
CS415 Compilers

Register Allocation

These slides are based on slides copyrighted by
Keith Cooper, Ken Kennedy & Linda Torczon at Rice

University

cs415, spring 22 Lecture 5

Local Register Allocation (and Assignment)

Readings: EaC 13.1-13.2, Appendix A (ILOC)

Local: within single basic block
Global: across procedure/function

2

cs415, spring 22 Lecture 5

Register Allocation

Part of the compiler’s back end

Critical properties
• Produce correct code that uses k (or fewer) registers
• Minimize added loads and stores
• Minimize space used to hold spilled values
• Operate efficiently

O(n), O(n log2n), maybe O(n2), but not O(2n)

Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

m register
IR

k register
IR

3

cs415, spring 22 Lecture 5

Memory Model / Code Shape

• register-register model
® Values that may safely reside in registers are assigned to a unique

virtual register (alias analysis)
® Register allocation/assignment maps virtual registers to limited set

of physical registers
® Register allocation/assignment pass needed to make code “work”

• memory-memory model
® All values reside in memory, and are only kept in registers as briefly

as possible (load operands from memory, perform computation,
store result into memory)

® Register allocation/assignment has to try to identify cases where
values can be safely kept in registers

® Safety verification is hard at the low levels of program abstraction
® Even without register allocation/assignment, code will “work”

Will use this one from now on

4

cs415, spring 22 Lecture 5 5

• register-register model
® Values that may safely reside in registers are

assigned to a unique virtual register (alias analysis;
unambiguous values); there are different “flavors”

• memory-memory model
® All program-named values reside in memory, and are

only kept in registers as briefly as possible (load
operands from memory, perform computation, store
result back into memory)

a := 1
b := 2
c := a + b + 3

loadI 1 Þ r1
loadI 2 Þ r2
add r1, r2 Þ r3
loadI 3 Þ r4
add r3, r4 Þ r5

loadI 1 Þ r1
storeAI r1 Þ r0,@a
loadI 2 Þ r2
storeAI r2 Þ r0,@b
add r1, r2 Þ r3
loadI 3 Þ r4
add r3, r4 Þ r5
storeAI r5 Þ r0,@c

loadI 1 Þ r1
storeAI r1 Þ r0,@a
loadI 2 Þ r2
storeAI r2 Þ r0,@b
loadAI r0,@a Þ r3
loadAI r0,@b Þ r4
add r3, r4 Þ r5
loadI 3 Þ r7
add r5, r7 Þ r8
storeAI r8 Þ r0,@c

register-register memory-memory

all in registers

preserve memory view
(memory consistency)

Memory Model / Code Shape

assumption: no aliasing

cs415, spring 22 Lecture 5

Register Allocation

Consider a fragment of assembly code (or ILOC)
loadI 2 Þ r1 // r1 ¬ 2
loadAI r0, @y Þ r2 // r2 ¬ y
mult r1, r2 Þ r3 // r3 ¬ 2 · y
loadAI r0, @x Þ r4 // r4 ¬ x
sub r4, r3 Þ r5 // r5 ¬ x – (2 · y)

The Problem
• At each instruction, decide which values to keep in registers

® Note: a value is a pseudo-register
® Simple if |values| ≤ |registers|

• Harder if |values| > |registers|
• The compiler must automate this process

(virtual register)

6

cs415, spring 22 Lecture 5

Register Allocation

Consider a fragment of assembly code (or ILOC)
loadI 2 Þ r1 // r1 ¬ 2
loadAI r0, 8 Þ r2 // r2 ¬ y
mult r1, r2 Þ r3 // r3 ¬ 2 · y
loadAI r0, 4 Þ r4 // r4 ¬ x
sub r4, r3 Þ r5 // r5 ¬ x – (2 · y)

The Problem
• At each instruction, decide which values to keep in registers

® Note: a value is a pseudo-register (virtual register)
® Simple if |values| ≤ |registers|

• Harder if |values| > |registers|
• The compiler must automate this process

address
immediate

7

memory layout
0

.

.

.
r0 =
1024

x
y

cs415, spring 22 Lecture 5

The Task
• At each point in the code, pick the values to keep in registers
• Insert code to move values between registers & memory

® No reordering transformations (leave that to scheduling)
• Minimize inserted code — both dynamic & static measures
• Make good use of any extra registers

Allocation versus assignment
• Allocation is deciding which values to keep in registers
• Assignment is choosing specific registers for values
• This distinction is often lost in the literature

The compiler must perform both allocation & assignment

Register Allocation

8

cs415, spring 22 Lecture 5

Local Register Allocation

• What’s “local” ? (as opposed to “global”)
® A local transformation operates on basic blocks
® Many optimizations are done locally

• Does local allocation solve the problem?
® It produces decent register use inside a block
® Inefficiencies can arise at boundaries between blocks

• How many passes can the allocator make?
® This is a compile-time (“off-line”) problem (not done during

program execution); typically, as many passes as it takes

• memory-to-memory vs. register-to-register model
® code shape and safety issues

9

cs415, spring 22 Lecture 5

Register Allocation

Can we do this optimally? (on real code?)

Real compilers face real problems

Local Allocation
• Simplified cases Þ O(n)
• Real cases Þ NP-Complete

Global Allocation
• NP-Complete for 1 register
• NP-Complete for k registers
(most sub-problems are NPC, too)

Local Assignment
• Single size, no spilling Þ O(n)
• Two sizes Þ NP-Complete

Global Assignment
• NP-Complete

10

cs415, spring 22 Lecture 5

Basic Approach of Allocators

Allocator may need to reserve physical registers to ensure feasibility

• Must be able to compute memory addresses
• Requires some minimal set of registers, F

® F depends on target architecture
• F contains registers to make spilling work

® set F registers “aside” for address computation & instruction execution, i.e.,
these are not available for register assignment

• Note: F physical registers need to be able to support the pathological
case where all virtual registers are spilled

What if k – |F| < |values| < k ?
• The allocator can either

® Check for this situation
® Accept the fact that the technique is an approximation

Notation:
k is the number of
registers on the
target machine

11

cs415, spring 22 Lecture 5

Top-down Versus Bottom-up Allocation

Top-down allocator
• May use notion of “live ranges” of virtual registers
• Work from “external” notion of what is important
• Assign registers in priority order
• Register assignment remains fixed for entire basic block
• Save some registers for the values relegated to memory

(feasible set F)

Bottom-up allocator
• Work from detailed knowledge about problem instance
• Incorporate knowledge of partial solution at each step
• Register assignment may change across basic block
• Save some registers for the values relegated to memory

(feasible set F)

12

cs415, spring 22 Lecture 5

Assume i and j are two instructions in a basic block

A value (virtual register) is live between its definition and its uses
• Find definitions (x ¬ …) and uses (y ¬ … x ...)
• From definition to last use is its live range

® How many (static) definitions can you have for a virtual register?
• Can represent live range as an interval [i,j] (in block)

® live on exit

Let MAXLIVE be the maximum, over each instruction i in the block,
of the number of values (virtual registers) live at i.

• If MAXLIVE ≤ k, allocation should be easy
® no need to reserve set of F registers for spilling

• If MAXLIVE > k, some values must be spilled to memory

Finding live ranges is harder in the global case

Live Ranges (live on exit)

13

cs415, spring 22 Lecture 5

More Register Allocation EaC 13.1 – 13.3
(Top-down and Bottom-Up Allocation)

Next topic

14

