Live Ranges

1| loadI 1028 =r1 // rf

2| load rl =r2 //rir2

3 mult rl,r2 =r3 //rircr3

4 loadI 5 =rd //rirZ2r3r4

5 sub rd,r2 =rb /J/rli r3 rb5

6 loadI 8 =r6 /J/rl r3 rb5ré6

7| mult rb5,r6 =r7 [/ rli r3 r7

8 sub r7,r3 =r8 //ri ré8
9 store r8 =rl //

NOTE: live ranges (on exit) of each instruction

cs415, spring 22 Lecture 7 11

RUTGERS An Example : Top-Down

> 3 physical registers to allocate: ra, rb, rc

> 1selected register: f1 (feasible set)

> k=4,F=1,(k-F) =3 Note: ILOC needs larger

1| loadI 1028 =r1 //ri F set -> homework
2| load rl =r2 //rir2

3 mult rl,r2 =r3 //rircr3

4 loadI 5 =rd //rirZ2r3r4

5 sub rd,r2 =rb /J/rli r3 rb5

6 loadI 8 =r6 /J/rl r3 rb5ré6

7| mult rb5,r6 =r7 [/ rli r3 r7

8 sub r7,r3 =r8 //ri ré8

9 store r8 =rl //

» Consider statements with MAXLIVE > (k-F) basic algorithm
Spill heuristic: - 1. number of occurrences of virtual register

- 2. length of live range (tie breaker)

cs415, spring 22 Lecture 7 12

RUTGERS An Example : Top-Down

> 3 physical registers to al

locate: ra, rb, rc

> 1selected register: f1 (feasible set)

> k=4, F=1,(k-F)=3

1| loadI 1028 =rl
2| load rl = ré
3 mult rl,r2 =r3
4 |oadI 5 = r4
5 sub r4i re =—=rb
6| loadI 8 = ré
7| mult r5,r6 =r7
8 sub r7,r3 =r8
9 store r8 = rl

// rl

// rir2

/] rir2r3

/] rirer3réd - MAXLIVE = 4
//rl r3 rb

//rl r3 r5ré6 --MAXLIVE =4
//rl r3 r7

// ri ré8

//

» Consider statements with MAXLIVE > (k-F) basic algorithm
Spill heuristic: - 1. number of occurrences of virtual register

- 2. length of live range (tie breaker)

cs415, spring 22

Lecture 7 13

RUTGERS An Example : Top-Down

> 3 physical registers to allocate: ra, rb, rc ﬁocf Ieng’rh
> 1selected register: f1 (feasible set) r2: 3 3
> k=4,F=1,(k-F) =3 r3: 2 5
1|loadT 1028 =rl //ri '"gj : ;
2| load ri =re2 //rir2 r‘6. 7082 1
3] mult rli,r2 =r3 //rir2r3 ro.r7.re: <.
4 loadI 5 =r4d //rirZr3r4 - MAXLIVE = 4
5 sub rd,r2 =rb /J/rli r3 rb5
6 loadI 8 =r6 /J/rli r3 r5r6 --mMAXLIVE =4
7| mult r5,r6 =rvr7 //ri r3 r7
8 sub r7,r3 =r8 //ri ré8
9 store r8 =rl //

» Consider statements with MAXLIVE > (k-F) basic algorithm
Spill heuristic: - 1. number of occurrences of virtual register

- 2. length of live range (tie breaker)

cs415, spring 22 Lecture 7 14

RUTGERS An Example : Top-Down

> 3 physical registers to allocate: ra, rb, rc memory layout

> 1selected register: f1 (feasible set) 0 <oill
s k=4 F=1 (kP =3 er3
1| loadI 1028 =r1 //r!
2| load ri =re2 //rir2 1024
3 mult rl,r2 =r3 //rirczr3
4 loadI 5 =r4 //rir2r3r4 data
5 sub rd, r2 =rb /J/rli r3 rb5 addresses
6 loadI 8 =r6 /J/rli r3 rb5ré6
% mult r5,r6 =vr7 //ri r3 r7
8 sub r7,r3 =r8 //ri ré8
9 store r8 =rl //

» Consider statements with MAXLIVE > (k-F) basic algorithm
Spill heuristic: - 1. number of occurrences of virtual register

- 2. length of live range (tie breaker)

Note: EAC Top down algorithm does not look at live ranges and
MAXLIVE, but counts overall occurrences across entire basic block

cs415, spring 22 Lecture 7 15

RUTGERS An Example : Top-Down

> 3 physical registers for allocation: ra, rb, rc
> 1 physical register designated to be in the feasible set F

1 loadI 1028 =ra //r!

2| load ra =rb //rir2
3 mult ra,rb =f1 // rir2
storeAL fl = rO, @r3 // spill code
4 loadI 5 =rc [//rirZ r4 - MAXLIVE = 3
5 sub rc,rb =rb //ri r5
6 loadI 8 =rc //ri rb ré. - MAXLIVE = 3
7| mult rb,rc =rb //rf r7
loadAI rO, @r3 = f1 // spill code
8 sub rb,fl =rb //ri ré8
9 store rb =ra //

» Insert spill code for every occurrence of spilled virtual
register in basic block using feasible register f1;
Remove spilled register from consideration for allocation

cs415, spring 22 Lecture 7 16

RUTGERS Spill code

* A virtual register is spilled by using only registers from the feasible
set (F), not the allocated set (k-F) = {ra, rb, ... }

* How to insert spill code, with F = {f1, f2, .. }?

— For the definition of the spilled value r (assignment of the value to the
virtual register r), use a feasible register f as the target register;
assign fixed memory location for spilled value (spill of fset @r), and
store feasible register value to address offset @r:

addra,rb = f

// target of operation is spilled;

storeAI f = rO, @r // spilled value “lives” in memory offset @r

— For the use of the spilled value, load value from memory into a feasible

register:

loadAT rO, @r = f
add f,rb = ra

// value lives at memory with offset @r
// loaded into feasible register

* How many feasible registers do we need for an add instruction?

cs415, spring 22 Lecture 7

17

RUTGERS Bottom-up Allocator

The idea:
* Focus on replacement rather than allocation
* Keep values "used soon" in registers

* Only parts of a live range may be assigned to a physical
register (# top-down allocation’s "all-or-nothing" approach)

Algorithm:

* Start with empty register set

* Load on demand

* When no register is available, free one

Replacement (heuristic):
* Spill the value whose next use is farthest in the future
* Sound familiar? Think page replacement ...

cs415, spring 22 Lecture 7 18

RUTGERS ~ An Example : Bottom-up

memory layout

» Bottom up (3 registers to allocate) 0 "
spi

1| loadI 1028 =rl //ri addresses
2| load rl =r2 //rir2 1024
3 mult rl,r2 =r3 //rircr3
4 loadI 5 =r4 //rir2r3r4
Bl sub rd,r2 =r5 /J/rli r3 r5 data
6| loadI 8 =r6 //rl r3 r5ré addresses
7| mult rb5,r6 =r7 [/ rli r3 r7
8 sub r7,r3 =r8 //ri ré8
9 store r8 =rl //

cs415, spring 22 Lecture 7 19

RUTGERS Next topic

Bottom-up register allocation

Lexical Analysis

Read EaC: Chapters 2.1 - 2.5;

cs415, spring 22 Lecture 7 20

