
CS 415 Compilers: Problem Set 6

Spring 2022

Due date: Wednesday, April 27, 11:59pm

Problem 1 – Out-of-Bounds Type Error

Assume a language that supports 1-dimensional integer arrays, with 0-based indexing. Dec-
larations of the array are in the form of

a[c1:c2] of integer

where c1 and c2 are compile-time constants, with c1 ≤ c2. Give the ILOC code that
performs dynamic type checking for array references of the form a[e], where e is an integer-
valued expression. Use the “new” ILOC instruction throw-exception in case the reference
is out of bounds. Assume that array is declared as a[20:90] of integer, and the right-
hand-side reference you need to compile is

a[i+1]

where i is an interger-valued scalar variable with relative address (offset) 4. Assume our
usual memory layout with r0 as the base register, containing address 1024.

Problem 2 – Code Generation for Array Expressions

var a[80][35][10] of integer;

for (k=0, k<10; skj++) {

for (j=0, j<35; j++) {

for (i=0; i<80; i++) {

= ... a[i][j][k] /*1*/

}

}

}

Generate ILOC code for the reference to three-dimensional array a at program point
/*1*/ assuming

1. row-major order (rightmost index has stride 1)

2. column-major order (leftmost index has stride 1)

You do not need to show the enclosing code for the loop.

Assume the following relative addresses (offsets): base address of a at 16, The indexing
is 0-based, i.e., a[0][0][0] is the first array element. Offsets of i, k, j are 4, 8, and 12,
respectively.

1



Probem 3 – Lexical Scoping Code Generation

Assume that all variables are lexically scoped.

program main()

{ int a, b;

procedure f()

{ int c;

procedure g()

{

... = b + c //<<<-------- (*A*)

print a,b,c;

end g;

}

a = 0; c = 1;

... = b + c //<<<-------- (*B*)

call g();

print c;

end f;

}

procedure g()

{ int a,b;

a = 3; b = 7;

call f();

print a,b;

end g;

}

a = 2; b = 3;

print a,b;

call g();

print a,b;

end main;

}

1. Show the runtime stack with its stack frames, access and control links, and local
variables when the execution reaches program point (*A*).

2. Give the ILOC RISC code for the expressions at program points (*A*) and (*B*).
The value of the expressions need to be loaded into a register. The particular register
numbers are not important here. Use access links to resolve the non-local accesses.

2


