
CS415 Compilers

Instruction Scheduling
(part 2)

These slides are based on slides copyrighted by
Keith Cooper, Ken Kennedy & Linda Torczon at Rice

University

cs415, spring 22 Lecture 3

Announcements

• Recitations and office hours start this week (today!)

• Office hours have been posted soon

• First homework will be posted by Friday

• First project will be instruction scheduling

2

cs415, spring 22 Lecture 3

Local Instruction Scheduling

Readings: EaC 12.1-12.3, Appendix A (ILOC)

Local: within single basic block
Global: across procedures/functions

3

Definition
A basic block is a maximal length segment of straight-line
(i.e., branch free) code. Control can only enter at first instruction
of basic block and exit after last instruction.

cs415, spring 22

Instruction Scheduling (Engineer’s View)

The Problem
Given a code fragment (basic block) for some target machine and the
latencies for each individual operation, reorder the operations
to minimize execution time

The Concept

The Optimization Goal: Generate fast code

Scheduler
slow

code

fast

code

Machine description

The Task
• Produce correct code

• Minimize wasted (idle) cycles

• Scheduler operates efficiently

Lecture 3 4

cs415, spring 22

Data Dependences (stmt./instr. level)

Dependences Þ defined on memory locations / registers

Statement/instruction b depends on statement/instruction a if there exists:

• true of flow dependence
a writes a location/register that b later reads (RAW conflict)

• anti dependence
a reads a location/register that b later writes (WAR conflict)

• output dependence
a writes a location/register that b later writes (WAW conflict)

Dependences define ORDER CONSTRAINTS that need to be respected in order
to generate correct code.

true
a =

= a

anti
= a

a =

output
a =
a =

Lecture 3 5

cs415, spring 22

Instruction Scheduling (The Abstract View)

To capture properties of the code, build a
precedence/dependence graph G

• Nodes n Î G are operations with type(n) and delay(n)
• An edge e = (n1,n2) Î G if n2 depends on n1

a: loadAI r0,@w Þ r1
b: add r1,r1 Þ r1
c: loadAI r0,@x Þ r2
d: mult r1,r2 Þ r1
e: loadAI r0,@y Þ r3
f: mult r1,r3 Þ r1
g: loadAI r0,@z Þ r2
h: mult r1,r2 Þ r1
i: storeAI r1 Þ r0,@w

The Code

a

b c

d e

f g

h

i

The Precedence Graph

All other dependences (output & anti)
are covered, i.e., are satisfied through
the dependencies shown

true

anti

Lecture 3 6

cs415, spring 22

Operation Cycles (latency/delay)
load 3
loadI 1
loadAI 3
store 3
storeAI 3
add 1
mult 2
fadd 1
fmult 2
shift 1
output 1
outputAI 1

Example latencies

Lecture 3 7

cs415, spring 22

Instruction Scheduling (The Abstract View)

To capture properties of the code, build a precedence graph G
• Nodes n Î G are operations with delay(n)
• An edge e = (n1,n2) Î G if n2 depends on n1

a: loadAI r0,@w Þ r1
b: add r1,r1 Þ r1
c: loadAI r0,@x Þ r2
d: mult r1,r2 Þ r1
e: loadAI r0,@y Þ r3
f: mult r1,r3 Þ r1
g: loadAI r0,@z Þ r2
h: mult r1,r2 Þ r1
i: storeAI r1 Þ r0,@w

The Code

a

b c

d e

f g

h

i

The Precedence/Dependence Graph

All other dependences (output & anti)
are covered, i.e., are satisfied through
the dependencies shown

true

anti

Lecture 3 8

S(n):
0
3
4
7
8

11
12
15
17
20

Þ 20
cycles

cs415, spring 22

Instruction Scheduling

The big picture
1. Build a dependence graph, P
2. Compute a priority function over the nodes in P
3. Use list scheduling to construct a schedule, one cycle at a time

(can only issue/schedule at most one instructions per cycle)
a. Use a set of operations that are ready
b. At each cycle

I. Choose a ready operation (priority-based) and schedule it
II. Increment cycle
III. Update the ready set

Local list scheduling
• The dominant algorithm for many years
• A greedy, heuristic, local technique

Lecture 3 9

cs415, spring 22

Operation Cycles
load 3
loadI 1
loadAI 3
store 3
storeAI 3
add 1
mult 2
fadd 1
fmult 2
shift 1
output 1
outputAI 1

Build a simple local scheduler (basic block)

- non-blocking loads & stores

- out of order execution

- different latencies load/store vs. arith. etc.
operations

- different heuristics

- forward / backward scheduling

Scheduling Example

Lecture 3 10

cs415, spring 22

Scheduling Example

1. Build the dependence graph

The Code

a

b c

d e

f g

h

i

a: loadAI r0,@w Þ r1
b: add r1,r1 Þ r1
c: loadAI r0,@x Þ r2
d: mult r1,r2 Þ r1
e: loadAI r0,@y Þ r3
f: mult r1,r3 Þ r1
g: loadAI r0,@z Þ r2
h: mult r1,r2 Þ r1
i: storeAI r1 Þ r0,@w

S(n):
0
3
4
7
8

11
12
15
17
20

Þ 20
cycles

The Dependence Graph

true

anti

Lecture 3 11

cs415, spring 22

Scheduling Example

1. Build the dependence graph
2. Determine priorities: longest latency-weighted path

The Code

a

b c

d e

f g

h

i
3

5

8

7

10

10

13

11

14a: loadAI r0,@w Þ r1
b: add r1,r1 Þ r1
c: loadAI r0,@x Þ r2
d: mult r1,r2 Þ r1
e: loadAI r0,@y Þ r3
f: mult r1,r3 Þ r1
g: loadAI r0,@z Þ r2
h: mult r1,r2 Þ r1
i: storeAI r1 Þ r0,@w

The Dependence Graph

true

anti

Lecture 3 12

cs415, spring 22

List Scheduling Example

a

b c

d e

f g

h

i
3

5

8

7

10

10

13

11

14

The Dependence Graph

(longest latency-weighted)

true

anti

READY - SET ACTIVE - SET
CYCLE = 0

0
1
2
3
4
5
6
7
8
9

10
11
12

The Generated Code

S(n) =

The Code

13

a: loadAI. r0, @w => r1

e: loadAI r0, @y => r3

b: add r1, r1 => r1

d: mult r1, r2 => r1

g: loadAI r0, @z => r2
f: mult r1, r3 => r1

h: mult r1, r2 => r1
i: storeAI r1 => r0,@w

c: loadAI r0, @x => r2

cs415, spring 22 Lecture 3

Finishing instruction scheduling

Register Allocation EaC 13.1 – 13.3
(Top-down and Bottom-Up Allocation)

Next topic

14

