RUTGERS

CS5415 Compilers

Instruction Scheduling
(part 3)




RUTGERS Announcements

* First homework has been posted; due Wednesday, February 9
 Recitation slides are available on our website

 First project will be on instruction scheduling

cs415, spring 22 Lecture 4 2



RUTGERS  Scheduling Example

Operation

Cycles

load
loadl
loadAl
store
storeAl
add
mult
fadd
fmult
shift
output
outputAl

_ee = N = N = WW LW =W

Build a simple local scheduler (basic block)
- non-blocking loads & stores

- different latencies load/store vs. arith. etc.
operations

- different heuristics

- forward / backward scheduling

cs415, spring 22

Lecture 4 3




RUTGERS

1. Build the dependence graph

S(n):

N B~ WL O

8
11
12
15
17
20

= 20
cycles

T Fe e T

loadAl r0,@w
add r1,r
loadAl r0,@x
mult r1,r2
loadAl r0,@y
mult r1,r3
loadAl r0,@z
mult r1,r2
storeAl r1
The Code

cs415, spring 22

=
=
=12
=
=13
=
=12
=

= r0,@w

Lecture 4

Scheduling Example

true

T anti

N
N
f
N
|

C

The Dependence Graph



RUTGERS  Scheduling Example

1. Build the dependence graph
2. Determine priorities: longest latency-weighted path

loadAl
add
loadAl
mult
loadAl
mult
loadAl
mult
storeAl

e e a0 o

The Code

cs415, spring 22

r0,@w
r1,r1

r0,@x
1,r2

r0,@y
r1,r3

r),@z
1,r2
r1

Lo a14 true
= anti
=12 l 3

= 11 b\ / e1o
=13 d

— 10 MQB
=12 LANEI4
= I‘
:>r0,@W i 3

The Dependence Graph

Lecture 4




RUTGERS  List Scheduling Example

The Code

a: loadAIL. rO, @w =>rl
b: add rl,rl => rl
c: loadAI rO, @x => r2
d: mult rl,r2 => ri
e: loadAI rO, @y => r3
f: mult rl,r3 => ri
g: loadAI rO, @z => r2
h: mult rl, r2 => rl
i: storeAI rl1 =>r0,@w

S(n) =

cs415, spring 22

OCOONOTOTPDA,WN -O

CYCLE=0
READY - SET ACTIVE - SET
The Generated Code
true
14

a
anti

l 13

b C

The Dependence Graph
(longest latency-weighted)



RUTGERS

List Scheduling Example

The Code

cs415, spring 22

o))
~

>
—

OCWOWXONGTOAWRN =~ O

—
—
N =

CYCLE = 14

READY - SET

The Generated Code
a: loadAIL. rO, @w =>rl

c: loadAI rO, @x => r2
e: loadAI rO, @y => r3
b: add rl,rl => rl
d: mult rl, r2 => ri

g: loadAI rO, @z => r2
f: mult rl, r3 => rl

h: mult rl, r2 => rl

i: storeAI rl1 =>r0,@w

ACTIVE - SET

The Dependence Graph
(longest latency-weighted)



RUTGERS  Local (Forward) List Scheduling

Cycle <~ 0 /‘ Removal in priority order
Ready <« leaves of P

Active < @

while (Ready U Active = @)
if (Ready = @) then
remove an op from Ready

S(op) < Cycle /‘ op has completed execution
Active < Active L op

Cycle « Cycle +1

for each op € Active
if (S(op) + delay(op) < Cycle) then
remove op from Active
for each successor s of op in P
if (s is ready) then
Ready < Ready U s

If successor’s operands are
ready, put it on Ready

h

cs415, spring 22 Lecture 4 8



RUTGERS  Instruction Scheduling (Definitions)

A correct schedule S maps each ne Ninto a non-negative
intfeger representing its cycle number such that

1. 5(n)20, forall n e N, obviously
2. If (m,m) € E, S(n;) + delay(n; ) < S(n, )

3. For each type #, there are no more operations of type #in
any cycle than the target machine can issue;

(Note: we only use a single type here - single pipeline)

The length of a schedule S5, denoted L(S), is
L(S) = max, -n (S(n) + delay(n))

The goal is to find the shortest possible correct schedule.
Sis fime-optimal if L(S) < L(S;), for all other schedules 5;

Note: We are trying fo minimize execution time here.

cs415, spring 22 Lecture 4 9



RUTGERS Instruction Scheduling (What's so difficult?)

Critical Points

* All operands must be available

* Multiple operations can be ready

* Operands can have multiple predecessors

Together, these issues make scheduling Aard (NP-Complete)

Local scheduling is the simple case
* Restricted to straight-line code (single basic block)
* Consistent and predictable latencies

cs415, spring 22 Lecture 4 10



RUTGERS  Scheduling Example

1. Build the dependence graph
2. Determine priorities: longest latency-weighted path

a: loadAl  r0.@w = rf 14 frue
b: add r1,r1 = r1 a anti
c: loadAl ,a@x =r2 l c 13
d:  mult Mr2 =-r1 11 b\ / 10
e: loadAl 0@y =13 109 ©
f: mult M3 =r1 m g 8
g: loadAl  10,@z =12 LANEI4
h: mult M2 = f
i: storeAl r1 = r0,@w ;3
The Code The Dependence Graph

Note: Here we assume that an operation has to finish to satisfy an anti dependence.
Our ILOC simulator takes only one cycle to satisfy an anti dependence since read-stage
is executed before write stage (EaC). [

cs415, spring 22 Lecture 4 11



RUTGERS  Scheduling Example

1. Build the dependence graph
2. Determine priorities: longest latency-weighted path

a: loadAl  r0.@w = rf 13 frue
b: add r1,r1 = r1 a anti
c: loadAl ,a@x =r2 l c 12
d:  mult Mr2 =-r1 10 b\ / 10
e: loadAl @y =r3 g d €
f: mult M3 =r1 m g 8
g: loadAl  10,@z =12 LANEI4
h: mult M2 = f
i: storeAl r1 = r0,@w ;3
The Code The Dependence Graph

Note: Here we assume that an operation has to finish to satisfy an anti dependence.
Our ILOC simulator takes only one cycle to satisfy an anti dependence since read-stage
is executed before write stage (EaC). [

cs415, spring 22 Lecture 4 12



RUTGERS  Scheduling Example

1. Build the dependence graph
2. Determine priorities: longest latency-weighted path
3. Perform list scheduling (forward)

-|-
a: loadAl nae@w -=ri 14 —
b: add M = i anti
c: loadAl  r0,@x =r2 l 3
d: mult rMnr2 = 11 b\ e 10
e: loadAl @y =13 109 €
f: mult Mr3d =n % g 8
g loadAl 0@ =12 NG
h: mult Mr2 -=n I‘
i: storeAl 1 = r0,@w ;3
The Code

The Dependence Graph

We assume full latency for anti-dependences here
cs415, spring 22 Lecture 4 13



RUTGERS

Scheduling Example

1. Build the dependence graph
2. Determine priorities: longest latency-weighted path
3. Perform list scheduling (forward)

S(n):

A~ — O 9N B W - O

—_—

= 14
cycles

-2 @ oT OO0

loadAl
loadAl
loadAl
add
mult
loadAl
mult

mult
storeAl

The Code

r0,@w
r0,@x

r0,@y
r1,r1

r1,r2
r0,@z
r1,r3
r1,r2
"1

true
=1 a14
=2 anti
=3 l 13
b C
=1 11

=>r d e
10

= r1 7f\5/

=r h

= r0,@w l 3

The Dependence Graph

We assume full latency for anti-dependences here

cs415, spring 22

Lecture 4 14



RUTGERS  More on Scheduling

Forward list scheduling Backward list scheduling

- start with available ops - start with no successors

- work forward - work backward

- ready = all operands available - ready = latency covers operands

Different heuristics (forward) based on Dependence Graph

1. Longest latency weighted path to root (= critical path)

2. Highest latency instructions (= more overlap)

3. Most immediate successors (= create more candidates)
4. Most descendents (= create more candidates)
5

Interactions with register allocation (Note: we are not doing this)
» perform dynamic register renaming (= may require spill code)
* move life ranges around (= may remove or require spill code)

cs415, spring 22 Lecture 4 15



RUTGERS Next topic

Register Allocation EaC 13.1 - 13.3
(Top-down and Bottom-Up Allocation)

cs415, spring 22 Lecture 4 16



