
CS 415 Compilers: Problem Set 1

Spring 2022

Due date: Wednesday, February 9, 11:59pm

Problem 1 – ILOC code shape

Appendix A in our textbook (EaC) discusses ILOC, a linear assembly code
for a simple abstract RISC machine. Here, you will also be able to use an
additional instruction that allows you to print out a variable value: outputAI
register, constant (print MEM[CONTENT(register) + constant]).

The code that you are writing follows the memory layout as discussed in
class. Byte addresses smaller than 1024 are reserved and should not be used
for program variables. Program variables are addressed through offsets from
address 1024. The reserved register r0 needs to contain this value.

This problem is about code shape. The general goal is to keep values
of variables in registers if possible while preserving specific conditions such
as the notion of “memory consistency”. Let’s define memory consistency
as the property of a program that if you set a break-point between two
instructions and inspect the memory content of all program variables at
that point, the values of the variables in memory have to reflect all memory
operations before the breakpoint. For example, if you view the memory state
between instructions S2 and S3, you should be able to observe MEM(a) = 2
and MEM(b) = 3, assuming that a and b are not aliased. The values of the
other variables should be undefined, or have arbitrary values.

Please provide correct ILOC code for the following conditions and the
listed basic block. Do not perform any optimizations such as constant prop-
agation. Clearly, the printed value of d could be computed at compile time.

1. All variables may be aliased.

2. Variables a and b, and c and d may be aliased. Howver, both a and b
are not aliased with c or d. Memory consistency has to be preserved.

3. No two variables are aliased. Memory consistency has to be preserved.

4. No two variables are aliased. Memory consistency may not be pre-
served.



S1: a := 2;

S2: b := 3;

S3: c := a + b;

S4: d := a * b + a * c;

S5: d := a + c + d;

S6: PRINT d;

You can execute your ILOC code using the ILOC simulator sim. Execute
your ILOC code in file “test.i” by saying “./sim < test.i”. The simulator is
available on the ilab cluster at (∼uli/cs415/ILOC Simulator).

Instead of copying the sim simulator executable to your personal cs415
directory, I recommend to use a softlink to the “installed”, i.e., our provided
simulator executable. If we need to update the executable, you will have
immediate access to the updated version.

Problem 2 – Anti-Dependencies

a loadI 1024 => r0

b loadI 2 => r1

c storeAI r1 => r0, 4

d loadI 3 => r1

e storeAI r1 => r0, 8

f loadAI r0, 4 => r1

g loadAI r0, 8 => r2

h add r1, r2 => r3

i storeAI r3 => r0, 12

j outputAI r0, 12

There is an anti-dependence from statement c to statement d, and state-
ment e to statement f.

1. What is the number of cycles needed to run this code assuming the
latencies used in class (see lecture 3)? Do not reorder the instructions.

2. Can you remove the anti-dependencies? If so, give the code. What is
the number of cycles needed to run the modified code without anti-
dependences using latencies as above. Do not reorder or eliminate any
instructions.

3. What are the advantages and disadvantages of removing anti-dependencies?



Problem 3 – Instruction scheduling

Perform forward list scheduling for the following ILOC code:

a loadI 1024 => r0

b loadI 0 => r1

c storeAI r1 => r0, 0

d loadI 63 => r3

e storeAI r3 => r0, 4

f loadI 5 => r5

g loadAI r0, 0 => r6

h add r5, r6 => r7

i storeAI r7 => r0, 8

j loadAI r0, 8 => r3

k loadI 9 => r10

l sub r3, r10 => r11

m storeAI r11 => r0, 12

n loadAI r0, 4 => r13

o loadI 3 => r14

p mult r13, r14 => r15

q storeAI r15 => r0, 16

r loadAI r0, 16 => r3

s loadI 7 => r18

t mult r3, r18 => r4

u storeAI r4 => r0, 20

v loadAI r0, 12 => r21

w loadAI r0, 20 => r22

x add r21, r22 => r23

y storeAI r23 => r0, 24

z loadAI r0, 24 => r25

aa storeAI r25 => r0, 28

bb outputAI r0, 28

There are many possible variants of the basic forward list scheduling
algorithm.

1. Show the assignment S(n) of instruction issue times to instructions
when no list scheduling is performed. How many cycles does the pro-
gram take?



2. Show the dependence graph for the basic block. All true, anti, and
output dependences needed to ensure the correct order of execution.
You may omit dependences that are “covered” by other dependences
in the graph.

3. Label the nodes in the dependence graph based on the longest latency-
weighted path (see our class notes). Use the latencies as we discussed
in class (anti-dependencies have full latency).

4. Show the result of forward list scheduling, i.e., S(n) using the longest
latency-weighted path heuristic. How many cycles does the program
take?


