CS 415 Compilers: Problem Set 6
Spring 2022
Due date: Wednesday, April 27, 11:59pm

Problem 1 — Out-of-Bounds Type Error

Assume a language that supports 1-dimensional integer arrays, with 0-based indexing. Dec-
larations of the array are in the form of

alcl:c2] of integer

where ¢l and ¢2 are compile-time constants, with c1 < ¢2. Give the ILOC code that
performs dynamic type checking for array references of the form al[e], where e is an integer-
valued expression. Use the “new” ILOC instruction throw-exception in case the reference
is out of bounds. Assume that array is declared as a[20:90] of integer, and the right-
hand-side reference you need to compile is

ali+1]

where i is an interger-valued scalar variable with relative address (offset) 4. Assume our
usual memory layout with r0 as the base register, containing address 1024.

Problem 2 — Code Generation for Array Expressions

var a[80] [35] [10] of integer;

for (k=0, k<10; skj++) {
for (j=0, j<35; j++) {
for (i=0; i<80; i++) {
= ... alil[j1[k] /*1x/
}
}
+

Generate ILOC code for the reference to three-dimensional array a at program point
/*1%/ assuming

1. row-major order (rightmost index has stride 1)

2. column-major order (leftmost index has stride 1)

You do not need to show the enclosing code for the loop.

Assume the following relative addresses (offsets): base address of a at 16, The indexing
is 0-based, i.e., a[0] [0] [0] is the first array element. Offsets of i, k, j are 4, 8, and 12,
respectively.



Probem 3 — Lexical Scoping Code Generation

Assume that all variables are lexically scoped.

program main()
{ int a, b;
procedure f()

{ int c;
procedure g()
{
. =b+c [/ <<L======—~ (xA%)
print a,b,c;
end g;
}
a=0; c=1;
..=b+c //<<L==mmm === (xBx)
call g(O);
print c;
end f;
}
procedure g()
{ int a,b;
a=3; b=7,
call £();
print a,b;
end g;
}
a=2; b=3;
print a,b;
call g();
print a,b;
end main;

1. Show the runtime stack with its stack frames, access and control links, and local
variables when the execution reaches program point (kAx).

2. Give the ILOC RISC code for the expressions at program points (*A*) and (*B*).
The value of the expressions need to be loaded into a register. The particular register
numbers are not important here. Use access links to resolve the non-local accesses.



