RUTGERS

CS5415 Compilers

Instruction Scheduling
(part 2)

RUTGERS Announcements

Recitations and office hours start this week (today!)
Office hours have been posted soon
First homework will be posted by Friday

First project will be instruction scheduling

cs415, spring 22 Lecture 3

RUTGERS Local Instruction Scheduling

Readings: EaC 12.1-12.3, Appendix A (ILOC)

Definition
A basic block is a maximal length segment of straight-line
(7e., branch free) code. Control can only enter at first instruction

of basic block and exit after last instruction.

Local: within single basic block
Global: across procedures/functions

cs415, spring 22 Lecture 3 3

RUTGERS Instruction Scheduling (Engineer's View)

The Problem

Given a code fragment (basic block) for some target machine and the
latencies for each individual operation, reorder the operations
To minimize execution time

The Task

The Concept
* Produce correct code

Machine defc" Iption * Minimize wasted (idle) cycles

* Scheduler operates efficiently

slow fast R

code Scheduler code

The Optimization Goal: Generate fast code

cs415, spring 22 Lecture 3 4

RUTGERS Data Dependences (stmt./instr. level)

Dependences = defined on memory locations / registers

Statement/instruction b depends on statement/instruction a if there exists:

» true of flow dependence
a writes a location/register that b later reads (RAW conflict)

- anti dependence
a reads a location/register that b later writes (WAR conflict)

- output dependence
a writes a location/register that b later writes (WAW conflict)

Dependences define ORDER CONSTRAINTS that need to be respected in order
to generate correct code.

true anti output
- - a -
= ac a-=
Lecture 3 5

cs415, spring 22

KUTGERS Instruction Scheduling (The Abstract View)

To capture properties of the code, build a
precedence/dependence graph &

* Nodes n < G are operations with tfype(n)and delay(n)
* Anedge e = (n,n;) e & if n,depends on n;

loadAl
add
loadAl
mult
loadAl
mult
loadAl
mult
storeAl

e e a0 T

The Code

cs415, spring 22

rO,@W = a

MM =r l true

,@x =r2 c ti
b anti

M2 =l N s

nNa@y -—=r3

Ml = % 9

M0,@z =r2 \h/

M2 = l

r1 = 10,@w i

The Precedence Graph

All other dependences (output & anti)
are covered, i.e., are satisfied through
Lecture 3 the dependencies shown 6

RUTGERS Example latencies

Operation Cycles (latency/delay)
load 3

loadl
loadAl
store
storeAl
add
mult
fadd
fmult
shift
output
outputAl

_eed e N = N = WOW W =

cs415, spring 22 Lecture 3 7

RUTGERS Instruction Scheduling (The Abstract View)

To capture properties of the code, build a precedence graph &
* Nodes # < & are operations with de/ay(n)
* Anedge e = (n,n;) € Gif n,depends on n;

S(n):
0 a: loadAl
3 b: add
4 ¢ loadAl
7 d: mult
g e: loadAl
11 f: mult
12 g loadAl
15 h: mult
17 i: storeAl
20

— 20 The Code

cycles

cs415, spring 22

r),@w
r1,r

r0,@x
r1,r2

r0,@y
r1,r3

r0,@z
r1,r2
r1

= a
=1 l
=12 b
=11 \d/ o
=13

N

= f

=2 \h/
= r1 |

= r0,@w i

true

c anti

The Precedence/Dependence Graph

All other dependences (output & anti)
are covered, i.e., are satisfied throu%h

Lecture 3 :
N the dependencies shown

RUTGERS Instruction Scheduling

The big picture

1. Build a dependence graph, P

2. Compute a priority function over the nodes in P

3. Use list scheduling to construct a schedule, one cycle at a time

(can only issue/schedule at most one instructions per cycle)

a. Use a set of operations that are ready
b. At each cycle

I. Choose aready operation (priority-based) and schedule it
II. Increment cycle
III. Update the ready set

Local list scheduling
* The dominant algorithm for many years
* A greedy, heuristic, local technique

cs415, spring 22 Lecture 3 9

RUTGERS Scheduling Example

Operation

Cycles

load
loadl
loadAl
store
storeAl
add
mult
fadd
fmult
shift
output
outputAl

_ee = N = N = WW LW =W

cs415, spring 22

Build a simple local scheduler (basic block)
- non-blocking loads & stores
- out of order execution

- different latencies load/store vs. arith. etc.
operations

- different heuristics

- forward / backward scheduling

Lecture 3 10

RUTGERS Scheduling Example

1. Build the dependence graph

S(n):

true
0 a: loadAl nN@w -—=r1 g
3 b: add MM -=nr anti
4 ¢: loadAl r,@x —=r2 l c
7 d mult M2 =r "\ S
8 e: loadAl @y —r3 d €
11 f: mult M3 =r %g
12 g loadAl 0@z =r2 N4
15 h: mult M2 =r f
17 it storeAl 1 = r0,@w i
20
The Code
The Dependence Graph
= 20
cycles

cs415, spring 22 Lecture 3 11

RUTGERS Scheduling Example

1. Build the dependence graph
2. Determine priorities: longest latency-weighted path

loadAl
add
loadAl
mult
loadAl
mult
loadAl
mult
storeAl

e e a0 o

The Code

cs415, spring 22

r0,@w
r1,r1

r0,@x
1,r2

r0,@y
r1,r3

r),@z
1,r2
r1

=
=
=2
=
=13
=
=12
=
= r0,@w

Lecture 3

14 true
a :
anti
l 13
b C
11 \\ / 10
d

The Dependence Graph

12

RUTGERS List Scheduling Example

The Code

a: loadAIL. rO, @w =>rl
b: add rl,rl => rl
c: loadAI rO, @x => r2

d: mult rl, r2 => rl 0
e: loadAT rO, @y => r3 1
f: mult rl, r3 => rl 2
g: loadAI rO, @z => r2 3
h: mult rl,r2 => rl 4
i: storeAL rl =>r0,@w 5
6

S(n)= 7

8

9

10

11

cs415, spring 22 12

CYCLE=0
READY - SET ACTIVE - SET
The Generated Code
true
14

a
anti

l 13

b C

The Dependence Graph
(longest latency-weighted)

RUTGERS Next topic

Finishing instruction scheduling

Register Allocation EaC 13.1 - 13.3
(Top-down and Bottom-Up Allocation)

cs415, spring 22 Lecture 3 14

