
CS415 Compilers
ILOC, Code Shape, and
Instruction Scheduling

These slides are based on slides copyrighted by
Keith Cooper, Ken Kennedy & Linda Torczon at Rice

University

cs415, spring 22 Lecture 2

Announcements

• Recitations and office hours start this week

• Office hours will be posted soon

• Please go to
https://www.cs.rutgers.edu/courses/415/classes/spring_2022_kremer/
to download lecture slides

• Lecture videos for first three lectures are/will be available
on canvas https://rutgers.instructure.com/courses/160913

• Please go to piazza for questions
https://rutgers.instructure.com/courses/160913/external_tools/1590

• Reminder: Get ilab account

2

https://www.cs.rutgers.edu/courses/415/classes/spring_2022_kremer/
https://rutgers.instructure.com/courses/160913
https://rutgers.instructure.com/courses/160913/external_tools/1590

cs415, spring 22 Lecture 2 3

Review - Traditional Compiler

Implications
• Use an intermediate representation (IR)
• Front end maps legal source code into IR
• Back end maps IR into target machine code

Typically, front end is O(n) or O(n log n), while back end is NP-
complete

Source
code

Front
End

Errors

Machine
code

Back
End

IR

cs415, spring 22 Lecture 2

Backend - Register Allocation

Part of the compiler’s back end

Critical properties
• Produce correct code that uses k (or fewer) registers
• Minimize added loads and stores
• Minimize space used to hold spilled values
• Operate efficiently

O(n), O(n log2n), maybe O(n2), but not O(2n)

Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

m virtual register
IR

k physical register
IR

4

cs415, spring 22 Lecture 2

Backend - Instruction Scheduling

Part of the compiler’s back end

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

m register
IR

k register
IR

5

cs415, spring 22 Lecture 2

Local Instruction Scheduling

Readings: EaC 12.1-12.3, Appendix A (ILOC)

Local: within single basic block
Global: across procedures/functions

6

Definition
A basic block is a maximal length segment of straight-line
(i.e., branch free) code. Control can only enter at first instruction
of basic block and exit after last instruction.

cs415, spring 22

Instruction Scheduling

Motivation
• Instruction latency (pipelining)

several cycles to complete instructions; instructions can be issued
every cycle

• Instruction-level parallelism (VLIW, superscalar)
execute multiple instructions per cycle

Issues
• Reorder instructions to reduce execution time
• Static schedule – insert NOPs to preserve correctness
• Dynamic schedule – hardware pipeline stalls
• Preserve correctness, improve performance
• Interactions with other optimizations (register allocation!)

Lecture 2 7

cs415, spring 22

Instruction Scheduling

Motivation
• Instruction latency (pipelining)

several cycles to complete instructions; instructions can be issued
every cycle

• Instruction-level parallelism (VLIW, superscalar)
execute multiple instructions per cycle

Issues
• Reorder instructions to reduce execution time
• Static schedule – insert NOPs to preserve correctness
• Dynamic schedule – hardware pipeline stalls
• Preserve correctness, improve performance
• Interactions with other optimizations (register allocation!)
• Note: After register allocation, code shape contains real, not

virtual registers ==> register may be redefined
Lecture 2 8

cs415, spring 22 Lecture 2

Memory Model / Code Shape

Source code

A = 5;
B = 6;
C = A + B;

memory layout
0

1024

.

.

.

byte data
addresses

9

offset

cs415, spring 22 Lecture 2

Memory Model / Code Shape

Source code

A = 5;
B = 6;
C = A + B;

memory layout
0

1024

.

.

.

byte data
addresses

10

A
B
C

Assume A, B, C are integer values of 4 bytes
address(A) = 1024 + offset(A) = 1028
address(B) = 1024 + offset(B) = 1032
address(C) = 1024 + offset(C) = 1036

This convention is used in activation records or
stack frames. We use it here for consistency.

More general:
address(X) = base_address + offset(X)

offset
4 = @A
8 = @B
12 = @C

Example:

cs415, spring 22 Lecture 2

Instruction scheduling on basic blocks in “ILOC”
• Pseudo-code for a simple, abstracted RISC machine

® generated by the instruction selection process
• Simple, compact data structures
• Here: we only use a small subset of ILOC

ILOC is described in Appendix A of EAC.

ILOC simulator “sim” is available on ilab:
~uli/cs415/ILOC_Simulator/sim

ILOC (Intermediate Language for Optimizing Compilers)

Quadruples:

• table of k x 4 small integers

• simple record structure

• easy to reorder

• all names are explicit

11

cs415, spring 22 Lecture 2

Memory Model / Code Shape

Source code

A = 5;
B = 6;
C = A + B;

memory layout
0

1024

.

.

.

byte data
addresses

ILOC code

loadI 5 Þ r1
// compute address of A in r2
. . .

store r1 Þ r2 // content(A) = r1
loadI 6 Þ r3
// compute address of B in r4

. . .
store r3 Þ r4 // content(B) = r3
add r1, r3 Þ r5
// compute address of C in r6

. . .
store r5 Þ r6 // content(C) = r1 + r3

Is this code correct?

ILOC: EaC Appendix A

12

cs415, spring 22 Lecture 2

Memory Model / Code Shape

Source code

foo (var A, B)
A = 5;
B = 6;
C = A + B;

end foo;

X = 1
call foo(X,X);
print C;

Incorrect for
call-by-reference!

memory layout
0

1024

.

.

.

byte data
addresses

ILOC code

loadI 5 Þ r1
// compute address of A in r2

. . .
store r1 Þ r2 // content(A) = r1
loadI 6 Þ r3
// compute address of B in r4

. . .
store r3 Þ r4 // content(B) = r3
add r1, r3 Þ r5
// compute address of C in r6

. . .
store r5 Þ r6 // content(C) = r1 + r3

Is this code correct?

ILOC: EaC Appendix A

13

cs415, spring 22 Lecture 2

Aliasing Problem

Aliasing: Two variables or source-code names may
refer to the same memory location.

Examples:
• formal call-by-reference parameters a and b
• pointers a->f and b->f
• array elements: a(i, j) and a(k, l)

Challenge: When is it safe to keep a variable’s value in
a register across STORE instructions, i.e., while
other STORE instructions are executed?

14

cs415, spring 22 Lecture 2

Memory Model / Code Shape

• register-register model
® Values that may safely reside in registers are assigned to a unique

virtual register (alias analysis)
® Register allocation/assignment maps virtual registers to limited set

of physical registers
® Register allocation/assignment pass needed to make code “work”

• memory-memory model
® All values reside in memory, and are only kept in registers as briefly

as possible (load operands from memory, perform computation,
store result into memory)

® Register allocation/assignment has to try to identify cases where
values can be safely kept in registers

® Safety verification is hard at the low levels of program abstraction
® Even without register allocation/assignment, code will “work”

Will use this one from now on

15

cs415, spring 22 Lecture 2

More instruction scheduling
EaC 12.1 – 12.3

Next topic

16

